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The structure of the postnatal mammalian cerebral cortex is an assembly of numerous
mature neurons that exhibit proper neurite outgrowth and axonal and dendritic morphology.
While many protein coding genes are shown to be involved in neuronal maturation, the
role of microRNAs (miRNAs) in this process is also becoming evident. We here report
that blocking miRNA biogenesis in differentiated neurons results in microcephaly like
phenotypes in the postnatal mouse brain. The smaller brain defect is not caused by
defective neurogenesis, altered neuronal migration or significant neuronal cell death.
Surprisingly, a dramatic increase in neuronal packing density within the postnatal brain is
observed. Loss of miRNA function causes shorter neurite outgrowth and smaller soma
size of mature neurons in vitro. Our results reveal the impact of miRNAs on normal
development of neuronal morphology and brain function. Because neurite outgrowth is
critical for neuroregeneration, our studies further highlight the importance of miRNAs in
the treatment of neurological diseases.
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INTRODUCTION
In the mammalian cerebral cortex, projection neurons are gener-
ated from radial glial cells (RGCs) and intermediate progenitors
(IPs) that reside in the ventricular zone (VZ) and subventric-
ular zone (SVZ), respectively (Noctor et al., 2001; Rakic, 2003;
Haubensak et al., 2004; Englund et al., 2005; Gotz and Huttner,
2005). Postmitotic neurons (PNs) differentiate and migrate into
the cortical plate (CP), in which PNs are organized in an inside–
out six layered structure, with earliest born neurons in the deep
layers and later born neurons in the upper layers (Guillemot, 2005;
Molyneaux et al., 2007). Proper neurite outgrowth and axonal
and dendritic morphogenesis are critical for neuronal matura-
tion, synaptic formation, and neuronal function (Frank and Tsai,
2009; Merot et al., 2009). Molecular mechanisms regulating neu-
ronal differentiation and maturation remain an exciting research
topic.

The importance of microRNAs (miRNAs)-mediated neurogen-
esis and neuronal maturation in the central nervous system (CNS)
has drawn significant attention (Kosik, 2006; Fineberg et al., 2009;
Shi et al., 2010; Bian and Sun, 2011). MiRNAs are approximately
22 nucleotide (nt) endogenous non-coding small RNAs (Lee et al.,
1993; Wightman et al., 1993). A mature miRNA recognizes a com-
plementary sequence in the 3′-untranslated region (3′-UTR) of its
target messenger RNA (mRNA) and affects mRNA stability and/or
silences protein translation (Carthew and Sontheimer, 2009; Kim
et al., 2009). Because miRNA precursors are processed into mature
miRNAs by the RNAase III enzyme Dicer, the role of miRNAs in
neurogenesis has been demonstrated by regional-specific deletion
of Dicer expression in the CNS using different Cre lines (Volvert
et al., 2012; Zhang et al., 2012). For example, Dicer ablated knock-
out (Ko) mice in PNs using the CaMKII-Cre line display impaired

dendritic branching in pyramidal neurons in the CA1 region of the
hippocampus (Davis et al., 2008; Hebert et al., 2010). These studies
indicate the importance of miRNA functions in morphogenesis of
mature neurons in the brain.

In this study, we demonstrate the critical role of miRNAs in
neurite outgrowth of mature cortical neurons. Blocking miRNA
biogenesis in PNs in the mouse cortex at perinatal stages does
not significantly affect neurogenesis, neuronal survival, and layer
organization. However, the neuronal packing density is greatly
increased in the CP, resulting in a significantly reduced cortical
size. Correspondingly, neurite outgrowth and soma size devel-
opment are significantly reduced in cultured Dicer Ko PNs. Our
results demonstrate that miRNA functions are required for proper
neuronal maturation. Moreover, our studies suggest a potential
role of miRNAs in promoting neurite outgrowth in the treatment
of neurodegenerative diseases.

MATERIALS AND METHODS
GENERATION OF Dicer CONDITIONAL KNOCKOUT MICE
The floxed Dicer transgenic mice (Dicerflox/flox ; C57/BL6 × 129
background; kindly provided by the Greg Hannon’s lab at the Cold
Spring Harbor Laboratory; Murchison et al., 2005) were bred with
Nex-Cre mice (C57/BL6 background, provided by Drs M. Schwab
and K. Nave at Max-Planck-Institute of Experimental Medicine,
Goettingen, Germany; Goebbels et al., 2006) to generate Nex-Cre-
Dicer Ko (Nex-Cre; Dicerflox/flox) animals.

For staging of embryos, mid-day of the day of vaginal plug
formation is considered embryonic day 0.5 (E0.5), and the first
24 h after birth is defined as postnatal day 0 (P0). Animal use
was overseen by the Animal Facility at the Weill Cornell Medical
College.
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GENOTYPING OF Dicer CONDITIONAL KNOCKOUT MICE
Mouse tail tip biopsies were used for genotyping by poly-
merase chain reaction reactions using the following primer pairs:
for Cre, 5′-TAAAGATATCTCACGTACTGACGGTG-3′ and 5′-
TCTCTGACCAGAGTCATCCTTAGC-3′ (product size: 350 bp);
for Dicer, 5′-ATTGTTACCAGCGCTTAGAATTCC-3′ and 5′-
GTACGTCTACAATTGTCTATG-3′ (product sizes: 767 bp from
the floxed Dicer allele and 560 bp from the wild-type Dicer
gene).

BREEDING THE Nex-Cre LINE WITH FLOXED LacZ REPORTER MICE
To localize the Cre activity sites, Nex-Cre transgenic mice were
crossed with homozygous ROSA26 floxed LacZ reporter mice,
obtained from Jackson Laboratories (Bar Harbor, Maine). The
ROSA26 mice carry a loxP-flanked transcriptional “STOP” DNA
sequence that prevents the transcription of the LacZ gene. Only
the cells that express the Cre recombinase can remove the “STOP”
sequence and subsequently activate the transcription of the LacZ
gene. Cells which express LacZ produce a blue color in the
β-galactosidase assay (X-gal staining).

β-GALACTOSIDASE ACTIVITY ASSAY
Mouse brains were dissected in ice-cold 1× phosphate buffered
saline (PBS) and placed in 4% paraformaldehyde (PFA) in PBS
for 15 min at room temperature. Fixed brains were washed in
PBS for 3 × 5 min and sectioned coronally (100 μm) using a
Leica vibratome (Leica, VT1000 S). Brain sections were washed
three times in a wash solution (0.1 M phosphate buffer and
2 mM MgCl2) and subjected to a 5-bromo-4-chloro-3-indolyl-β-
D-galactopyranoside (X-gal) solution (1 mg/ml X-gal and 5 mm
potassium ferrocyanide, 5 mm potassium ferricyanide in wash
buffer) for 30 min to 1 h at 37◦C. The reaction was quenched by
washing sections three times in wash solution and incubating them
in 4% PFA in PBS for 5 min at room temperature. The sections
were washed three times in wash solution and mounted with a
coverslip. The images were collected using a Leica digital camera
under a dissection scope (Leica, MZ16F).

TISSUE PREPARATION AND IMMUNOHISTOCHEMISTRY
Mouse brains were collected and fixed in 4% PFA in PBS at 4◦C
overnight, followed by incubating in 30% sucrose in PBS. Brain
tissues were embedded in optimal cutting temperature (OCT) and
stored at -80◦C until use. Brains were sectioned coronally (14 μm)
using a Leica cryostat (Leica, CM3050 S).

For antigen recovery, sections were incubated in heated (95–
100◦C) antigen recovery solution [1 mM ethylenediaminete-
traacetic acid (EDTA), 5 mM Tris, pH 8.0] for 15–20 min, and
cooled down for 20–30 min. Before applying antibodies, sections
were blocked in 10% normal goat serum (NGS) in PBS with
0.1% Tween-20 (PBT) for 1 h. Sections were incubated with
primary antibodies at 4◦C overnight and visualized using goat
anti-rabbit IgG–Alexa-Fluor-488 and/or goat anti-mouse IgG–
Alexa-Fluor-546 (1:350, Molecular Probes) for 1.5 h at room
temperature. Images were captured using a Leica digital camera
under a fluorescent microscope (Leica DMI6000B).

Primary antibodies against the following antigens were used:
bromodeoxyuridine (BrdU; 1:50, DSHB), Ki67 (1:500, Abcam),

Tbr1 (1:2500, Abcam), Ctip2 (1:1000, Abcam), Cux1 (1:200, Santa
Cruz), Satb2 (1:1000, Abcam), β-tubulin III (TuJ1; 1:500, Chemi-
con), Map2 (1:500, Chemicon), and NeuN (1:300, Chemicon).

NISSL STAINING
Sections (14 μm) were processed through incubation in the fol-
lowing solutions in order: ethanol/chloroform (1:1, overnight),
100% ethanol (30 s), 95% ethanol (30 s), distilled water (30 s,
twice), cresyl violet (3–5 min), distilled water (2 min, three times),
50% ethanol (2 min), 95% ethanol (5–30 min), 100% ethanol
(5 min, twice), xylene (3 min, twice), and then mounted with a
coverslip. The images were collected using a Leica digital camera
under a dissection scope (Leica, MZ16F).

IN SITU HYBRIDIZATION
In situ hybridization for miRNA expression was performed accord-
ing to previously published methods with modifications using
locked nucleic acid (LNA) probes (Obernosterer et al., 2007).
Briefly, after fixation with 4% PFA, acetylation with acetyla-
tion buffer (13.33% triethanolamince, 2.5% acetic anhydride,
20 mM HCl), treatment of proteinase K (10 mg/ml, IBI Scien-
tific) and pre-hybridization [1× saline-sodium citrate (SSC), 50%
formamide, 0.1 mg/ml salmon sperm DNA solution, 1× Den-
hardt, 5 mM EDTA, pH 7.5], brain sections were hybridized
with digoxigenin (DIG)-labeled LNA probes at a proper tem-
perature (Tm-22◦C) overnight. After washing with pre-cooled
wash buffer (1× SSC, 50% formamide, 0.1% Tween-20) and
1× maleic acid buffer containing Tween 20 (MABT), sections
were blocked with blocking buffer (1× MABT, 2% blocking
solution, 20% heat-inactived sheep serum) and incubated with
anti-DIG antibody (1:1,500, Roche) at 4◦C overnight. Brain
sections were washed with 1× MABT and staining buffer (0.1M
NaCl, 50 mM MgCl2, 0.1M Tris–HCl, pH 9.5), stained with BM
purple (Roche) at room temperature until ideal intensity. The
microRNA LNA probes (Exiqon) were 3′ end labeled with DIG–
ddUTP with terminal transferase using the DIG–3′ end labeling kit
(Roche).

The images of in situ hybridization were collected using a Leica
digital camera under a dissection scope (Leica, MZ16F).

BrdU INCORPORATION
To assess proliferation of neural progenitors in the developing
cortex, one dose of BrdU (50 μg/g body weight) was administrated
by intraperitoneal injection to timed-pregnant female mice half an
hour before sacrifice.

TUNEL ASSAY
To identify apoptotic cells in the cortex, we performed a TUNEL
(terminal deoxynucleotidyl transferase dUTP nick end labeling)
assay using an Apop Tag Fluorescein in situ Apoptosis detection kit
(Chemicon) on 14-μm frozen sections. This assay was performed
according to the manufacturer’s instructions.

CELL COUNTING IN THE CORTICAL WALL
Coronal sections were collected in the medial cortical region (at
levels between the anterior commissure and the anterior hip-
pocampus). At least four sections from each brain and three
brains from different litters were chosen for antibody labeling and
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TUNEL assay. For Figures 2 and 3, positive cells were quantified
in fixed areas of 186 μm × 1200 μm in the cortical wall of P5
and P10 cortices. For Figure 4, positive cells were quantified in
fixed areas of 186 μm × 186 μm in the cortical wall of P5 and P10
cortices.

PRIMARY NEURONAL CULTURES
Neuronal cultures were performed according to established proto-
cols (Yu et al., 2005) with modifications. Briefly, the dorsal cortex
was dissected from the P0 brain, and transferred to pre-cooled
Hanks’ balanced salt solution (HBSS) medium. Tissue was dis-
sociated with 0.5 mg/ml DNAse I (Sigma D4527) in HBSS for
2 min at 37◦C and mechanically triturated with fire-polished
Pasteur pipettes into a single cell suspension. Cortical neurons
were plated onto poly-L-lysine (PLL) and Laminin treated cov-
erslips at 5 × 104 cells/well in 24-well plates. Neuronal cultures
were maintained in neuronal medium [Dulbecco’s modified Eagle
medium (DMEM)/F12, N2, B27, glucose, NaHCO3, HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid)] with fibroblast
growth factor 2 (FGF-2; 20 ng/ml; Invitrogen) treatment for the
first 24 h only. Afterward, cells were cultured in neuronal medium
only and medium was changed every 2–3 days.

Primary neurons were fixed after 10 days in vitro (DIV 10) with
4% PFA in PBS for 30 min at room temperature. Before applying
antibodies, cells were blocked in 10% NGS in PBS with 0.3% Tri-
ton X-100 for 1 h. Cells were incubated with primary antibodies
at 4◦C overnight and visualized using goat anti-rabbit IgG–Alexa-
Fluor-488 and/or goat anti-mouse IgG–Alexa-Fluor-546 (1:350,
Molecular Probes) for 1.5 h at room temperature. Images were cap-
tured using a Leica digital camera under a fluorescent microscope
(Leica DMI6000B).

ANALYSIS OF NEURITE GROWTH AND SOMA SIZE
Typically, pictures of 30–50 neurons from three separate coverslips
from each experiment were taken using a Leica digital camera
under a fluorescent microscope (Leica DMI6000B). Representa-
tive cells with strong Map2 and Tuj1 immunoreactivity labeling
neurite (axonal and dendritic) processes were analyzed. Neurites
that had lengths that were at least twice the diameter of the cell
body were measured. Neurite lengths from the soma and soma
size area were traced and measured using Image J software and
the data were compiled and analyzed using the Excel program
(Microsoft).

STATISTIC ANALYSIS
At least three Nex-Cre-Dicer Ko (Ko) and three control (Ctrl) ani-
mals were used for all statistical analyses. Data were shown as
mean ± SEM. Statistical comparison was made by analysis of vari-
ance (unpaired t-test or analyses of variance). Additional details
regarding the n (number of animals) or N (number of neurites or
cells) are found in the pertinent figure legend.

RESULTS
CORTICAL GROWTH DEFECTS IN Nex-Cre-Dicer KNOCKOUT MICE
To examine the role of miRNAs in the maturation of differenti-
ated neurons, we conditionally ablated Dicer expression in PNs
in the mouse cerebral cortex utilizing a Cre-loxp system. A floxed

Dicer mouse line (Dicerflox/flox) with two loxP sites flanking exon
22 and exon 23, which encode the RNAase III domains of Dicer,
were bred with a Nex-Cre mouse line to generate Nex-Cre-Dicer
Ko mice (Figure 1A). The Nex-Cre line displays activity by E13.5
and is prominently expressed in differentiating neurons of the dor-
sal telencephalon without affecting proliferating precursor cells of
the VZ (Goebbels et al., 2006). Proliferating precursor cells can
be detected by labeling cells in the S phase with a 30 min pulse
of BrdU, and in the G1, S, G2, and M phase with Ki67. Indeed,
quantification of BrdU+ and Ki67+ cells revealed no change in
E15.5 Nex-Cre-Dicer Ko cortices compared to controls (data not
shown). As such, Dicer and consequently miRNA production was
conditionally ablated in PNs in the cortex after Cre recombina-
tion, as demonstrated by X-gal staining in P1 cortices of mice
bred between the Nex-Cre line and the Rosa26-LacZ reporter line
(Figure 1B).

Inactivation of Dicer in differentiated neurons caused markedly
reduced postnatal growth. Moreover, Nex-Cre-Dicer Ko mice could
not survive past P23, presumably due to starvation and dehydra-
tion after weaning. At P1, the brain size of Nex-Cre-Dicer Ko mice
was comparable to that of controls (data not shown). However,
gross brain morphology at P10 revealed a significant size reduc-
tion in Nex-Cre-Dicer Ko brains compared to controls (Figure 1C).
Quantification of the body and brain weights of P10 Dicer Ko mice
showed a significant reduction compared to controls, with a more
profound reduction in brain weight (Figure 1D). Next, cortical
morphology was analyzed in coronal sections of P10 brains by
Nissl staining. While overall cortical lamination appeared nor-
mal, the thickness of the cortical wall was significantly reduced in
Nex-Cre-Dicer Ko brains compared to controls (Figure 1E).

To verify that the brain phenotypes were caused by miRNA loss,
we performed miRNA in situ hybridization in control and Dicer
Ko brains. Three brain-enriched miRNAs, miR-9, Let-7, and miR-
128, were utilized. We found that expression levels of all three
miRNAs were reduced in P1 cortices and almost diminished in
P10 cortices, suggesting a progressive loss of miRNAs due to Dicer
deletion (Figure 1F and data not shown).

Our results indicate that Dicer deletion in differentiated
neurons in the developing brain causes early postnatal death,
reduced body and brain weights, and severe reduction of the
cortical wall.

DEPLETION OF miRNA FUNCTION IN POSTMITOTIC NEURONS DOES
NOT SIGNIFICANTLY AFFECT CORTICAL LAMINATION AND NEURONAL
PRODUCTION
Due to the significant reduction in cortical wall thickness, we
investigated the effects of Dicer ablation on the generation of
early- and late-born neurons. During mouse cortical devel-
opment, early-born neurons generated at E12.5–E13.5 migrate
and form deep cortical layers VI and V, and express Tbr1 and
Ctip2, respectively (Arlotta et al., 2005; Kolk et al., 2006; Chen
et al., 2008; Han et al., 2011). Late-born neurons are generated
at E14.5–E18.5 and migrate to form the upper neuronal lay-
ers II–IV above the deep cortical layers, and can be detected
by Satb2 and Cux1 expression (Alcamo et al., 2008; Britanova
et al., 2008; Cubelos et al., 2010). We first examined early- and
late-born neuron production in the P5 cortex. Quantification of
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FIGURE 1 | Conditional ablation of Dicer in postmitotic neurons of

the cerebral cortex results in a smaller cortex and reduced thickness

of the cortical wall. (A) Dicer targeting construct.The N-terminal RNA helicase
domain, piwi argonaute and zwille (PAZ) domain, two ribonuclease III domains,
and a double-stranded RNA- binding domain (RBD) are labeled. The exon 22
and exon 23 of Dicer are conditionally excised after Nex-Cre recombination.
(B) X-gal staining at the level of the cortex in a Nex-Cre and Rosa26-LacZ -
expressing mouse at P1 illustrating cortical specificity of the Nex-Cre line. The
red box indicates the region shown at higher magnification. The cortex (Cx)

and hippocampus (Hp) are labeled. (C) Appearance of representative brains
from P10 control and Nex-Cre-Dicer Ko mice (litter mates). (D) Body and brain
weights of control (Ctrl ) and Nex-Cre-Dicer Ko (Ko) mice at P10. (E) Coronal
sections of P10 brains with Nissl staining of control and Nex-Cre-Dicer Ko
mice. The black boxes indicate the region shown at higher magnification. The
subplate (SP), cortical plate (CP), and marginal zone (MZ) are labeled. (F) In
situ hybridization of miR-9, Let-7, and miR-128 in control and Dicer Ko
cortices at P10. Data are presented as mean ± SEM; n ≥ 3 in all genotypes;
p values in relation to control (*p < 0.05, ***p < 0.00002).

early-born neurons with Tbr1+ and Ctip2+ cells revealed no sig-
nificant difference between control and Nex-Cre-Dicer Ko cortices
(Figures 2A,B). For late-born neurons, Satb2+ cells were unaf-
fected but Cux1+ cells were slightly decreased in Dicer Ko cortices
compared to controls (Figures 2A,B). Next, we analyzed neuronal
production in the P5 cortex. Quantification of neuron and cell
numbers by NeuN and DAPI immunostaining showed no signifi-
cant difference in Nex-Cre-Dicer Ko cortices compared to controls
(Figures 2C,D).

Given that Dicer ablation did not reveal a significant defect in
cortical lamination and neuronal production despite the reduced
cortical thickness, we investigated the possibility of neuronal cell
death. Apoptotic cells in the cortex were detected by TUNEL
assay. At P5, there was a significant increase in apoptotic cells

in Nex-Cre-Dicer Ko cortices compared to controls, which was
not detected in P1 cortices (Figures 2E,F and data not shown).
Moreover, TUNEL+ cells in Dicer Ko brains were localized in the
far-upper cortical layer at the marginal zone boundary, suggesting
apoptosis of a subset of late-born neurons (Figures 2Ea′,b′).

We further examined cortical lamination, neuronal produc-
tion, and apoptosis in P10 control and Nex-Cre-Dicer Ko brains.
Numbers of Tbr1+ and Ctip2+ early-born neurons were increased
and decreased in Dicer Ko cortices, respectively, compared to
controls (Figures 3A,B). Conversely, quantification of Satb2+
and Cux1+ late-born neurons revealed no significant difference
between control and Dicer Ko cortices (Figures 3A,B). Subse-
quently, we analyzed neuron and cell number by NeuN and DAPI
immunostaining in the P10 cortex. Interestingly, countings of
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FIGURE 2 | Conditional Dicer loss in mature neurons does not

significantly alter cortical lamination and neuronal production, and

exhibits a transitory increase in cell death at P5. (A,B) The numbers of
early-born neurons labeled with Tbr1 and Ctip2 were unaffected in P5
Nex-Cre-Dicer Ko (Ko) cortices, compared to controls (Ctrl ). The numbers of
late-born neurons labeled with Satb2 were unaffected and Cux1 were
decreased in P5 Dicer Ko cortices, compared to controls. (C,D) Numbers of
NeuN+ and DAPI+ cells were unaffected in the cortical wall of P5 Dicer Ko

cortices compared to controls. The dashed box indicates the area of
quantification. (E) TUNEL assay of coronal cryosections of P5 control and
Dicer Ko cortices. The dashed box indicates the region shown at higher
magnification in panel a′, b′. (F) Normalized quantification of TUNEL+ cells
per area in the cortical wall of P5 control and Dicer Ko brains. Cortical layers
(VI), (V), and (II/III) are labeled. Scale bar: 100 μm. Data are presented as
mean ± SEM; n ≥ 3 in all genotypes; p values in relation to control
(*p < 0.04, ***p < 0.0002). n.s., not significant.

NeuN+ and DAPI+ cells within fixed columns of the cortical wall
revealed no significant alterations in neuronal or cell number in
Nex-Cre-Dicer Ko cortices, despite its significantly thinner cor-
tex (Figures 3C,D). Further TUNEL analysis in the P10 cortex
revealed no significant differences in the numbers of apoptotic
cells in Dicer Ko and control brains (Figures 3E,F).

Our results indicate that even though the numbers of
early- and late-born neurons, and apoptotic cells show tem-
poral changes in postnatal cortices of Nex-Cre-Dicer Ko mice,
overall cortical lamination and neuronal production remain
undisrupted.

CONDITIONAL Dicer ABLATION AFFECTS NEURON AND CELL PACKING
DENSITY WITHIN THE CORTEX
Considering that inactivation of Dicer in PNs did not adversely
affect cortical lamination and neuronal production and only had
a transient effect on cell survival, we investigated the cause of
the smaller cortex in Nex-Cre-Dicer Ko mice further. We ana-
lyzed the density of neurons and cells by quantifying the number
of NeuN+ and DAPI+ cells within uniform boxed areas in the
upper and lower regions of the CP. At P5, there were no alter-
ations in NeuN+ neuron and DAPI+ cell density in Dicer Ko

cortices compared to controls (Figures 4A,B). However, P10 Dicer
Ko cortices revealed significantly increased NeuN+ and DAPI+
cell numbers compared to controls, indicating increased den-
sity and packing of cells within the cortex during the stage of
neuronal maturation (Figures 4C,D). These results demonstrate
that Dicer ablation in PNs does not cause defective neuronal
production but alters the neuronal packing density within the
cortex.

LOSS OF Dicer CAUSES ABNORMAL NEURONAL MATURATION WITH
SHORTER NEURITE OUTGROWTH AND SMALLER CELL BODY SIZE
Given that the packing density of neurons was dramatically
increased in the Nex-Cre-Dicer Ko cortices, we decided to fur-
ther analyze neuronal morphology in vitro. This was done by
harvesting cortical neurons from P0 mouse brains and culturing
them under differentiation conditions using previously described
methods with modifications (Figure 5A; Yu et al., 2005). After
10 days in vitro (DIV 10), cultures of differentiated neurons
from control and Dicer Ko cortices were labeled with antibod-
ies against Map2 and Tuj1 to illustrate neurites. We found
that Dicer Ko neurons displayed significantly shorter neurites
and processes compared to controls (Figures 5B,C). We next
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FIGURE 3 | Depletion of miRNA function in postmitotic neurons

slightly alters early-born neurons and has no measured effect on

neuronal production and cell death at P10. (A,B) The numbers of
early-born neurons labeled with Tbr1 were increased and Ctip2 were
decreased in P10 Nex-Cre-Dicer Ko (Ko) cortices, compared to controls (Ctrl ).
The numbers of late-born neurons labeled with Satb2 and Cux1 were
unaffected in P10 Dicer Ko cortices, compared to controls. (C,D) Numbers
of NeuN+ and DAPI+ cells were unaffected in the cortical wall of

P10 Dicer Ko cortices compared to controls. The dashed box indicates
the area of quantification. (E) TUNEL assay of coronal cryosections
of P10 control and Dicer Ko cortices. Arrows indicate TUNEL+ cells.
(F) Normalized quantification of TUNEL+ cells per area in the cortical wall
of P10 control and Dicer Ko brains. Cortical layers (VI), (V), and (II/III) are
labeled. Scale bar: 100 μm. Data are presented as mean ± SEM; n ≥ 3
in all genotypes; p values in relation to control (*p < 0.04). n.s., not
significant.

quantified soma size by measuring the cell body area of Map2-
and Tuj1-stained neurons. Analysis of soma size revealed that
Nex-Cre-Dicer Ko neurons displayed significantly smaller cell body
area compared to controls (Figures 6A,B). Our results indicate
that miRNA function is required for proper neurite outgrowth
and soma size development of differentiated neurons during
maturation.

DISCUSSION
MiRNAs have been found to be crucial for proper development of
the CNS. The results reported here underscore the importance of
Dicer and miRNAs for neuronal differentiation and maturation.
Although removal of Dicer in postmitotic cortical neurons has
no immediate impact on neurogenesis, neuronal survival, or layer
organization, it has dramatic effects on neurite outgrowth and cor-
tical packing density. Consequently, Dicer-deficient mice exhibited
thinner cortical walls and a progressive decline in postnatal growth,
resulting in neurodegeneration defects. In conclusion, our results
provide evidence that Dicer and miRNAs function is essential
for neuronal maturation and that interference with the miRNA
pathway results in phenotypes similar to neurodegenerative
diseases.

Previous studies have revealed essential roles of miRNAs
for neural progenitor proliferation, survival, and differentiation
through Dicer ablation during embryonic development of the
mouse neocortex (De Pietri Tonelli et al., 2008; Kawase-Koga
et al., 2009, 2010; Andersson et al., 2010; Nowakowski et al.,
2011). Moreover, limited studies have examined the role of Dicer
in specific subpopulations of neurons, such as Purkinje cells,
dopaminergic neurons, and excitatory neurons (Kim et al., 2007;
Schaefer et al., 2007; Davis et al., 2008). In our mouse model, Dicer
is ablated in PNs with the Nex-Cre line. Although the Nex-Cre line
displays activity in the cortex by E13.5 (Goebbels et al., 2006), our
model system reveals no significant alterations in brain weight or
morphology in Dicer deficient mice at P1 (data not shown). This
is perhaps caused by a delayed Dicer deletion, which allows a low
level of Dicer proteins to continue to process miRNAs and regulate
PNs until complete inactivation (Harfe et al., 2005; Kawase-Koga
et al., 2009). MiRNAs are expressed in a diverse spectrum and
change dynamically during brain development (Lagos-Quintana
et al., 2002; Krichevsky et al., 2003; Miska et al., 2004; Sempere
et al., 2004; Smirnova et al., 2005). Moreover, conserved complex
interactions of multiple genes form a wide regulatory network in
the developing cortex (Guillemot, 2005; Molyneaux et al., 2007).
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FIGURE 4 | Conditional Dicer ablation increases neuron and cell packing

density within the cortex at P10. (A,B) Numbers of NeuN+ and DAPI+ cells
were unaffected in the upper and lower regions of the cortical wall of P5
Nex-Cre-Dicer Ko (Ko) cortices compared to controls (Ctrl ). (C,D) Numbers of
NeuN+ and DAPI+ cells in the upper and lower regions of the cortical wall
were significantly increased in P10 Dicer Ko cortices compared to controls.

The dashed boxes indicate the region shown at higher magnification in panel
i′, i′′, ii′, ii′′; the boxed area in this region was chosen for subsequent analysis.
The ventricular surface (vs) and pial surface (ps) are labeled. Scale bar:
100 μm. Data are presented as mean ± SEM; n ≥ 3 in all genotypes; p values
in relation to control (*p < 0.02, **p < 0.004, ***p < 0.0008). n.s., not
significant.

FIGURE 5 | Loss of Dicer in mature neurons delays neurite

outgrowth in vitro. (A) An illustrative summary of primary neuronal
culture derived from control (Ctrl ) and Nex-Cre-Dicer Ko (Ko) P0 dorsal
cortex. (B) Measurements of Map2+ processes revealed shorter neurite
outgrowth 10 days in vitro (DIV 10) in Dicer Ko (N = 113) neural cultures

compared to controls (N = 158). (C) Measurements of Tuj1+ processes
displayed shorter neurite outgrowth in DIV 10 Dicer Ko (N = 411) neural
cultures compared to controls (N = 423). Scale bar: 50 μm. Data are
presented as mean ± SEM; n ≥ 3 in all genotypes; p values in relation to
control (***p < 0.0008).
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FIGURE 6 | miRNA depletion in maturing cortical neurons causes a

reduction of soma size in vitro. (A) Immunofluorescence microscopy of
control (Ctrl ) and Nex-Cre-Dicer Ko (Ko) primary neural cultures at 10 days in
vitro (DIV 10) showing Map2 (green), Tuj1 (red), and DAPI (Jentarra et al.,
2010). The dashed box indicates the region shown at higher magnification.

The area encircled by the white line indicates the region of soma size analysis.
(B) Measurements of soma size area in DIV 10 primary neurons revealed a
significant reduction in Dicer Ko (N = 324) cell body size compared to
controls (N = 259). Scale bar: 25 μm. Data are presented as mean ± SEM;
n ≥ 3 in all genotypes; p values in relation to control (***p < 0.00009).

As such, the slight alterations in early- and late-born neuron
populations in P5 and P10 Nex-Cre-Dicer Ko cortices are perhaps
a balanced outcome of a multitude of distinct miRNAs with a
variety of regulatory functions and targets.

Given the significant reduction in postnatal cortical growth in
Nex-Cre-Dicer Ko brains, it is surprising to find preservation of
neuronal cell numbers in the cortex. Moreover, despite a tem-
poral increase of apoptotic cells in P5 cortices, Nex-Cre-Dicer Ko
mice do not exhibit significant cell death. These results are in
direct contrast to previous studies of Dicer function in Purkinje
neurons and DAT-expressing neurons, which found widespread
and continuous neurodegeneration and neuronal cell death (Kim
et al., 2007; Schaefer et al., 2007). Moreover, compared to Dicer
ablation studies in embryonic neural progenitors, which found
dramatic apoptotic and differentiation defects, our studies have
shown that loss of Dicer activity in postmitotic cortical neu-
rons has minimal impact on neuronal survival (De Pietri Tonelli
et al., 2008; Kawase-Koga et al., 2009). This mild apoptosis defect
is similar to observations in Dicer Ko mice generated using the
CaMKII-Cre line (Davis et al., 2008). These results highlight the
diverse and variable functions Dicer and miRNAs carry for cell
survival of different cell types at different time points during
development.

Although blocking miRNA biogenesis in mature neurons
reveals no apparent loss of neurons in the cortex, we have found
a major increase in neuronal density in the cerebral cortex. This
indicates that neuronal cell volume rather than neuron number
is altered by depletion of Dicer and miRNAs in postmitotic cor-
tical neurons. Moreover, direct differentiation of PNs from Dicer
deficient cortices in a cell culture system has shown defects in

neurite outgrowth (dendrites and axons) and decreased soma size.
Decreased neurite outgrowth and increased packing density may
contribute to reduced brain size in our Nex-Cre-Dicer Ko mice and
in Dicer Ko mice generated using the CaMKII-Cre line (Davis et al.,
2008). Moreover, our findings further support previous work,
which have found a causal link between specific miRNAs such
as miR-134, miR-34, miR-124, miR-9, and miR-132 with neu-
rite outgrowth and elaboration in vitro (Vo et al., 2005; Yu et al.,
2008; Agostini et al., 2011; Gaughwin et al., 2011; Clovis et al.,
2012; Franke et al., 2012).

In conclusion, our results shed light on the essential role of
Dicer-mediated miRNA functions for postmitotic neuronal mat-
uration. Although loss of miRNA function in postmitotic cortical
neurons has no definitive impact on neurogenesis, cortical pat-
terning, or cell survival, it causes an atrophic change in neurites
(dendrites and axons) and soma size. The aforementioned neu-
rite outgrowth phenotypes are comparable with mouse models
of neurodegeneration, which induce generalized atrophy of neu-
ronal soma, dendrites and axons in the brain (Sakai et al., 2006).
Increased packing density is also detected in a mouse model of
Rett syndrome/X-linked mental retardation (Jentarra et al., 2010).
Moreover, abnormally high packing density has been observed
in patient brains with Rett syndrome, Williams syndrome, and
schizophrenia (Bauman et al., 1995; Selemon et al., 1995; Gal-
aburda et al., 2002). Our model of mature neuron degeneration
bears resemblance to cell pathologies associated with schizophre-
nia and neurodegenerative diseases. As such, understanding the
role of specific miRNAs during processes such as neuronal differ-
entiation and maturation may be fundamental to discovering the
morphological mechanisms of neurological disorders.
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