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Vascular endothelial growth factor (VEGF), originally described as a factor with a regulatory
role in vascular growth and development, it is also known for its direct effects on neuronal
cells. The discovery in the past decade that transgenic mice expressing reduced levels
of VEGF developed late-onset motoneuron pathology, reminiscent of amyotrophic lateral
sclerosis (ALS), opened a new field of research on this disease. VEGF has been shown
to protect motoneurons from excitotoxic death, which is a relevant mechanism involved
in motoneuron degeneration in ALS. Thus, VEGF delays motoneuron degeneration and
increases survival in animal models of ALS. VEGF exerts its anti-excitotoxic effects on
motoneurons through molecular mechanisms involving the VEGF receptor-2 resulting in
the activation of the PI3-K/Akt signaling pathway, upregulation of GluR2 subunit of AMPA
receptors, inhibition of p38MAPK, and induction of the anti-apoptotic molecule Bcl-2. In
addition, VEGF acts on astrocytes to reduce astroglial activation and to induce the release
of growth factors. The potential use of VEGF as a therapeutic tool in ALS is counteracted
by its vascular effects and by its short effective time frame. More studies are needed to
assess the optimal isoform, route of administration, and time frame for using VEGF in the
treatment of ALS.
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INTRODUCTION
Vascular endothelial growth factor (VEGF) was originally
described as a factor with a regulatory role in vascular growth
and development (reviewed by Carmeliet, 2003; Ferrara, 2004);
currently, it is also known for its direct effects on a variety of neu-
ronal cells, modulating neuronal migration, neuritic outgrowth,
axon guidance and neuronal survival (reviewed by Ruiz de Almod-
ovar et al., 2009; Mackenzie and Ruhrberg, 2012; Rosenstein et al.,
2012).

The VEGFs form a family of growth factors that includes
VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placental
growth factor (Takahashi and Shibuya, 2005). The biological activ-
ity of the VEGF family is mediated through the binding to two
classes of receptors. The tyrosine kinase receptors include the
VEGF receptor-1 (VEGFR1, Flt-1), VEGF receptor-2 (VEGFR2,
KDR, Flk-1), and VEGF receptor-3 (VEGFR3, Flt-4). The second
class, the non-tyrosine kinase receptors, are the neuropilin-
1 (NP-1) and neuropilin-2 (NP-2), which are also receptors
for semaphorins, and function as co-receptors for the VEGFRs
(reviewed by Carmeliet and Ruiz de Almodovar, 2013).

Vascular endothelial growth factor-A (hereafter referred as
VEGF) is expressed in different isoforms in humans, which differ
in molecular mass, solubility, receptor affinity, and most likely, in
its biological function. VEGF165 is the predominant isoform and
is secreted as a 45-kDa covalently linked homodimer (reviewed
by Bogaert et al., 2006). VEGF is widely expressed throughout
the central nervous system. Its expression has been reported in
neurons (Ogunshola et al., 2002; Schiera et al., 2007), astroglia

(Ijichi et al., 1995), and microglia (Bartholdi et al., 1997). VEGF
expression is low in the normal adult spinal cord (Fu et al., 2005);
however, it increases in response to injury (Choi et al., 2007).
VEGF binds to VEGFR1, VEGFR2, NP-1, and NP-2. VEGFR2
is expressed in many populations of neurons and some glial
cells; whereas VEGFR1 is predominantly expressed by activated
astrocytes and microglia following acute injury (Ogunshola et al.,
2002; Choi et al., 2007; Krum et al., 2008; Ruiz de Almodovar
et al., 2009). In addition, direct effects of VEGF on Schwann
cells have been described (Sondell et al., 1999). NP-1 and NP-
2 are expressed in different types of neurons (Kolodkin et al.,
1997; Giger et al., 1998), and also in spinal cord motoneurons
(Oosthuyse et al., 2001).

Vascular endothelial growth factor has pro-survival effects on
some neuronal cells, protects against experimentally induced cell
death (Jin et al., 2000), stimulates axonal growth, and guidance
(Sondell et al., 2000; Erskine et al., 2011; Ruiz de Almodovar et al.,
2011), stimulates neurogenesis (Jin et al., 2002), regulates neuronal
migration (Schwarz et al., 2004; Ruiz de Almodovar et al., 2010),
and promotes dendrite patterning and synaptic plasticity (Licht
et al., 2010, 2011). In addition to the vascular effects of VEGF pro-
tecting motoneurons by ensuring optimal blood supply to brain
and spinal cord, it functions as a neurotrophic factor for motoneu-
rons (Oosthuyse et al., 2001; Van Den Bosch et al., 2004). VEGF
protects motoneurons from insults such as oxidative stress (Li
et al., 2003), hypoxia/hypoglycemia (Van Den Bosch et al., 2004),
and glutamate-excitotoxicity (Tovar-Y-Romo et al., 2007; Tolosa
et al., 2008; Tovar-Y-Romo and Tapia, 2010).

Frontiers in Cellular Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 181 | 1

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/about
http://www.frontiersin.org/journal/10.3389/fncel.2013.00181/abstract
http://www.frontiersin.org/people/u/88937
http://www.frontiersin.org/people/u/104690
http://www.frontiersin.org/people/GabrielOlmos/116731/activity
mailto:jeronia.llado@uib.es
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-07-00181” — 2013/10/21 — 10:09 — page 2 — #2

Lladó et al. VEGF neuroprotective effects on motoneurons

ROLE OF VEGF IN AMYOTROPHIC LATERAL SCLEROSIS
PATHOGENESIS
The discovery in the past decade that transgenic mice with a
homozygous deletion in the hypoxia response element site in
the VEGF promoter (VEGFδ/δ mice) expressed reduced levels
of VEGF (25–40% less) and developed late-onset motoneuron
pathology reminiscent of amyotrophic lateral sclerosis (ALS),
opened a new field of research on this dramatic disease. Interest-
ingly, all the classic features of ALS including misaccumulation of
neurofilaments in brainstem and spinal cord motoneurons, degen-
eration of motor axons, and denervation-induced muscle atrophy
can be observed in these mice (Oosthuyse et al., 2001). As expected,
mice engineered to overexpress VEGF had a delayed motoneu-
ron degeneration and an increased survival when crossed to the
superoxide dismutase-1 (SOD1) mouse model of ALS (Wang et al.,
2007). In addition, the reduction in the levels of VEGF in the SOD1
mutant mice by crossbreeding the SOD1 mouse model of ALS with
VEGFδ/δ mice worsened the disease, resulting in a decrease in sur-
vival due to more severe motoneuron degeneration and earlier
onset of muscle weakness (Lambrechts et al., 2003). Interestingly,
in the SOD1 mutant mice model of ALS, mutant SOD1 can disrupt
the post-transcriptional regulation of VEGF, leading to decreased
production of this neurotrophic factor. This effect seems to be
restricted to spinal cord, and the decline in VEGF mRNA levels
is apparent before onset of weakness, and is more pronounced at
middle and end-stages of the disease (Lu et al., 2007). Together,
these results suggest a clear relationship between VEGF expression
and the familial forms of ALS linked to SOD1 mutations. It still
remains unknown the role that VEGF could play in sporadic ALS.
In this sense, genetic studies in humans have indicated thatVEGF is
a modifier of motoneuron degeneration, as a low-VEGF genotype
was associated to an increased susceptibility to ALS (Lambrechts
et al., 2009).

It is accepted that the major mediator of the trophic effects on
spinal cord motoneurons is VEGFR2 (Tolosa et al., 2008; Tovar-Y-
Romo and Tapia, 2010), and the concurrent expression of VEGF
and VEGFR2 may suggest autocrine/paracrine effects on these
cells (Oosthuyse et al., 2001; Ogunshola et al., 2002; Brockington
et al., 2006). Interestingly, both VEGF and VEGFR2 expression is
reduced in motoneurons and spinal cord of ALS patients (Brock-
ington et al., 2006). Furthermore, the importance of VEGFR2
has been reinforced by experiments showing increased survival
of SOD1 mutant mice after overexpression of VEGFR2 (Storke-
baum et al., 2005). These findings support the hypothesis that
reduced VEGF signaling may play a role in the pathogenesis of
ALS (reviewed by Sathasivam, 2008).

Excitotoxicity is a fundamental mechanism involved in
motoneuron degeneration in ALS (reviewed by Van Den Bosch
et al., 2006). Defective glutamate transport, causing an abnor-
mally increased extracellular concentration of glutamate and
over activation of glutamate receptors, has been proposed as
an important mechanism in the excitotoxic process in ALS
(Rothstein, 2009). In this regard, a decreased expression of
the GLT-1 astroglial transporter has been found in the SOD1
animal models around spinal cord motoneurons (Bendotti
et al., 2001; Howland et al., 2002). Excessive calcium influx
through α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

(AMPA) glutamate receptors is the final effector of motoneuron
death in the excitotoxic process. Motoneurons are especially vul-
nerable to AMPA receptor-mediated excitotoxicity both in vitro
and in vivo as they express a high number of Ca2+-permeable
AMPA receptors (Carriedo et al., 1996; Van Den Bosch et al.,
2000). The permeability of the AMPA receptor depends upon the
GluR2 subunit, which regulates the permeability to calcium: only
AMPA receptors lacking GluR2 are permeable to calcium. In this
regard, motoneurons express low levels of GluR2 and this ren-
ders them vulnerable to AMPA receptor-mediated excitotoxicity
(Van Damme et al., 2002). Thus, selective loss of motoneurons can
be induced experimentally by intrathecal or intraspinal admin-
istration of AMPA receptor agonists (Corona and Tapia, 2004;
Sun et al., 2006).

In our laboratory, we used spinal cord organotypic cultures to
create a model of chronic glutamate excitotoxicity in which gluta-
mate transporters were inhibited by threohydroxyaspartate (THA)
to induce motoneuron death. The exposure of these cultures to
THA in the presence of VEGF significantly increased motoneu-
ron survival (Tolosa et al., 2008). Similar results were previously
obtained in vivo after AMPA-induced chronic excitotoxicity in
rat spinal cord (Tovar-Y-Romo et al., 2007). Thus, VEGF pro-
tects motoneurons from excitotoxic death; however, it has been
recently demonstrated in vivo that the therapeutic potential of
VEGF against excitotoxicity has a short effective time frame, i.e.,
VEGF was effective only when administered before the onset of
motor symptoms (Tovar-y-Romo and Tapia, 2012).

MECHANISMS OF VEGF PROTECTION AGAINST
EXCITOTOXICITY IN ALS
Matsuzaki et al. (2001) initially identified VEGFR2 as the recep-
tor responsible for the neuroprotective effects of VEGF against
excitotoxicity in hippocampal neurons. VEGFR2 is expressed
by motoneurons in humans (Brockington et al., 2006), mouse
(Oosthuyse et al., 2001), and neonatal (Tolosa et al., 2008) and
adult rats (Tovar-Y-Romo and Tapia, 2010), and the anti-
excitotoxic effects of VEGF in these cells have also been attributed
to this receptor (Bogaert et al., 2006; Tolosa et al., 2008; Tovar-Y-
Romo and Tapia, 2010).

The signal transduction pathways activated by VEGF are well-
characterized in endothelial cells; however, the knowledge of
the signaling pathways involved in the anti-excitotoxic effects of
VEGF is still incomplete. Upon ligand binding, VEGFR2 under-
goes phosphorylation (Meyer et al., 1999), activating intracellular
signaling pathways including phosphatidylinositol 3-kinase (PI3-
K)/Akt and mitogen-activated protein kinase/extracellular signal-
regulated kinase (MEK)/extracellular signal-regulated kinase
(ERK). The relevance of the PI3-K/Akt pathway in the neuropro-
tective effects of VEGF was first proven on the motoneuron-like
NSC34 cell line (Li et al., 2003) and also in SOD1 mutant rats
where it was shown to counteract the loss of Akt activity preceding
motoneuron degeneration (Dewil et al., 2007b). We demonstrated
for the first time in spinal cord organotypic cultures that inhi-
bition of the PI3-K/Akt pathway abolishes the anti-excitotoxic
effects of VEGF on motoneurons exposed to a glutamate trans-
porter inhibitor (Tolosa et al., 2008). These results were further
confirmed in vivo in rats exposed to AMPA (Tovar-Y-Romo and
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Tapia, 2010). These studies also suggested that the MEK/ERK was
less relevant than the PI3-K/Akt signaling pathway, as MEK inhi-
bition had a limited effect on the VEGF-mediated neuroprotection
against AMPA-induced excitotoxicity (Tovar-Y-Romo and Tapia,
2010).

Activation of PI3-K by VEGF has additional neuroprotec-
tive implications as Akt phosphorylates and activates the cyclic
AMP-response element binding protein (CREB), involved in the
transcription of the Bcl-2 gene (Pugazhenthi et al., 2000). We
demonstrated that excitotoxic conditions are associated to a
decreased expression of Bcl-2 in spinal cord cultures, and that
VEGF-induced neuroprotection in motoneurons could be related
to the restoration, via PI3-K, of Bcl-2 levels in these cultures, and
specifically in motoneurons (Tolosa et al., 2008). Bcl-2, besides
its ability to block cytochrome c release, has been shown to
increase calcium uptake and buffering capacity in mitochon-
dria (Zhong et al., 1993), thus protecting against excitotoxicity.
Additionally, it has been shown that Bcl-2 overexpression atten-
uates motoneuron degeneration in the SOD1 animal model
(Azzouz et al., 2000).

Interestingly, it has been suggested that the PI3-K/Akt signal-
ing pathway could be involved in GluR2 subunit assembly into
AMPA receptors (Rainey-Smith et al., 2010). In this sense, VEGF
has been shown, both in vitro and in vivo, to increase the expression
of GluR2 subunit, thus reducing the permeability of AMPA recep-
tors to calcium, and minimizing the vulnerability of motoneurons
to AMPA-mediated excitotoxicity (Bogaert et al., 2010). Thus, a
potential mechanism for VEGF protection against excitotoxicity
would be through a PI3-K/Akt-mediated insertion of the GluR2
subunit of the AMPA receptor in motoneurons. Astrocytes are able
to protect against excitotoxicity by inducing GluR2 expression in
motoneurons. Interestingly, mutant SOD1 abolishes the ability of
astrocytes to regulate GluR2 and thus, increase the susceptibil-
ity of motoneurons to excitotoxicity (Van Damme et al., 2007). It
remains unknown if the VEGF-induced insertion of GluR2 could
be astrocyte-mediated.

p38 mitogen-activated protein kinase (p38MAPK) belongs to
a family of protein kinases activated by a range of stimuli includ-
ing proinflammatory cytokines and oxidative stress (Mielke and
Herdegen, 2000). As increased phosphorylation of p38MAPK
has been reported in the spinal cord of SOD1 mutant mice, in
motoneurons and glial cells, this kinase has been suggested to play
a role in the pathogenesis of ALS (Tortarolo et al., 2003; Bendotti
et al., 2004). In addition, a motoneuron specific death pathway,
involving Fas, p38MAPK, and neuronal nitric oxide synthase acti-
vation has been described. Motoneurons from SOD1 mutant mice
displayed increased susceptibility to activation of this pathway
(Raoul et al., 2002).

Rho-mediated calcium-dependent activation of p38αMAPK
has been described as a trigger of excitotoxic cell-death (Semen-
ova et al., 2007). In this regard, it has been shown that VEGF is
able to block the AMPA-induced phosphorylation of p38MAPK
(Tovar-Y-Romo and Tapia, 2010), thus identifying another molec-
ular mechanism for the anti-excitotoxic effects of VEGF. However,
the sole inhibition of p38MAPK activity is not sufficient to pro-
tect motoneurons against excitotoxicity as the anti-excitotoxic
effects of VEGF are also dependent on the activation of the

PI3-K/Akt pathway (Tovar-Y-Romo and Tapia, 2010). In this
regard, PI3-K/Akt has been reported to inhibit the phosphory-
lation of p38MAPK in an apoptosis signal-regulating kinase 1
(ASK1)-dependent manner (Ichijo et al., 1997; Kim et al., 2001).
In agreement with that, our group has demonstrated that VEGF
protects motoneurons from serum deprivation-induced cell death
through PI3-K-mediated inhibition of p38MAPK phosphoryla-
tion (Tolosa et al., 2009). Moreover, the inhibition by VEGF of
p38MAPK might protect motoneurons in ALS tissue exerting a
dual role both through an indirect effect on glial cells (Tortarolo
et al., 2003), and a direct anti-apoptotic effect on motoneurons
(Dewil et al., 2007a).

ROLE OF NON-NEURONAL CELLS IN THE NEUROPROTECTIVE
EFFECTS OF VEGF
Astroglia (Oosthuyse et al., 2001) and microglia (Bartholdi et al.,
1997) are sources of VEGF in the spinal cord and a role for non-
neuronal cells has been described in the onset and progression of
the pathology in ALS (Clement et al., 2003; Barbeito et al., 2004;
Sargsyan et al., 2005). It has been hypothesized that VEGF may
also affect motoneurons through an indirect effect on glial cells,
as both astrocytes (Krum et al., 2002) and microglia (Ryu et al.,
2009) respond to VEGF stimulation. On the one hand, VEGF
may affect the glial release of trophic factors, and thus, indirectly,
protect motoneurons (reviewed by Bogaert et al., 2006). On the
other hand, VEGF decreases the astroglial activation observed
in the SOD1 mouse model of ALS, and also enhances neuro-
muscular junction formation (Zheng et al., 2007). Moreover, the
neuroprotective effects observed with lithium in animal models of
ALS could be due, in part, to an upregulation of VEGF in non-
neuronal cells, as an increase in VEGF has been observed after
lithium exposure in brain astrocytes and endothelial cells (Guo
et al., 2009). In spite of these potential neuroprotective effects of
VEGF involving non-neuronal cells, recently, it has been demon-
strated that, under inflammatory conditions, astrocytic expression
of VEGF is a key driver of blood–brain barrier disruption, lead-
ing to edema, excitotoxicity, and entry of inflammatory cells
(Argaw et al., 2012).

Several in vivo and in vitro studies have indicated that VEGF
induces adult neurogenesis (Jin et al., 2002; Cao et al., 2004). It still
remains unknown if VEGF in vivo induces neurogenesis directly in
neural stem cells or indirectly through effects on endothelial cells
or other cell types (reviewed by Carmeliet and Ruiz de Almodovar,
2013). The potential of VEGF generating new neurons, together
with its ability to induce axon growth could be relevant in its
neuroprotective effects on ALS.

POTENTIAL USE OF VEGF AS A THERAPEUTIC TOOL IN ALS
Vascular endothelial growth factor clearly ameliorates the illness
in the mutant SOD1 mice and rats (Azzouz et al., 2004; Storke-
baum et al., 2005; Wang et al., 2007), supporting the hypothesis of
a role for VEGF in ALS. VEGF has been administered to animals
using different strategies. VEGF was administered using lentiviral
vectors (intramuscularly delivered and then retrogradely trans-
ported) increasing the life expectancy of ALS mice. The treatment
was more effective when initiated before disease onset (Azzouz
et al., 2004).
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FIGURE 1 | Mechanisms involved in the neuroprotective effects of

VEGF against excitotoxicity in spinal cord motoneurons. The plus
symbols (+) indicate the signaling pathways that are potentiated by
excitotoxicity. See Section “Conclusion” for further details.

Intravenous administration of VEGF induces vascular effects:
blood vessel growth or blood–brain barrier alterations (Young
et al., 2004). To avoid these problematic side-effects, continuous
intracerebroventricular (i.c.v.) administration of VEGF in ALS rats
was performed. VEGF at doses between 0.2 and 2 μg·kg−1·day was
safe as it did not induce angiogenesis or inflammation. Besides, it
was demonstrated that VEGF diffused from the cerebrospinal fluid
to the spinal cord parenchyma, reaching motoneurons, and thus,
improving motor performance and prolonging survival of SOD1
rats (Storkebaum et al., 2005). Thus, either retrograde (Azzouz
et al., 2004) or paracrine (Storkebaum et al., 2005) delivery of
VEGF is effective in the animal models of ALS.

Poesen et al. (2008) have demonstrated that the VEGF-B186

isoform is also expressed in the nervous system, has less vas-
cular effects, and also functions as a neuroprotective factor
for motoneurons. Interestingly, in contrast to VEGF-A, the
presence of VEGF-B is not critical for survival or for motoneuron

development in physiological conditions; however, crossing
VEGF-B−/− mice with SOD1 mice aggravated motoneuron
degeneration. The effect of VEGF-B186 seems to be mediated by
VEGFR-1, which is also expressed by spinal cord motoneurons,
indicating that they can respond to this VEGF-B isoform. In addi-
tion, as VEGFR1 is also expressed on astrocytes, an indirect effect
on glia could not be ruled out. Finally, the authors demonstrated
that i.c.v. delivery of VEGF-B ameliorated the disease in SOD1 rats
without exhibiting side vascular effects (Poesen et al., 2008).

Taking advantage of these previous studies on animal models
of ALS, ongoing clinical trials are essaying direct i.c.v. admin-
istration of VEGF in humans. Clinical trials on phase I/II
investigate safety parameters in ALS patients and those on phase
II/III are intended to evaluate the efficacy to increase lifespan
(http://www.neuronova.com/index.php?option=com_content&
task=view&id=40&Itemid=71).

CONCLUSION
Current knowledge indicates that VEGF can prevent excitotoxic
motoneuron death, thus prolonging survival in an animal model
of ALS. These effects are VEGFR2-mediated and involve the acti-
vation of the PI3-K/Akt signaling pathway, which results in an
increased expression of both Bcl-2 and the GluR2 subunit of
AMPA receptors. The overall effect of these proteins would be to
reduce the excessive entry of calcium characteristic of the exci-
totoxic process. Thus, Bcl-2 increases the calcium uptake and
the buffering capacity of mitochondria, and GluR2 assembly into
AMPA receptors reduces their permeability to calcium. By reduc-
ing calcium levels into motoneurons of ALS tissue, VEGF reduces
oxidative stress and p38MAPK activity, thus improving survival
(Figure 1).

Although many of the experimental evidences of the benefits
of VEGF in ALS are taken from in vitro or ex vivo experiments,
the promising results obtained in animal models of familial ALS
substantiate a potential use of VEGF as a therapeutic tool. How-
ever, its effectiveness may be counteracted by its vascular effects
and by its expected short effective time frame (Tovar-y-Romo and
Tapia, 2012). Clearly, more studies are needed to assess the opti-
mal family member/isoform, the route of administration and the
time frame for using VEGF in the treatment of ALS. In addition,
a better understanding of the cellular and molecular mechanisms
involved in the neuroprotective effects of VEGF will be crucial for
its therapeutic development.
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