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P2 nucleotide receptors were proposed to consist of two subfamilies based on
pharmacology in 1985, named P2X and P2Y receptors. Later, this was confirmed following
cloning of the receptors for nucleotides and studies of transduction mechanisms in the
early 1990s. P2X receptors are ion channels and seven subtypes are recognized that form
trimeric homomultimers or heteromultimers. P2X receptors are involved in neuromuscular
and synaptic neurotransmission and neuromodulation. They are also expressed on many
types of non-neuronal cells to mediate smooth muscle contraction, secretion, and immune
modulation. The emphasis in this review will be on the pathophysiology of P2X receptors
and therapeutic potential of P2X receptor agonists and antagonists for neurodegenerative
and inflammatory disorders, visceral and neuropathic pain, irritable bowel syndrome,
diabetes, kidney failure, bladder incontinence and cancer, as well as disorders if the special
senses, airways, skin, cardiovascular, and musculoskeletal systems.
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INTRODUCTION
Division of receptors for purines into P1 (adenosine) and P2
(ATP/ADP) families was proposed in 1978 (Burnstock, 1978).
In 1985, P2 receptors were divided into two subtypes, P2X and
P2Y receptors, on the basis of pharmacology (Burnstock and
Kennedy, 1985). In the early 1990’s, P2 receptors for purines
and pyrimidines were cloned and characterized and second mes-
senger mechanisms determined (see Abbracchio and Burnstock,
1994; Ralevic and Burnstock, 1998). P2Y1 (Webb et al., 1993)
and P2Y2 (Lustig et al., 1993) G protein-coupled receptors were
described initially and soon after P2X1 and P2X2 ion channel
receptors were reported (Brake et al., 1994; Valera et al., 1994).
Seven P2X receptor subunits have been identified. P2X receptors
have been cloned from many eukaryotic species, including mam-
mals, fish, parasitic trematode worms, amoeba, slime mould,
and green algae (see Fountain and Burnstock, 2009; Burnstock
and Verkhratsky, 2012a). The physiology and pathophysiology
of P2X receptors in diseases of the special senses, urinary tract,
gastrointestinal tract, pancreas, skin, and musculoskeletal sys-
tem, as well as in cancer and inflammatory disorders will be
discussed.

It was assumed for a long time that the main source of
ATP acting on purinoceptors was damaged or dying cells. It
is now clear, however, that ATP is released, without causing
damage, from many cell types, including endothelial and urothe-
lial cells, macrophages, astrocytes, odontoblasts and osteoblasts,
in response to gentle mechanical disturbance, hypoxia, and
some agents (Bodin and Burnstock, 2001; Lazarowski et al.,
2011; Lazarowski, 2012). Release of ATP initiates purinergic
mechanosensory transduction that is involved in bone remod-
eling (Orriss et al., 2010) and visceral pain via P2X3 recep-
tors on nociceptive sensory nerves (Burnstock, 1999, 2007b).
The mechanism of ATP transport from cells appears to be a
combination of vesicular exocytosis and connexin and/or pan-
nexin 1 hemichannels (see Lazarowski, 2012). Ectoenzymes are

involved in the breakdown of released ATP into ADP, AMP,
adenosine, inosine and hypoxanthine (see Zimmermann, 2006;
Yegutkin, 2008). These enzymes include NTPDases, pyrophos-
phatase/phosphodiesterases, alkaline phosphatases, 5′- nucleoti-
dase and monoamine oxidase.

P2X RECEPTOR SUBTYPES
Seven P2X subunits have been cloned and characterized. The
P2X1 to P2X6 receptors are 379–472 amino acids long, while
the P2X7 receptor is 595 amino acids long, due to the increased
length of the COOH terminus. The molecular physiology of P2X
receptors has been thoroughly reviewed (see North, 2002). Each
subunit possesses two hydrophobic, transmembrane spanning
regions that span the cell plasma membrane. A seminal study
has been published describing the crystal structure of the P2X4
receptor (Gonzales et al., 2009; Kawate et al., 2009). When P2X7
receptors are occupied by ATP, cation channels are activated,
but in addition with high concentrations of ATP large pores are
formed which lead to uptake of Ca2+ leading to apoptotic cell
death.

The seven P2X subtypes combine as trimers (Nicke et al.,
1998), which form functional homo- and heteromultimers (see
Burnstock, 2007a). P2X6 receptors do not form a homomulti-
mer, while P2X7 receptors do not form a heteromultimer. P2X1/2,
P2X1/4, P2X1/5, P2X2/3, P2X2/6, and P2X4/6 heteromultimers
have been identified.

DISTRIBUTION OF P2X RECEPTORS
Detailed analyses of the distribution of P2X receptors on nerves
and non-neuronal cells have been published (Burnstock and
Knight, 2004; Burnstock, 2007b; see Table 1).

PHYSIOLOGY OF P2X RECEPTORS
ATP released as a cotransmitter with noradrenaline (NA) from
sympathetic nerves was shown to act mainly via P2X1 receptors
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Table 1 | Principal P2X receptors expressed by excitable tissues and

non-neuronal cells (Compiled from Burnstock, 2007b).

NEURONAL

Sympathetic neurons P2X1-7

Parasympathetic neurons P2X2, P2X3, P2X4, P2X5

Sensory neurons P2X1-7, predominantly P2X3 and P2X2/3

Enteric neurons P2X2, P2X3, P2X4, P2X7

Central nervous system P2X2, P2X4 and P2X6 (perhaps
heteromultimers) predominate, (P2X7?)

Retinal neurons P2X2, P2X3, P2X4, P2X5, P2X7

MUSCLE CELLS

Smooth muscle P2X1-7, predominantly P2X1

Skeletal muscle

-Developing P2X2, P2X5, P2X6

-Adult P2X1-7

Cardiac muscle P2X1, P2X3, P2X4, P2X5, P2X6

NON-NEURONAL

Osteoblasts P2X1, P2X2, P2X5, P2X7

Osteoclasts P2X1, P2X2, P2X4, P2X7

Cartilage P2X2

Keratinocytes P2X2, P2X3, P2X5, P2X7

Fibroblasts P2X7

Adipocytes P2X1

Epithelial cells (lung,
kidney, trachea, uterus,
cornea)

P2X4, P2X5, P2X6, P2X7

Astrocytes P2X1-7

Oligodendrocytes P2X1

Microglia P2X4, P2X7

Müller cells P2X3, P2X4, P2X5, P2X7

Enteric glial cells P2X7

Sperm P2X2, P2X7

Endothelial cells P2X1, P2X2, P2X3, predominately P2X4

Erythrocytes P2X2, P2X4, P2X7

Platelets P2X1

Immune cells
(thymocytes,
macrophages,
neutrophils, eosinophils,
lymphocytes, mast cells,
dendritic cells)

P2X4 and predominately P2X7, but some
P2X1, P2X2, P2X5

Exocrine secretary cells P2X1, P2X4, P2X7

Endocrine secretory cells
(pituitary, pancreas,
adrenal, thyroid, testis)

P2X1-7, predominately P2X2/6

Cholangiocytes P2X2, P2X3, P2X4, P2X6

Interstitial cells of Cajal P2X2, P2X5

Kupffer cells P2X1, P2X4, P2X7

Special senses

Inner ear P2X1, P2X2, P2X3, P2X7

Eye P2X2, P2X7

Tongue P2X2, P2X3

Olfactory organ P2X2, P2X4

Cochlea hair cells P2X1, P2X2, P2X7

on both visceral and vascular smooth muscle to produce con-
tractions (see Burnstock, 1990, 2009b) and ATP released together
with acetylcholine (ACh) from parasympathetic nerves acts on
P2X1 receptors in the urinary bladder (Burnstock et al., 1978;
Burnstock, 2013). ACh acting via nicotinic receptors was estab-
lished early as the neurotransmitter released from motor nerves
supplying adult skeletal muscle, but later it was shown that dur-
ing postnatal development of the neuromuscular junction, ATP is
released as a cotransmitter together with ACh to act on P2X recep-
tors (see Henning, 1997). An important advance was made when
purinergic synaptic transmission between nerves was described in
both the coeliac ganglion (Evans et al., 1992; Silinsky et al., 1992)
and medial habenula in the brain (Edwards et al., 1992).

P2X receptors have also been shown to act presynaptically, for
example P2X3 receptors on primary afferent sensory nerve end-
ings in the dorsal spinal cord to enhance the release of glutamate
(Gu and MacDermott, 1997) and on P2X receptors on sympa-
thetic nerve varicosities in the vas deferens to enhance the release
of NA (Queiroz et al., 2003).

P2X3 homomultimer and P2X2/3 heteromultimer receptors
were identified on sensory neurons and nerve endings (Chen
et al., 1995; Lewis et al., 1995) mediating both physiological reflex
responses as well as nociception (see Burnstock and Verkhratsky,
2012b).

There is a wide distribution of P2X2, P2X3, P2X2/3, P2X4, and
P2X7 receptors in the myenteric and submucous plexuses and
on intrinsic and extrinsic sensory nerves of the enteric nervous
system (see Burnstock, 2008b and Figure 1). These receptors are
involved in reflex activities, including modulation of peristaltic
reflexes (Bian et al., 2003; Wynn et al., 2003).

Expression of most P2X receptor subtypes have been local-
ized in different regions of the central nervous system (CNS).
Sensory nerves in the brain stem expressing P2X3 receptors and
P2X2, P2X4, and P2X6 receptors, mostly in the form of hetero-
multimers, appear to be involved in both neurotransmission and
neuromodulation (see Burnstock, 2007b; Burnstock et al., 2011b;
Burnstock and Verkhratsky, 2012b; Lalo et al., 2012). The role
of P2X7 receptors in the CNS is controversial. Behavioral studies
have implicated roles for P2X receptors in memory and learning,
sleep, locomotion and feeding (see Burnstock et al., 2011a).

In the heart, P2X1/3/4/5/6 receptor mRNA and protein are
expressed in ventricles and P2X1-6 in atria (Hansen et al., 1999)
leading to increase in contractility of cardiac myocytes (Shen
et al., 2007). P2X receptor subtypes are widely expressed in dif-
ferent sites in the kidney (see Unwin et al., 2003). Preglomerular
arterioles express P2X1 receptors, while glomerular mesangial
cells express P2X4, P2X5, and P2X7 receptors, and podocytes
express P2X1 and P2X7 receptors. Different regions of the kidney
tubule are immunoreactive for P2X receptors: P2X1, P2X4, P2X5,
and P2X6 on proximal tubules, P2X4 and P2X6 on distal tubules
and P2X1, P2X4/6, and P2X5 on collecting ducts (Bailey and
Shirley, 2009). In the collecting ducts P2X4 and P2X4/6 recep-
tors are involved in control of sodium transport (Wildman et al.,
2009).

Uptake of organic cations is mediated by P2X1 and P2X7
receptors in canine erythrocytes (Stevenson et al., 2009). The role
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FIGURE 1 | Distribution of P2X receptor subtypes in the gut.

Extrinsic vagal and sacral parasympathetic nerves connect with NANC
inhibitory neurons in the myenteric plexus expressing P2X2 and P2X3
receptors, as well as with cholinergic motor neurons; these neurons are
also activated by descending interneurons. Extrinsic sympathetic nerves
modulate motility via excitatory motor neurons and constrict blood
vessels in the gut via P2X1 receptors. Extrinsic sensory nerves arise
from cell bodies in dorsal root ganglia and with subepithelial terminals
expressing P2X3 and P2X2/3 receptors and mediate nociception.

Intrinsic sensory neurons in both myenteric and submucosal plexuses
express P2X2 and P2X3 receptors; they connect with motor pathways
involved in peristalsis. Excitatory motor neurons express P2X2, P2X3,
P2X2/3, and P2X5 receptors and connect with both interneurons and
secretomotor neurons. Interneurons express P2X2 and P2X3 receptors.
Enteric glial cells express P2X7 receptors, while interstitial cells of Cajal
express P2X2 and P2X5 receptors. P2X7 receptors appear to act as
prejunctional modulators of both motor and interneurons. [Modified from
Burnstock (2008c), with permission from the BMJ Publishing Group Ltd].

of the P2X1 receptor expressed by platelets is unclear, although
in P2X1 knockout mice there is a decreased level of thrombus
formation and increased bleeding times (Nurden, 2007). P2X1
receptors have also been claimed to play a role in sensing bacteria
(Kälvegren et al., 2010).

The P2X7 receptor is involved in immunomodulation
responding to extracellular ATP at sites of inflammation and
tissue damage (see Di Virgilio, 2013). P2X1 receptors promote
neutrophil chemotaxis and play a significant role in host defense
(Lecut et al., 2009). P2X7 receptors mediate cytokine release
and chemokine expression via P2X1 and P2X3 receptors in
mouse mast cells (Bulanova et al., 2009). P2X7 receptors in

human dendritic cells mediate the release of tissue factor-bearing
microparticles (Baroni et al., 2007).

Keratinocyte turnover in skin epidermis involves P2X recep-
tors while P2Y1 and P2Y2 receptors in basal and parabasal
layers mediate cell proliferation, P2X5 receptors in the granu-
lar layer mediate cell differentiation and P2X7 receptors at the
stratum granulosum/stratum corneum border mediate apop-
totic cell death (Greig et al., 2003c; Burnstock et al., 2012b).
In the endocrine system, the posterior pituitary expresses pro-
tein for P2X2 and P2X6 receptors and P2X2, P2X3, P2X4, and
P2X7 receptor channels are present on anterior pituitary cells
and mediate hormone secretion (Stojilkovic et al., 2010). P2X7
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receptors are expressed on osteoblasts, enhancing differentiation
and bone formation and also on osteoclasts mediating apoptosis
(see Orriss et al., 2010, 2012).

P2X receptors in the special senses mediate a variety of
different functions (see Housley et al., 2009; Burnstock and
Verkhratsky, 2012b). Nasal epithelium expresses P2X2, P2X5, and
P2X7 receptors (Gayle and Burnstock, 2005), P2X1, P2X2, P2X3,
and P2X2/3 are prominent receptors in the tongue (Bo et al.,
1999) mediating both taste sensation and pain (Rong et al., 2000),
and P2X receptors have multiple roles in the eye (see Pintor, 2006)
and inner ear (see Housley and Gale, 2010).

PATHOPHYSIOLOGY OF P2X RECEPTORS
The involvement of P2X receptors is being investigated increas-
ingly in relation to a wide variety of diseases (see Burnstock,
2006a,b, 2007b, 2008a).

DISEASES OF SPECIAL SENSES
P2X receptors are expressed by various structures in the eye and
novel therapeutic strategies are being developed for glaucoma,
dry eye, and retinal detachment (Pintor et al., 2003). P2X7 recep-
tors are increased in retinal microvessels early in experimental
diabetes. This suggests that purinergic vasotoxicity may play a role
in microvascular cell death, characteristic of diabetic retinopathy
(Sugiyama et al., 2004).

P2X receptors have been described in the vestibular system
(Xiang et al., 1999), in particular on the endolymphatic surface
of the cochlear endothelium, an area associated with sound trans-
duction. It has been suggested that ATP may regulate fluid home-
ostasis, cochlear blood flow, hearing sensitivity and development,
and therefore may be useful for the treatment of Ménière’s dis-
ease, tinnitus, and sensorineural deafness (Housley, 2000). There
is upregulation of P2X2 receptors in the cochlear occurs during
sustained loud noise. P2X2 receptor expression is also increased
in spiral ganglion neurons (Wang et al., 2003).

Purinergic receptors have been described in the nasal mucosa,
including the expression of P2X3 receptors on olfactory neurons
(Gayle and Burnstock, 2005). The induction of heat-shock pro-
teins by noxious odor damage is prevented by the administration
in vivo of P2 receptor antagonists (Hegg and Lucero, 2006).

DISEASES OF THE KIDNEY AND URINARY TRACT
Purinoceptors are expressed in different regions of the nephron,
the glomerulus, and renal vascular system in the kidney and dif-
ferent subtypes are involved in the regulation of renin secretion,
glomerular filtration and the transport of water, ions, nutrients
and toxins (Unwin et al., 2003). Autocrine purinergic signaling
enhances cyst expansion and accelerates progression of polycystic
kidney disease (Schwiebert et al., 2002). P2X7 receptor expression
is increased in cystic tissue from a rat model of autosomal dom-
inant polycystic kidney disease (Turner et al., 2004). Increased
glomerular expression of P2X7 receptors has been reported in
rat models of glomerular injury due to diabetes and hyperten-
sion (Vonend et al., 2004). Human and experimental glomeru-
lonephritis also showed increase in P2X7 receptor expression in
the glomerulus (Turner et al., 2007).

P2X3 receptors are expressed by the suburothelial sensory
nerves, and both the human and guinea-pig ureter urothelial cells

release ATP in a pressure-dependent fashion when the ureter is
distended (Knight et al., 2002; Calvert et al., 2008). P2X3 antago-
nists may be useful to alleviate renal colic (Rong and Burnstock,
2004).

Atropine will block at least 95% of parasympathetic nerve-
mediated contraction in the healthy human bladder, showing
neurotransmission that is predominantly cholinergic, although
P2X1 receptors are present on the smooth muscle (Burnstock,
2001a). However, the purinergic component of parasympa-
thetic cotransmission is increased in pathological conditions (see
Burnstock, 2013). It is increased to 40% in interstitial cystitis, out-
flow obstruction, idiopathic detrusor instability and most types
of neurogenic bladder. Release of ATP from distended bladder
urothelial cells in patients with interstitial cystitis is significantly
greater than from healthy cells (Tempest et al., 2004) and P2X1
receptor subtype expression is increased in obstructed bladder
(Boselli et al., 2001).

Purinergic signaling also plays a role in afferent sensation
from the bladder, involved in both the micturition reflex and
pain. Release of ATP from urothelial cells occurs during dis-
tension (Vlaskovska et al., 2001) and it acts on P2X3 recep-
tors on suburothelial sensory nerve endings (Cockayne et al.,
2000). P2X3 receptors are therefore a potential target for phar-
macological manipulation in the treatment of both pain and
detrusor instability. In idiopathic detrusor instability, there is
abnormal purinergic transmission in the bladder (O’Reilly et al.,
2002). Voiding dysfunction involves P2X3 receptors in con-
scious chronic spinal cord injured rats, suggesting that P2X3
antagonists might also be useful for the treatment of neuro-
genic bladder (Lu et al., 2002). Drugs that alter ATP release
or breakdown might also be considered as therapeutic tar-
gets (Chess-Williams, 2004). A recent review about purinergic
signaling in the lower urinary tract is available (Burnstock,
2013).

CARDIOVASCULAR DISEASES
There is up-regulation of P2X1 receptor mRNA in the hearts of
rats with congestive heart failure and an increase in expression
of P2X1 receptors in the atria of patients suffering from dilated
cardiomyopathy. P2X4 receptor mRNA was reported to be upreg-
ulated in ligation-induced heart failure and was claimed to have a
beneficial life-prolonging role (Musa et al., 2009).

ATP, released as the purinergic component of sympathetic
cotransmission, is increased in spontaneously hypertensive rats
mediating vasoconstriction via P2X1 receptors (see Ralevic and
Burnstock, 1998). There is upregulation of placental P2X4
receptors in mild preeclampsia (Roberts et al., 2007).

DISORDERS OF THE GUT
P2X receptors play major roles in diseases of the gut (see
Burnstock, 2008a,b). P2X7 receptors, that mediate cytokine pro-
duction, may play a role in the response of enteric glia to
inflammation (Vanderwinden et al., 2003). Enhancement of P2X3
receptor-mediated purinergic signaling in an animal model of
colitis has been described (Wynn et al., 2004). P2X3 receptor
expression is also increased in the enteric plexuses in human
irritable bowel syndrome (IBS), suggesting a role in dysmotility
and pain initiation (Yiangou et al., 2001; Galligan, 2004; Shinoda
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et al., 2009). Visceral hyperalgesia induced in a rat model of IBS
was associated with potentiation of ATP-evoked responses and an
enhanced expression of P2X3 receptors in sensory neurons in the
colon (Xu et al., 2008). In aganglionic bowel from Hirschsprung’s
disease patients, P2X3 immunohistochemistry was demonstrated,
suggesting that the sensory nerves may be involved (Facer et al.,
2001).

Both intrinsic sensory neurons in the submucous plexus of
the gut and extrinsic sensory nerves with cell bodies in the
dorsal root ganglia (DRG), show positive immunoreactivity for
P2X3 receptors (Xiang and Burnstock, 2004). It has been sug-
gested that during moderate distension, low threshold intrinsic
enteric sensory fibers are activated, via P2X3 receptors, by ATP
released from mucosal epithelial cells resulting in reflexes con-
cerned with propulsion of material down the gut (Burnstock,
2001b). Peristalsis is impaired in the small intestine of mice
lacking the P2X3 receptor subunit, which supports this view
(Bian et al., 2003). During substantial (colic) distension associ-
ated with nociception, higher threshold extrinsic sensory fibers
may be activated by ATP released from the mucosal epithelial
cells to pass messages through the DRG to pain centers in the
CNS (Wynn et al., 2003, 2004). Sensitization of P2X3 recep-
tors on vagal and spinal afferents in the stomach have been
claimed to contribute to dyspeptic symptoms and to the devel-
opment of visceral hyperalgesia (Dang et al., 2005). A recent
review describing P2X receptors in the gut is available (Burnstock,
2012).

DISEASES OF THE REPRODUCTIVE SYSTEM
ATP induces a significant increase in sperm fertilizing potential
and this has led to the use of ATP for treatment of spermatozoa
during in vitro fertilization (Rossato et al., 1999). P2X1 recep-
tor knockout mice appear normal, but fail to breed and this is
associated with loss of the purinergic component of sympathetic
cotransmission in the vas deferens (Dunn, 2000; Mulryan et al.,
2000). P2X receptor subtypes are expressed at different stages dur-
ing spermatogenesis in the adult rat testis, which may be novel
targets for both fertility and contraception (Glass et al., 2001).

Low concentrations of ATP stimulate changes in transepithe-
lial conductance in the human uterine cervix, the first phase
mediated by P2Y2 receptors and the second phase by P2X4
receptors (Gorodeski, 2002).

DIABETES
There is an enhancement of P2X7 receptor-induced pore for-
mation and apoptosis in early diabetes in the retinal microvas-
culature (Sugiyama et al., 2004). P2X7 receptors are located on
glucagon-containing α cells in pancreatic islets (Coutinho-Silva
et al., 2001). In streptozotocin-diabetic rats P2X7 receptor-labeled
α cells migrate centrally to take the place of the insulin-containing
β cells, although the functional significance of this is unknown
(Coutinho-Silva et al., 2003). Central neuropathic complications
occur in diabetic neuropathy, including decreased cognitive per-
formance and it has been shown that synaptic ATP signaling is
depressed in streptozotocin-induced diabetic rats (Duarte et al.,
2007). The density of P2X3/5/7 receptors was decreased in the
hippocampal nerve terminals of diabetic rats. A recent review of

the literature concerned with purinergic signaling in diabetes is
available (Burnstock and Novak, 2013).

DISEASES OF THE AIRWAYS
Lung epithelial cells express P2X4 receptors that are involved in
regulation of ciliary beat, manipulation of which may be of ther-
apeutic benefit for cystic fibrosis (Zsembery et al., 2003). Vagal
afferent purinergic signaling may be involved in the hyperactivity
associated with asthma and chronic obstructive pulmonary dis-
ease (Adriaensen and Timmermans, 2004). Erythromycin, used
for the treatment of upper and lower respiratory tract infections,
blocks P2X receptor-mediated Ca2+ influx and may be involved
in its anti-secretory effects in the treatment of chronic respiratory
tract infections (Zhao et al., 2000).

A network of respiratory neurons in the ventrolateral medulla
(VLM) is responsible for the generation of the respiratory rhythm
and also functions as a chemoreceptive area mediating the ven-
tilating response to hypercapnia. ATP acting via P2X2 recep-
tors expressed on VLM neurons is involved in these functions
(Gourine et al., 2003). P2 receptor synaptic signaling in res-
piratory motor control has been implicated by the multiple
physiological effects of ATP in hypoglossal activity mediated by
P2X2, P2X4, and P2X6 receptors in the nucleus ambiguous and
the hypoglossal nucleus (Collo et al., 1996). ATP injected into
the caudal nucleus of the solitary tract of awake rats produced
respiratory responses (Antunes et al., 2005).

P2X7 receptors are expressed in alveolar macrophages,
which play a pivotal role in the development of chronic lung
inflammatory reactions, such as idiopathic pulmonary fibro-
sis, silicosis, asbestosis, hypersensitivity pneumonitis, sarcoidosis
and mycobacterium tuberculosis (Lemaire and Leduc, 2004).
Stimulation of P2X7 receptors results in activation of the proin-
flammatory interleukin (IL)-1 to IL-5 cytokine cascade and the
formation of multinucleated giant cells, a hallmark of granulo-
matous reactions. A recent review describing purinergic signaling
in the airways in health and disease has been published recently
(Burnstock et al., 2012a).

DISEASES OF SKIN
An increase of P2X3 and P2X2/3 nociceptive receptors on sensory
nerve endings in inflamed skin has been reported and antago-
nists are being explored as analgesics (Hamilton et al., 2001). A
pathogenic role for keratinocyte-derived ATP in irritant dermati-
tis has been suggested (Mizumoto et al., 2003). There are changes
in expression of purinergic receptors in the regenerating epider-
mis in wound healing (Greig et al., 2003a). Acceleration of skin
barrier repair and prevention of epidermal hyperplasia induced
by skin barrier disruption by P2X receptor antagonists has been
reported (Denda et al., 2002). A review about purinergic signaling
in skin in health and disease is available (Burnstock et al., 2012b).

IMMUNE SYSTEM AND INFLAMMATION
P2X7 receptors expressed by inflammatory and immune cells
play a pivotal role in inflammation and immunomodulation
(Di Virgilio, 2007, 2013). The treatment of neurogenic inflam-
mation, rheumatoid arthritis, and periodontitis by purinergic
compounds is being explored. P2X7 receptor-mediated apop-
tosis in macrophages results in killing of the mycobacteria
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contained within them, unlike the macrophage apoptosis pro-
duced by other agents (Lammas et al., 1997). There is accu-
mulation of macrophages expressing P2X4 receptors in rat
CNS lesions during experimental autoimmune encephalomyeli-
tis (Guo and Schluesener, 2005). It has been suggested that ATP
may be mechanistically involved in human allergic/asthmatic
reactions (Schulman et al., 1999). P2X7 receptors are expressed
by alveolar macrophages, which, when activated, trigger pro-
inflammatory activation of IL1-6 cytokines and granulomatous
reactions (Lemaire and Leduc, 2004). A lower concentration of
ATP activation of P2X7 receptors can result in cell prolifera-
tion (Di Virgilio et al., 2009). The functional expression of P2X7
receptors on B lymphocytes may be related to the severity of B-cell
chronic lymphocytic leukaemia (Adinolfi et al., 2002).

ATP induces cell death in CD4+/CD8+ double-positive thy-
mocytes during the acute phase of Trypanosoma cruzi infection
in Chaga’s disease and may play a role in the thymus atro-
phy that occurs in Chaga’s disease (Mantuano-Barradas et al.,
2003). Schistosoma mansoni, a parasitic blood fluke, also produces
thymic atrophy, and the P2X receptor cloned from S. mansoni
provided an example of a non-vertebrate ATP-gated ion channel
and suggests a drug target for the treatment of schistosomiasis
(Agboh et al., 2004).

CANCER
The use of adenine nucleotides as anticancer agents was first
described by Rapaport (1983). ATP, injected intraperitoneally
into tumor-bearing mice, resulted in anticancer activity against
several fast-growing aggressive carcinomas (Agteresch et al.,
2003). Evidence has been presented that extracellular ATP inhibits
the growth of a variety of human tumors, including prostate,
bladder, breast, colon, liver, ovarian, colorectal, oesophageal and
melanoma cancer cells, partly via P2X7 receptors mediating
apoptotic cancer cell death (Abraham et al., 2003; White and
Burnstock, 2006). Studies have been carried out to determine

FIGURE 2 | Schematic representation of hypothesis for purinergic

mechanosensory transduction in tubes (e.g., ureter, vagina, salivary

and bile ducts, gut) and sacs (e.g., urinary and gall bladders, lung). It is
proposed that distension leads to release of ATP from epithelium lining the
tube or sac, which then acts on P2X3 and/or P2X2/3 receptors on
subepithelial sensory nerves to convey sensory/nociceptive information to
the CNS. [Reproduced from Burnstock (1999), with permission from Wiley].

the P2 receptor subtypes that contribute to ATP suppression of
malignant melanomas (White et al., 2005a,b), basal and squa-
mous cell tumors (Greig et al., 2003b) and prostate and bladder
cancers (Calvert et al., 2004; Shabbir et al., 2008a,b). P2X5 recep-
tors mediate cell differentiation, which in effect is antiproliferative
and apoptotic cell death is mediated by P2X7 receptors. A review
has been published recently entitled “Purinergic signaling and
cancer” (Burnstock and Di Virgilio, 2013).

MUSCULOSKELETAL DISEASES
Purinergic signaling is involved in bone development and remod-
eling (Hoebertz et al., 2003; Burnstock and Arnett, 2006; Orriss
et al., 2010). Osteoclasts, osteocytes, osteoblasts and chondrocytes
all express P2X receptors. Regulatory roles in bone formation and
resorption by P2X7 receptors were revealed by studies of P2X7
receptor knockout mice. The purinoceptors on bone and cartilage
represent potential targets for the development of novel therapeu-
tics to inhibit bone resorption in musculoskeletal diseases, includ-
ing rheumatoid arthritis, osteoporosis, tumor-induced osteolysis,
and periodontitis (Komarova et al., 2001). The P2X7 receptor
antagonist, oxidized ATP, reduced inflammatory pain in arthritic
rats (Dell’Antonio et al., 2002).

Lymphoblastoid cells from Duchenne muscular dystrophy
patients are sensitive to stimulation by extracellular ATP (Ferrari
et al., 1994). Evidence has been presented for a role for P2X
receptor-mediated signaling in muscle regeneration using the
mdx mouse model of muscular dystrophy, which raised the pos-
sibility of new therapeutic strategies for the treatment of muscle
disease (Ryten et al., 2004). A recent review about purinergic sig-
naling in the musculoskeletal system is available (Burnstock et al.,
2013).

DISORDERS OF THE CENTRAL NERVOUS SYSTEM
Recent reviews have focused on purinergic signaling in disorders
of the CNS (Burnstock, 2008a; Burnstock et al., 2011a; Franke
et al., 2012; Volonté and Burnstock, 2012).

Microglia and macrophages expressing P2X4 receptors accu-
mulate following experimental traumatic brain injury and spinal
cord injury. Activated microglia also show increase in P2X7 recep-
tor expression, which initiate microglial proliferation and death.
Lesions in the cerebellum result in upregulation of P2X1 and
P2X2 receptors in precerebellar nuclei, and there is increased
expression of several subtypes of P2X receptors after stab wound
injury in the nucleus accumbens (Franke et al., 2006). P2X7
receptors are upregulated following ischaemia on neurons and
glial cells in rat cerebral cortex, and become supersensitive in
cerebrocortical cell cultures (Cavaliere et al., 2003). Ischaemic cell
death was prevented by P2 receptor antagonists.

Involvement of P2X receptors in neurodegenerative dis-
eases such as Parkinson’s, Alzheimer’s, Huntington’s, amy-
otrophic lateral sclerosis (ALS) and multiple sclerosis (MS) has
been described (see Burnstock, 2008a). In the pathogenesis of
Parkinson’s disease, release of ATP from disrupted cells may cause
cell death in neighboring cells expressing P2X7 receptors, lead-
ing to a necrotic volume increase. Upregulation of P2X7 receptors
in human Alzheimer’s diseased brains and in animal models
has been reported (Parvathenani et al., 2003; McLarnon et al.,
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2006) and stimulation of P2X7 receptors on human microglia
and macrophages increased the degenerative lesions observed
in Alzheimer’s disease. In two different transgenic models of
Huntington’s disease, changes in P2X receptor-mediated neuro-
transmission in cortico-striatal projections were observed (Diez-
Zaera et al., 2007). Both P2X4 and P2X7 receptors have been
implicated in the transgenic superoxide dismutase 1 (SOD1)
mouse model of ALS (Andries et al., 2007; Apolloni et al., 2013).
In MS lesions in brain tissue, P2X7 receptors were detected on
reactive astrocytes (Narcisse et al., 2005). Lesional accumula-
tion of P2X receptors on macrophages in the CNS of the rat
model of MS, experimental autoimmune encephalomyelitis, has
been reported (Guo and Schluesener, 2005). P2X7 expression is
elevated in astrocytes in MS patients (Narcisse et al., 2005).

P2X7 receptors on microglia, the immune cells in the CNS,
are activated by purines to release inflammatory cytokines
such as IL-1β, IL-6, and tumor necrosis factor-α (Di Virgilio,
2007). P2X7 receptors have been implicated in the forma-
tion of multinucleated giant macrophage-derived cells, a fea-
ture of chronic inflammatory reactions (Lemaire et al., 2006).
Prion infection has been claimed to be associated with
hypersensitivity of P2X7 receptors in microglia (Takenouchi
et al., 2007). Microglial cell activation by pro-inflammatory
bacterial lipopolysaccharide leads to a transient increase in
ivermectin-sensitive P2X4 receptor currents (Raouf et al.,
2007). Activation of astrocytes via P2X7 receptors increases
chemokine monocyte chemoattractant protein-1 expression and
it was suggested that this may be important for communica-
tion with haematopoietic inflammatory cells (Panenka et al.,
2001).

Generalized motor seizures can be evoked by microinjec-
tion of ATP analogs into the prepiriform cortex (Knutsen and
Murray, 1997). The prepiriform cortex expresses P2X2, P2X4,
and P2X6 receptors and it was suggested that P2X receptor

antagonists may have potential as neuroleptic agents. In chronic
epileptic rats, the hippocampus showed abnormal responses
to ATP, associated with increased expression of P2X7 recep-
tors, which were upregulated in rats with chronic pilocarpine-
induced epilepsy and may be involved in the pathophysiol-
ogy of temporal lobe epilepsy. Enhanced immunoreactivity of
the P2X7 receptor was observed in microglia from rat brain
following kainate-provoked seizures (Rappold et al., 2006).
A decrease of presynaptic P2X receptors in the hippocam-
pus of rats that have suffered a convulsive period has been
shown (Oses, 2006). Glutamate release from astrocytes induced
by ATP has been described in epileptogenesis (Tian et al.,
2005).

The P2X7 receptor gene has been implicated in both major
depressive illness (Lucae et al., 2006) and bipolar affective dis-
orders (Barden et al., 2006). In schizophrenia, the involve-
ment of ATP receptors has been implicated in relation to
reports that the antipsychotic drugs haloperidol, chlorpro-
mazine and fluspirilene, inhibit ATP-evoked responses medi-
ated by P2X receptors (Inoue et al., 1996). It has been sug-
gested that ATP may have a facilitating role for dopaminer-
gic transmission and that some antipsychotic drugs express
their therapeutic effects by suppression of dopaminergic hyper-
activity through inhibition of P2X receptor-mediated effects.
Ethanol is probably the oldest and most widely used psy-
choactive drug. The cellular mechanisms underlying its actions
are not well-understood, but some insights in relation to
purinergic P2 receptor signaling have emerged in recent years
(Davies et al., 2005). P2X receptor-mediated responses of
DRG neurons are inhibited by ethanol by an allosteric mech-
anism. For P2X4 receptors, ethanol inhibition is altered by
mutation of histidine 241. Ethanol differentially affects ATP-
gated P2X3 and P2X4 receptor subtypes expressed by Xenopus
oocytes.

Table 2 | Agonists and antagonists for the different P2X receptor subtypes.

Receptor

Subtype

Agonists Antagonists

P2X1 BzATP > ATP = 2-MeSATP = α,β-meATP =
L-β,γ-meATP (rapid desensitization); PAPET-ATP

NF449 > IP5I > TNP-ATP > RO 0437626 > NF279, NF023, RO1, MRS2159

P2X2 ATP ≥ ATPγS ≥ 2-MeSATP >> α,β-meATP (pH + zinc
sensitive); β,γ-CF2ATP

PSB-1011 > RB2, isoPPADS > PPADS > Suramin, NF770, NF778,
Aminoglycoside

P2X3 2-MeSATP ≥ ATP ≥ Ap4A ≥ α,β-meATP (rapid
desensitization); PAPET-ATP; BzATP

TNP-ATP, isoPPADS > A317491 > NF110 > PPADS, Ip5I, phenol red, RO4,
RN-1838, Spinorphin, AF353

P2X4 ATP >> α,β-meATP >> CTP, 2-MeSATP Ivermectin
potentiation

5-BDBD >> TNP-ATP, PPADS > BBG, Paroxetine, phenolphthalein, CO donor
(CORM 2)

P2X5 ATP = 2-MeSATP = ATPγS >> α,β-meATP > AP4A BBG > PPADS, Suramin

P2X6 - (only functions as a heteromultimer) –

P2X7 BzATP > ATP ≥ 2-MeSATP >> α,β-meATP KN62, BBG, KN04, MRS2427, O-ATP, RN-6189, AZ10606120, A740003, A-438079,
A-804598, GSK-1370319, Compound 31 (GSK), AZD-9056, CE-224,535
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PAIN
There are reviews that have addressed this topic (see, for example,
Burnstock, 2009c,d; Jarvis, 2010; Tsuda et al., 2010; Trang et al.,
2012). Visceral pain is a common form of pain associated with
pathological conditions such as renal colic, dyspepsia, inflam-
matory bowel disease, angina, dysmenorrhoea, and interstitial
cystitis. P2X3 (homomultimer) and P2X2/3 (heteromultimer)
receptors have been cloned and shown to be mainly located on
small nociceptive sensory neurons in the DRG (Lewis et al., 1995).

It was proposed in 1999 that purinergic mechanosensory
transduction occurred in visceral tubes and sacs, including ureter,
bladder and gut, where ATP released from lining epithelial
cells during distension acted on P2X3 and P2X2/3 receptors on
subepithelial nociceptive sensory nerves to initiate impulses in
sensory pathways to pain centers in the CNS (Burnstock, 1999)
(Figure 2). P2X3 receptor knockout mice exhibited reduced
inflammatory pain and marked urinary bladder hyporeflexia
with reduced voiding frequency, suggesting that P2X3 recep-
tors were involved in mechanosensory transduction underly-
ing both inflammatory pain and physiological voiding reflexes
(Cockayne et al., 2000). ATP was shown to be released from blad-
der urothelial cells during distension, and activity initiated in
pelvic sensory nerves was mimicked by ATP and α,β-methylene
ATP (α,β-meATP) and attenuated by P2X3 antagonists as well
as in P2X3 knockout mice (Vlaskovska et al., 2001). Passage
of a kidney stone through the ureter causes severe pain. P2X3
receptor immunostaining of sensory nerves in the suburothelial
region was reported (Lee et al., 2000). Using a guinea-pig prepa-
ration, perfused in vitro, multifiber recordings of ureter afferent
nerve activity were made (Rong and Burnstock, 2004). Distension
of the guinea-pig ureter resulted in increased spike discharge
in sensory nerves, which was mimicked by ATP and reduced
by P2X3 receptor antagonists. Pressure-dependent release of
ATP from urothelial cells to about 10 times the basal release
levels resulted from distension of both the perfused guinea-
pig and human ureters (Knight et al., 2002; Calvert et al.,
2008).

Purinergic mechanosensory transduction in the gut initi-
ated both physiological reflex modulation of peristalsis via
intrinsic sensory fibers and nociception via extrinsic sensory
fibers (Burnstock, 2001b). Distension of a pelvic sensory nerve-
colorectal preparation led to pressure-dependent increase in
release of ATP from mucosal epithelial cells and evoked pelvic
nerve excitation. This excitation was mimicked by application
of ATP and α,β-meATP and attenuated by selective P2X3 and
P2X2/3 antagonists (Wynn et al., 2003).

P2X3 and P2X2/3 receptors located on primary afferent nerve
terminals in inner lamina 2 of the spinal cord, also play a signif-
icant role in neuropathic and inflammatory pain (see Wirkner
et al., 2007; Burnstock, 2009a). Dorsal horn neurons relaying
nociceptive information further along the pain pathway express
P2X2, P2X4, and P2X6 receptors (Bardoni et al., 1997). Microglial
P2X4 and P2X7 receptors are also involved in neuropathic pain
(Tsuda et al., 2003; Hughes et al., 2007), although the underly-
ing mechanisms are still under investigation (Inoue, 2007; Trang
and Salter, 2012). Neuropathic pain and allodynia are abolished
in both P2X4 and P2X7 knockout mice, so there is much interest

in finding selective antagonists that are suitable for therapeutic
development (see McGaraughty et al., 2007).

ATP involvement in migraine was first suspected in rela-
tion to the vascular theory of this disorder with ATP released
from endothelial cells in microvessels during reactive hyper-
aemia, which is associated with pain, following cerebral vascular
vasospasm (that is not associated with pain; Burnstock, 1989).
P2X3 receptor involvement in neuronal dysfunction in brain areas
that mediate nociception in migraine, such as the trigeminal
nucleus and thalamus, has also been proposed (Fabbretti et al.,
2006), and may represent a novel target for antimigraine drugs
(Fumagalli et al., 2006). Anti-nerve growth factor treatment sup-
pressed responses evoked by P2X3 receptor activation in an in vivo
model of mouse trigeminal pain (D’Arco et al., 2007).

P2X RECEPTOR AGONISTS AND
ANTAGONISTS—THERAPEUTIC POTENTIAL
P2X receptors consist of a family of ligand-gated cation chan-
nels that are widely expressed in nerves and many non-neuronal
cells. Table 2 summarizes the selective agonists and antagonists
currently available for the P2X receptor subtypes. With the recent
discovery of their crystal structure (Kawate et al., 2009), medicinal
chemists now have a detailed understanding of how the individ-
ual subunits that form the receptor interact with each other and
are in a better position to prepare selective P2X receptor agonists
and antagonists. P2X receptors change expression in patholog-
ical conditions, suggesting that they may be useful targets for
treatment of diseases. The clinical manipulation of purinergic
signaling is in its infancy. One of the main reasons why we do
not yet have more purinergic therapeutic drugs is the scarcity
of receptor-subtype-selective agonists and antagonists that can
be used in vivo. Afferent Pharmaceuticals have recently devel-
oped some small molecules (AF-353 and derivatives) as P2X3 and
P2X2/3 antagonists that are orally bioavailable and stable in vivo
and which are currently in clinical trial (Gever et al., 2006, 2010).
There has also been promising development of clinically rele-
vant P2X7 antagonists recently, notably the Abbott compounds
A438079 and A-317491 (McGaraughty et al., 2007). However,
antagonists for some of the other P2X subtypes are still to be
developed. Therapeutic strategies in the future are also likely
to include agents that control the expression of P2 receptors,
inhibitors of extracellular breakdown of ATP and enhancers and
inhibitors of ATP transport.

TOPICS COVERED IN THIS SPECIAL ISSUE
Included in this Special Issue are papers by Elsa Fabbretti,
Rashid Giniatullin and Anthony Ford about P2X3 recep-
tors; Stanko Stojilkovic, Terrance Egan, Ruth Murell-Lagnado,
Annette Nicke, Thomas Grutter and Philippe Seguela about
the molecular physiology and targeting of P2X receptors; Sam
Fountain about the evolution of P2X receptors; Manfred Frick
and Kazu Inoue about P2X4 receptors involved in lung sur-
factant secretion and microglia-mediated neuropathic pain;
David Henshall about P2X receptors as therapeutic targets
for epilepsy; Gary Housley and Sue Kinnamon about P2X
receptors in hearing and taste; and Antony Triller about P2X7
receptors.
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