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Neuronal activity in the hub of extrasynaptic Schwann
cell-axon interactions
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The integrity and function of neurons depend on their continuous interactions with glial
cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs).
SCs sense synaptic and extrasynaptic manifestations of action potential propagation and
adapt their physiology to support neuronal activity. WWe review here existing literature data
on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal
activity implications. To shed light on underlying mechanisms, we conduct a thorough
analysis of microarray data from SC-rich mouse sciatic nerve at different developmental
stages and in neuropathic models. We identify molecules that are potentially involved
in SC detection of neuronal activity signals inducing subsequent glial responses. We
further suggest that alterations in the activity-dependent axon-SC crosstalk impact on
peripheral neuropathies. Together with previously reported data, these observations open
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INTRODUCTION

Neurons generate and propagate action potentials (APs) over
long distances along their axons. Their functional and struc-
tural integrity depend on their partnership with adjacent glial
cells. Glia confers trophic and metabolic support, regulates neu-
ronal structure, insulates axons, controls the neuronal environ-
ment and has immunoprotective role. In the peripheral nervous
system (PNS) the majority of these functions are exerted by
Schwann cells (SCs) (Griffin and Thompson, 2008; Nave, 2010).
Most SCs are aligned along peripheral axons of the sensory,
motor, and autonomic nervous system, and are either myelinat-
ing (mSCs) or non-myelinating. The latter include immature SCs
(iSCs) and mature non-myelinating SCs (nmSCs) in Remak bun-
dles. Furthermore, the PNS contains perineuronal satellite cells
enwrapping the neuronal soma, perisynaptic SCs in neuromus-
cular junctions (NMJs), and SCs of sensory transducers.

SCs were assumed to be passive in nature. However, exper-
imental observations have radically challenged this concept.
Converging evidence suggests that SCs are excitable, able to sense
neuronal activity and generate appropriate feedback responses to
support and control neuronal function. This dynamic reciprocal
activity-dependent SC-neuron communication is the focus of our
perspective. Although the majority of respective information has
stemmed from studies on NMJs (Feng and Ko, 2007), we review
here only the less well-studied extrasynaptic interactions between
SCs and active axons under physiological and pathological condi-
tions. We put into perspective the current literature with some of
our recent data, and point to future directions in the field.

DETECTION OF AXONAL ACTIVITY BY SCs

Intercellular interactions can be mediated through electrical fields
generated in a cell and depolarizing neighboring cells bearing

new perspectives for deciphering glial mechanisms of neuronal function support.
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voltage sensors (ephaptic communication), via paracrine signal-
ing, and by physical coupling, for instance through adhesion
molecules or gap junctions (GJs). Indications exist for the utiliza-
tion of all three means in activity-dependent interactions among
PNS neurons and glia.

SIGNALS TRANSMITTED BY ACTIVE AXONS

APs are generated by activation of specific voltage—gated Na™
(Nay) and KT (Ky) channels, and propagate autoregenera-
tively along axons. In non-myelinated fibers APs travel suc-
cessively through ion channels expressed all along the axons
(Figure 1A1) (Debanne et al., 2011). In myelinated fibers, ion
channels are mainly clustered in nodal (Nay1.6, Ky7.2-3) and
juxtaparanodal (JPN, Ky 1.1-2) regions, and conduction is salta-
tory (Figures 1A2,A3) (Debanne et al., 2011; Buttermore et al.,
2013). Ion flows generate local currents in the periaxonal space,
which can influence surrounding cells via ephaptic coupling
(Debanne et al., 2011).

Firing axons also release neurotransmitters (Figure 1B).
Electrical or chemical stimulation in vitro induces extrasynaptic
axonal ATP secretion through volume-activated anion channels
(VAAC:s), via vesicular pathways (Verderio et al., 2006; Fields and
Ni, 2010). Electrical stimulation (ES) evokes vesicular release of
glutamate (Glu) along DRG axons, at least in cocultures with
oligodendrocytes (Wake et al., 2011). Observations demonstrat-
ing exocytosis of large dense core vesicles by chemically depo-
larized axons of trigeminal ganglion neurons further support
the concept of activity-induced extrasynaptic axonal secretion
(Sobota et al., 2010).

In addition, axons are physically coupled to SCs via adhesive
junctions, such as the paranodal junctions (PNJs) (Figure 1C)
(Buttermore et al., 2013). The expression of specific axonal
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FIGURE 1 | Mechanisms involved in activity-dependent axon-Schwann
cell bilateral communication. Schematic representation of the different
molecules and mechanisms described in myelinated (upper part) and
non-myelinated (lower part) PNS fibers. (A) Ephaptic communication
through ion flows across the plasmalemma of unmyelinated (A1) and
myelinated axons (A2, A3). (B) Paracrine signaling from axons to SCs.
(C) Physical coupling between axons and mSCs. (D) SC Ca2* transients
developing after neuronal stimulation. In nmSCs activation of purinergic
receptors leads to increase of cytoplasmic Ca?t due to influx from the
extracellular space, or efflux from intracellular stores (D1) (Stevens et al.,
1998; Stevens and Fields, 2000; Stevens et al., 2004). mSCs express
both P2X and P2Y receptors, and also respond to ATP stimulation by
Ca?t increase (D2) (Mayer et al., 1998; Grafe et al., 1999). Indications
suggest that Ca?t transients expand in the whole paranodal region
through GJs (Toews et al., 2007). The origin of ATP in mature myelinated
fibers, however, is not clear. High ATP levels, sufficient to activate glial
receptors, are probably generated only during high frequency activity or
after injury. (E) KT buffering and ion homeostasis. K* uptake by nmSCs
through the Nat/K* pump and Ky channels (E1) (Robert and Jirounek,
1994). In mSCs, inward rectifying Ky channels (IRK1/Kir2.1 and
IRK3/Kir2.3), and Nat/K+ ATPases are concentrated in microvilli (E2),
where massive increase of K* occurs during neuronal activity (Mi et al.,
1996; Baker, 2002). Abaxonal K\/1.5 channels in the nodal area may
further assist to K* removal (E3) (Mi et al., 1995; Baker, 2002). In
juxtaparanodal and internodal regions, axonal Ky 1 channels may act in
conjunction with closely apposed SC hemichannels and with GJs of the
Schmidt-Lanterman incisures (SLIs) for the same purpose (E4, see also
A3) (Altevogt et al., 2002; Mierzwa et al., 2010; Nualart-Marti et al.,
2013). (F) Paracrine signaling from SCs to axons. Activation of P2Y and
AMPA receptors acts in a positive feedback loop, triggering ATP release
by nmSCs, through vesicular exocytosis or via ion transporters, such as

CFTR (F1) (Liu and Bennett, 2003; Liu et al.,, 2005). Administration of
ATP on proliferating SCs induces secretion of the excitatory amino acids
Glu and aspartate, via intracellular Ca?* store-dependent mechanisms
(F2) (Jeftinija and Jeftinija, 1998). ATP and excitatory amino acids can
reciprocally bind to ionotropic and metabotropic Glu-, and P2X-receptors
on unmyelinated peripheral axons and influence their excitability (F3)
(Agrawal and Evans, 1986; Kinkelin et al., 2000; Carlton et al., 2001;
Irnich et al., 2001). (G) Regulation of SC fate by neuronal activity through
activation of ion channels (G1) (Wilson and Chiu, 1993; Pappas and
Ritchie, 1998; Sobko et al., 1998), purinergic metabotropic P2Y; receptors
and A2, GPCRs by ATP and its metabolite adenosine (G2) (Stevens and
Fields, 2000; Stevens et al., 2004; Fields and Burnstock, 2006), and of
mGluRs (G3) (Saitoh and Araki, 2010). (H) Neurotrophic axonal support by
SCs. (I) Vesicular transfer of molecules from SCs to axons. Exosomes,
which are enclosed in multivesicular bodies (MVB), move from mSCs to
axons through cytoplasmic-rich regions like the SLIs and paranodal
domains (I1), or can be released from dedifferentiated/iSCs close to
neuronal growth cones after injury (I12) (Lopez-Verrilli and Court, 2012).
Shedding vesicles (SVs) are directly generated from SC plasma
membrane evaginations usually in microvilli and paranodal areas of mSCs,
and can fuse or be endocytosed by axons (I3) (Court et al., 2008;
Cocucci et al.,, 2009; Lopez-Verrilli and Court, 2012). (J) Potential direct
transfer route of SC molecules via GJs. Abbreviations: Cay, voltage-gated
Ca?t channel; Cly, voltage-gated CI~ channel; Ky, voltage-gated K+t
channel; Kir, inwardly rectifying K* channel, Nay, voltage-gated Na*
channel; CFTR, Cystic Fibrosis Transmembrane conductance Regulator;
VAAC, Volume-Activated Anion Channel; A2R, adenosine receptor 2; P2X
and P2Y, purinergic receptor; iGIuR, ionotropic glutamate receptor;
mGIuR, metabotropic glutamate receptor; GPCR, G-protein coupled
receptor; NGF, nerve growth factor; ER, Endoplasmic

Reticulum.
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adhesion molecules is under regulation by ES in a pattern-specific
manner (Itoh et al., 1997).

DETECTION OF AXONAL SIGNALS BY SC ACTIVITY SENSORS
SC responses to neuronal activity were initially recorded on the
squid giant axon by electrophysiology (Evans et al., 1991). ES
of axons or perfusion of neurotransmitters induced SC mem-
brane hyperpolarization (Evans et al., 1991). Similar responses
have been also reported in vertebrates, mainly in the form of SC
Ca’* transients that develop subsequently to ES of myelinated
and unmyelinated fibers (Figures 1D1,D2)(Brunet and Jirounek,
1994; Lev-Ram and Ellisman, 1995; Mayer et al., 1999).

mSCs and nmSCs express molecules, which allow them to
respond to electrical or chemical axonal stimuli (Figure1). SC
“activity sensors,” including voltage- and ligand-gated ion chan-
nels, transporters, pumps, G-protein coupled receptors (GPCRs),
connexins (Cx) of hemichannels and GJs, have been detected at
mRNA and protein levels in vivo (animal tissues or human biop-
sies), ex vivo (nerve preparations) and/or in vitro (SC cultures),
using biochemical and functional approaches (Dememes et al.,
1995; Dezawa et al., 1998; Mayer et al., 1998; Verkhratsky and
Steinhauser, 2000; Altevogt et al., 2002; Baker, 2002; Fields and
Burnstock, 2006; Loreti et al., 2006; Magnaghi et al., 2006; Saitoh
and Araki, 2010; Procacci et al., 2012; Nualart-Marti et al., 2013).
A summary of the so far-identified SC receptors and ion channels
is presented in Table 1.

DEVELOPMENTAL REGULATION OF SC ACTIVITY SENSORS
Responsiveness of SCs to neuronal activity is developmentally
regulated. Downregulation of Ky channel expression during early
myelination, and clustering to microvilli in mature mSCs is
a characteristic example (Figure1) (Wilson and Chiu, 1990).
However, scarce evidence exists regarding the developmental reg-
ulation of other SC activity sensors. To gain further insight,
we analyzed microarray data previously published by our group
(Verdier et al., 2012), on wild type (WT) mouse sciatic nerve (SN)
at different developmental stages. Since the analyzed samples are
highly enriched in SCs, we expect that the majority of the detected
sensors represent SC molecules and do not derive from axon
specific transcripts (Willis et al., 2007; Gumy et al., 2011), (see
also Table 1). Our results -summarized in Table 1- corroborate
and complete existing data, confirming the expression of specific
voltage- (e.g., Nay, Ky, voltage-gated Ca?t channels; Cay, Cly),
and ligand-gated (e.g., purinergic P2X and ionotropic glutamate
receptors -iGluRs) ion channels, and of GPCRs (e.g., purinergic
P2Y, muscarinic acetylcholine receptors, GABAp receptors) (Fink
etal., 1999; Baker, 2002; Loreti et al., 2006; Magnaghi et al., 2006).
In addition, they reveal previously non-described mammalian SC
expression of nicotinic acetylcholine receptors and TRP chan-
nels. Apart from the known regulation of K* channels, our data
suggest that expression of Na™, Ca?t, Cl~, and TRP channels,
purinergic receptors and iGluRs is also significantly regulated
during development.

These transcriptional modulations could result as adapta-
tions of SCs to different neuronal firing modes. The reduction
and restriction of Ky channels in mSC microvilli most likely
corresponds to the need for K* buffering mainly in nodal regions

(see also paragraph “K™ uptake by SCs”) (Wilson and Chiu, 1990;
Baker, 2002). In addition, nmSC inwardly rectifying K* (Kir)-
currents and T-type Cay depend on axonal firing (Konishi, 1994;
Beaudu-Lange et al., 2000). Given that the firing patterns of nerve
fibers change during maturation (Fitzgerald, 1987), we speculate
that developmental regulation of SC activity sensors could be a
direct glial response to axonal activity alterations. Alternatively, it
may reflect mere phenotypic changes during SC maturation.

Further SC responses to neuronal activity will be the focus of
the following paragraphs.

SC RESPONSES TO AXONAL ACTIVITY SIGNALS

Detection of axonal activity by glial sensors enables SCs to develop
appropriate responses and -in a feedback loop- regulate the func-
tion of underlying axons. We will discuss the nature and the
potential biological significance of those SC responses, focusing
particularly on their direct (via ion balance regulation, neuro-
transmitter secretion and myelination) or indirect (by conferring
metabolic support) impact on axonal activity.

REGULATION OF AXONAL EXCITABILITY

K* uptake by SCs

During prolonged neuronal activity, Nat and K* ions tend to
accumulate in the axoplasm and in the periaxonal space respec-
tively. Maintenance of neuronal excitability requires maintenance
of ion homeostasis and fast restoration of the axonal resting
potential. Both nmSC and mSCs contribute to it by buffering
extracellular KT ions, mainly through the activity of Na®/K*
pumps and Ky channels (for more details see Figure 1E).

SC neurotransmitter secretion

Axonal firing leads to ATP and Glu release in the periaxonal
space (Figure 1B, see also paragraph Signals transmitted by active
axons) (Verderio et al., 2006; Fields and Ni, 2010; Wake et al.,
2011). By activating P2Y and AMPA receptors on iSCs and
nmSCs, these neurotransmitters reciprocally trigger secretion of
ATP and the excitatory amino acids Glu and aspartate from
SCs, via ion channels or vesicular mechanisms (Figures 1F1,F2)
(Jeftinija and Jeftinija, 1998; Liu and Bennett, 2003; Liu et al,,
2005). SCs may also secrete the inhibitory neurotransmitter
GABA, known to modulate peripheral fiber excitability, but
whether its secretion is induced by neuronal activity has not been
determined (Morris et al., 1983; Carr et al., 2010; Magnaghi et al.,
2010). SC-released neurotransmitters exert local effects on axonal
excitability (Carlton et al., 2001; Irnich et al., 2001) (Figure 1F3).
Moreover, they may initiate signals that propagate electrically
or via retrograde axonal transport toward neuronal cell bodies,
affecting soma signaling processes and gene expression (Itoh et al.,
1997; Amir and Devor, 2003; Chen et al., 2012).

SC differentiation and myelination

Mpyelin production by SCs leads to the organization of enwrapped
axons into distinct structural domains with highly specialized pat-
terns of ion channel expression (Salzer, 2003; Buttermore et al.,
2013). Internodes, electrically insulated by myelin layers with low
electrical capacitance, alternate with ion-rich nodes of Ranvier,
where APs are generated, so that fast and energy efficient saltatory
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Table 1 | Continued

Transcriptional regulation P

Expression in SCs

Subtypes

Families

In neuropathy models

During development

Down

Up

Up Down

Microarray dataP

Previously published data?—°

Cx3740, and Cx30 Cx43
45

Cx29,32, and 47

Cx29,30,32,37,40,43,45,

and 47

Cx29,32, and 43 in mSCs;

CXkAm

GAP-junctions/="

Cx32, and in iSCs, Cx 29 in

iSCs

Previously published data (based on biochemical and functional studies) regarding expression of potential SC activity sensors are summarized in the middle-left column called “Previously published data.” Data

generated through analysis of SN microarray experiments (Verdier et al., 2012) are presented in the middle-right column called “Microarray data.” Right part of the table demonstrates transcriptional regulation of

depicted sensors during development and in peripheral neuropathy, based on analyses of data initially presented in (Verdier et al., 2012) (Up: upregulated transcripts, Down: downregulated transcripts). Detailed

description of data processing and the complete list of significantly modulated genes can be found in the original paper (Verdier et al., 2012) and in its supporting information (http://onlinelibrary.wiley.com/doi/10.

1002/glia.22305/suppinfo). The complete data set is accessible through the ArrayExpress database (accession number: E-MTAB-944; http://www.ebi.ac.uk/arrayexpress/). Asterisks (*) denote transcripts, which have

been previously described in adult intact (*) or injured (**) DRG axons Willis et al., 2007; Gumy et al., 2011, and may thus be detected (at least partially) due to contamination by axonal mRNA. @ Verkhratsky and

Steinhauser, 2000; ? Baker, 2002; € Fields and Burnstock, 2006; 9 \erderio et al., 2006; € Colomar and Amedee, 2001; f Liu and Bennett, 2003; 9Fink et al.,

l., 1995; ! Saitoh and Araki, 2010;

1999; hDememes et a

ILoreti et al., 2006; ** Magnaghi et al., 2006; ' Procacci et al., 2012; ™ Dezawa et al., 1998; "Altevogt et al., 2002; ° Nualart-Marti et al., 2013; P Verdier et al., 2012.

stimulus propagation is achieved (Figures 1A—C). Hence, neu-
ronal activity effects on SC differentiation can have significant
consequences on axon excitability and AP conduction.

Early during development, firing of unmyelinated PNS fibers
induces ionic imbalances and neurotransmitter secretion, which
affect iSC maturation and myelin production. Cly and still
unidentified K™ channels regulate iSC mitosis by modulating
the SC membrane potential (Wilson and Chiu, 1993; Pappas
and Ritchie, 1998; Sobko et al., 1998) (Figure 1G1). In vitro
ES of embryonic DRG neurons, at low frequencies that mimic
DRG spontaneous spiking at early developmental stages, leads to
activation of purinergic signaling pathways and subsequent inhi-
bition of both SC proliferation and differentiation (Figure 1G2)
(Stevens and Fields, 2000; Stevens et al., 2004). Myelination
reduction by low-frequency ES has been further attributed to
downregulation of the axonal adhesion molecule L1 (Stevens
et al., 1998). Glu and GABA also modulate SC maturation
(Figure 1G3) (Magnaghi et al., 2006; Saitoh and Araki, 2010;
Procacci et al., 2012). However, although GABA is known to be
released by SCs (see paragraph “Neurotransmitter secretion”), its
extrasynaptic secretion from PNS axons has not been demon-
strated.

Few existing experimental data suggest that neuronal activ-
ity controls myelination also in the mature PNS. Subfunctional
soleus nerve fibers in hindlimb-unloaded rats exhibit reduced
myelin thickness (Canu et al., 2009). Administration of ATP mod-
ulates myelin lipid constitution in frog SN preparations (Kutuzov
NP et al., 2013). Whether and how neuronal function is affected
by these changes requires further investigation.

TROPHIC AND METABOLIC SUPPORT OF NEURONS
Neuronal activity depends on the maintenance of axonal integrity
and energetic status. Both nmSCs and mSCs provide neu-
rotropic and metabolic support to adjacent neurons (Griffin and
Thompson, 2008; Nave, 2010). This support is under the control
of axonal activity. In response to ES and ATP, cultured SCs secrete
nerve growth factor (NGF) and brain-derived neurotropic fac-
tor (BDNF), respectively, promoting axonal growth (Figure 1H)
(Verderio et al., 2006; Huang et al., 2010). In addition, chemi-
cal depolarization triggers vesicular transport of molecules from
SCs to axons (Figure 1I) at least in invertebrates (Eyman et al.,
2007). Reported molecular cargo of SC-to-axon transported vesi-
cles includes ribosome-bound mRNA, cytoskeletal components
and heat-shock proteins (Court et al., 2008; Cocucci et al., 2009;
Lopez-Verrilli and Court, 2012). Their exact contributions to
axonal function under physiological conditions are still unknown.
Although information regarding glia-to-axon metabolic sup-
port in the PNS is scarce, inferences could be made from CNS
data. Neuronal activity triggers exosome transfer of metabolic
enzymes from oligodendrocytes to neurons (Fruhbeis et al,
2013), as well as release of lactate from astrocytes and uptake
by neurons (Barros, 2013). Similar energy transfer processes may
occur in the PNS. ES in SN increases O, uptake and glucose
consumption, and SCs seem to be the main metabolic SN niche
(Heller and Hesse, 1961). Moreover, in vivo genetic disruption of
mitochondria energy production in otherwise functional mouse
SCs severely impairs the structure and function of peripheral
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fibers (Viader et al., 2011; Funfschilling et al., 2012), suggest-
ing that there may be SC-to-neuron energy transfer also in the
PNS. However, its characterization, and potential regulation by
neuronal activity await further investigation.

PATHOGENIC DISRUPTION OF ACTIVITY-DEPENDENT
SC-AXON COMMUNICATION

Significant insight into the physiological significance of the SC-
axon cross-talk and its contribution to the maintenance of
axonal excitability and function has been obtained by studies
on PNS pathologies, such as inflammatory (e.g., chronic inflam-
matory demyelinating polyneuropathies), metabolic (e.g., dia-
betes) or genetic (e.g., Charcot-Marie Tooth, -CMT) diseases, and
injury.

DYSREGULATION OF SC ACTIVITY SENSORS IN PATHOLOGIES
Peripheral neuropathies have been linked to dysregulation of SC
activity sensors. Overexpression of P2X7 receptors may have a
causative role in CMT1A patient demyelination due to Ca** over-
load (Nobbio et al., 2009). Moreover, P2X7 activation induces
BDNF secretion and activates K+ and CI~ conductances, through
Big K* channels and more likely via the cystic fibrosis transmem-
brane conductance regulator CFTR (Colomar and Amedee, 2001;
Verderio et al., 2006). Interestingly, Cl~ imbalance leads to axonal
loss with primary or secondary dysmyelination in patients and
animal models with dysfunctional CFTR or the K*-CI~ cotrans-
porter KCC3 (Sun et al., 2010; Reznikov et al., 2013). Certain
CMTX patients carry mutations in Cx32, which may lead to
increased currents through the Cx32-hemichannel and to subse-
quent nerve damage (Abrams et al., 2002; Nualart-Marti et al.,
2013). Dysregulation of SC sensors (e.g., upregulation of Ky and
Nay channels) also occurs after injury (Chiu, 1988).

To further investigate the contribution of SC activity sen-
sor regulation to PNS dysfunctions, we checked for respec-
tive transcriptional modulations in our previously published
microarray data on SN endoneuria from three mouse models of
peripheral neuropathy: the Scap and Lpinl conditional knock-
outs (KOs), which have defective lipid biosynthesis and exhibit
PNS hypomyelination and progressive demyelination, respec-
tively, and the Pmp22 total KO, which lacks the myelin protein
PMP22 and is a model of Hereditary Neuropathy with Liability
to Pressure Palsy (Table 1) (Adlkofer et al., 1995; Nadra et al,
2008; Verheijen et al., 2009; Verdier et al., 2012). With the
exception of TRP channels and acetylcholine receptors, we are
able to detect expression changes in all families of SC sensors.
Their potential role in pathogenesis can be inferred from exist-
ing data. Upregulation of K™ channels may interfere with SC
ability to buffer K* ions or be associated with increased prolif-
eration of dedifferentiated SCs (Wilson and Chiu, 1990, 1993)
(Figures 1E2,G1). Upregulation of T-type Cay 3.2 channels could
trigger NGF release, in order to support underlying affected axons
(Figure 1H) (Huang et al., 2010). A time-course analysis of the
transcriptionally regulated genes during the progress of pathol-
ogy, in conjunction with functional studies, would be necessary
to delineate their potential destructive or protective roles in the
development of neuropathy.

DISRUPTION OF NEURONAL ACTIVITY DUE TO MYELIN DEFECTS
Myelin defects are a common feature of various peripheral
neuropathies. Studies on animal models of demyelinating dis-
eases (e.g., CMT1A, CMT1B, CMTI1C, and CMTX) have demon-
strated that myelin impairments affect neural influx conduction
and axonal excitability through different mechanisms, includ-
ing decreased electrical isolation of the axolemma, the exposure,
redistribution or abnormal expression of voltage-gated ion chan-
nels, and the potential change from saltatory to continuous
conduction (Brismar, 1981b, 1982; Rasminsky, 1982; Meiri et al.,
1986; England et al., 1990, 1996; Schwarz et al., 1991; Rasband
et al., 1998; Neuberg et al., 1999; Devaux and Scherer, 2005;
Moldovan et al., 2011; Lee et al., 2013). Aberrant expression
of nodal Nay channels and nodal or juxtaparanodal Ky chan-
nels, has been confirmed in patients with CMT1A and CMT4C
(Nodera et al., 2004; Arnaud et al., 2009). Computational simu-
lations in combination with experimental observations correlate
those demyelination-induced changes with alterations in axonal
excitability and impulse propagation, leading to negative or pos-
itive clinical symptoms. Alteration in axonal domains can induce
decreased excitability and even conduction failure underlying
negative symptoms of peripheral neuropathies, such as mus-
cle weakness (Brismar, 1981a,b; Cappelen-Smith et al., 2001;
Nodera et al., 2004; Jani-Acsadi et al., 2008; Coggan et al., 2010;
Moldovan et al., 2011). Alternatively, demyelination can lead to
axonal hyperexcitability, spontaneous ectopic spiking and cross
excitation of neighboring axons (by ephaptic coupling or crossed
afterdischarge), leading to positive symptoms like neuropathic
pain (Calvin et al., 1982; Rasminsky, 1982; Lisney and Pover,
1983; Lisney and Devor, 1987; Gillespie et al., 2000; Wallace et al.,
2003; Gemignani et al., 2004; Coggan et al., 2010).

SC SUPPORT OF DYSFUNCTIONAL AXONS

Axonal dysfunctions in pathologies and animal models with
impaired SCs may also occur secondary to or without myelin
abnormalities (Gabreels-Festen et al., 1992; Griffiths et al., 1998;
Chen et al., 2003; Nave, 2010), indicating the implication of
myelin-unrelated mechanisms. Failure of trophic or metabolic
glia-to-neuron support may be one such mechanism. Glial sup-
port is particularly critical for neuropathic fibers, which have
increased metabolic requirements, due to their decreased prop-
agation efficiencies (Shrager and Rubinstein, 1990; De Waegh
et al., 1992; Kirkpatrick and Brady, 1994; Moldovan et al., 2011).
Glycogen stored in mSCs is utilized to provide neurons with lac-
tate particularly during aglycemia (Brown et al., 2012). Likewise,
exosome transport of metabolic enzymes from oligodendrocytes
to axons is required to sustain neuronal survival and function
under stress conditions (Fruhbeis et al., 2013), while vesicular
transfer of ribosomes from mSCs is prominent in injured fibers,
and promotes regeneration (Court et al., 2008, 2011; Lopez-
Verrilli et al., 2013). Mutations affecting exosome-mediated inter-
cellular communication have been recently described in CMT1C
patients (Zhu et al., 2013). Direct transfer of SC molecules via GJs
has been suggested in regenerating nerves (Figure 1J) (Dezawa
etal., 1998). Apparently, under pathological conditions, SCs need
to adjust their physiology in order to maintain the integrity and
function of suffering axons.
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To investigate whether glia-to-axon support mechanisms are
affected in our Scap, Lpinl, and Pmp22 mouse models, we
checked for transcriptional regulation of genes involved in cellular
metabolism (excluding lipid metabolism, since its dysregulation is
expected in the Scap and Lpinl KOs) and vesicle trafficking, and
for genes encoding potential SC exosome or other vesicular cargo
(Lopez-Verrilli and Court, 2012; Fruhbeis et al., 2013). Results,
depicted in Table S1, reveal changes in genes of all categories.
Detailed analyses at both glial and neuronal levels are required to
check the potential positive or negative impact of those alterations
on the diseased phenotype, especially since some of the depicted
transcripts are also present in axons (Willis et al., 2007; Gumy
etal., 2011).

CONCLUSIONS AND PERSPECTIVES

Neuronal activity plays a central role in the extrasynaptic com-
munication between peripheral axons and SCs. SCs express pro-
teins that allow them to detect signals produced by firing axons.
Our microarray data indicate that the list of SC activity sensors
may be more extensive than currently known, thus providing
indications for novel axonal activity signals. Detection of those
signals permits SCs to adjust their physiology, so as to suf-
ficiently support and control neuronal activity. Although this
reciprocal interaction is constantly required to sustain the PNS
function, it becomes particularly critical in transitional periods,
during development or under pathology-induced stress. By iden-
tifying SC activity sensor- and neuronal support-genes that are
regulated during development and/or PNS disease, we attempt
to shed light on mechanisms mobilized by SCs to cover the
altered needs and increased requirements of the challenged ner-
vous system. More questions, however, arise, especially regarding
the potential contribution of neuronal activity signals to these
regulations, their nature, the downstream signaling pathways
mediating SC responses, and the role of the latter in the mainte-
nance of neuronal integrity and the regulation of axonal function.
Characterization of respective mechanisms can be facilitated by
implementation of recently developed microfluidic compartmen-
talized cell culture technologies that enable cell-specific analyses
and application of advanced microscopy techniques (Taylor et al.,
2005). Combination with in vitro ES via conventional electrodes
or microelectrode array platforms could be used to investigate
the neuronal activity dependence and relevance of SC molecules
and signaling pathways (Kanagasabapathi et al., 2011; Yang et al.,
2012; Jokinen et al., 2013; Malone et al., 2013). Apart from reveal-
ing new modulators of myelination, we expect that such studies
will also contribute to the understanding of myelin-independent
mechanisms of SC-to-neuron crosstalk.
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Table S1 | Transcriptional regulation of genes encoding potential
SC-to-neuron support molecules in mouse models of peripheral
neuropathies. Re-analyzed microarray data were originally generated by
characterization of endoneurial samples from adult, 56 days-old Scap,
Lpin1, and Pmp22 knockout mice. The grouping in the categories of
“Metabolism” and “Vesicle trafficking” was based on Gene Ontology,
whereas grouping in the “Exosome-exocytic vesicle cargo” category was
performed by manual annotation based on (Lopez-Verrilli and Court, 2012;
Fruhbeis et al., 2013). For more information regarding the experiments and
data analysis, see legend of Table 1 and (Verdier et al., 2012). Asterisk (*)
indicates transcripts that have been previously described in axons of DRG
neurons (Willis et al., 2007; Gumy et al., 2011).
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