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Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of
amyotrophic lateral sclerosis (fALS). Misfolding and aggregation of mutant SOD1 proteins
are a pathological hallmark of SOD1-related fALS cases; however, the molecular mechanism
of SOD1 aggregation remains controversial. Here, I have used E. coli as a model organism
and shown multiple distinct pathways of SOD1 aggregation that are dependent upon its
thiol-disulfide status. Overexpression of fALS-mutant SOD1s in the cytoplasm of E. coli
BL21 and SHuffleTM, where redox environment is reducing and oxidizing, respectively,
resulted in the formation of insoluble aggregates with notable differences; a disulfide bond
of SOD1 was completely reduced in BL21 or abnormally formed between SOD1 molecules
in SHuffleTM. Depending upon intracellular redox environment, therefore, mutant SOD1
is considered to misfold/aggregate through distinct pathways, which would be relevant in
description of the pathological heterogeneity of SOD1-related fALS cases.
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INTRODUCTION
Thiol-disulfide status is critical for functioning of many pro-
teins (Sevier and Kaiser, 2002), and Cu,Zn-superoxide dismutase
(SOD1) is one of such proteins in which formation of an
intramolecular disulfide bond is required for folding into its
enzymatically active conformation (Furukawa et al., 2004). An
enzymatic function of SOD1 is to catalyze the removal of a
toxic reactive oxygen species, superoxide anion (McCord and
Fridovich, 1969), and activation steps of SOD1 in vivo include
binding of a catalytic copper ion and a structural zinc ion and
also formation of an intramolecular disulfide bond. Given that
SOD1 isolated from Bacillus subtilis (Banci et al., 2005) and
Mycobacterium tuberculosis (Spagnolo et al., 2004) lacks a cop-
per and zinc binding site, respectively, metal binding seems to
be dispensable for SOD1. In contrast, an intramolecular disul-
fide bond is conserved among all SOD1 proteins identified so
far, implying its essential roles in physiological functions of
SOD1.

Indeed, abnormalities in a thiol-disulfide status of SOD1 have
been proposed as a pathological change in a familial form of
amyotrophic lateral sclerosis (fALS) that is caused by dominant
mutations in SOD1 (Rosen et al., 1993). For example, in transgenic
mice expressing human SOD1 with a fALS mutation (G85R), two
Cys residues (Cys57 and Cys146) of SOD1, which normally form
an intramolecular disulfide bond, remained reduced (Jonsson
et al., 2006). Aggregation of mutant SOD1 is a major pathological
change in SOD1-related fALS cases (Bruijn et al., 1998), and inclu-
sions reproduced in diseased mice have been shown to contain
disulfide-reduced SOD1 proteins (Jonsson et al., 2006; Karch et al.,
2009). In vitro studies have also shown increased susceptibility of
a disulfide bond in several fALS-mutant SOD1 proteins toward a

reducing agent (Tiwari and Hayward, 2003). Furthermore, reduc-
tion of a disulfide bond significantly decreased the thermostability
and thus facilitated misfolding and aggregation of SOD1 in vitro,
supporting important roles of a conserved disulfide bond in main-
taining an aggregation-resistant structure of SOD1 (Furukawa and
O’Halloran, 2005; Furukawa et al., 2008).

In contrast, increased oxidative stress has been reported in
fALS patients (Barber and Shaw, 2010), and SOD1 appears to
be one of intracellular targets susceptible to oxidative modifica-
tions (Guareschi et al., 2012). In transgenic mice expressing human
SOD1 with fALS mutations, mutant SOD1 has been shown to
form insoluble oligomers cross-linked via intermolecular disul-
fide bonds (Furukawa et al., 2006). In vitro experiments have
also revealed that aggregation of mutant SOD1 is triggered by
abnormal oxidation of histidine and tryptophan residues (Rakhit
et al., 2002; Zhang et al., 2003). Under such oxidative condi-
tions, a disulfide-reduced form of SOD1 would not stably exist.
Furthermore, structural destabilization of SOD1 by pathogenic
mutations has been recently reported to facilitate isomerization
of a conserved intramolecular disulfide bond (Cys57–Cys146)
into an intermolecular disulfide crosslink (Toichi et al., 2013).
Taken together, reduction of a disulfide bond may not be a
prerequisite for aggregation of SOD1 in vivo; rather, a redox
environment surrounding SOD1 would determine how mutant
SOD1 is misfolded and aggregated. Indeed, most (>70%) of
intracellular SOD1 exist in the reducing environment of cyto-
plasm (Chang et al., 1988), but a small fraction (∼3%) of SOD1
is also detected in the intermembrane space (IMS) of mito-
chondria (Okado-Matsumoto and Fridovich, 2001), which is
considerably more oxidizing than cytoplasm (Hu et al., 2008).
Intracellular SOD1 is thus considered to experience a broad range
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of redox environment, which would affect its folding/misfolding
processes.

In this study, effects of intracellular redox environment on
SOD1 aggregation have been examined in Escherichia coli as
a model organism. Overexpression of heterologous proteins in
bacteria such as E. coli often leads to the formation of insolu-
ble aggregates called inclusion bodies, and inclusion bodies of
several proteins have been shown to possess amyloid-like proper-
ties (Carrio et al., 2005; de Groot et al., 2009; Villar-Pique and
Ventura, 2012). Cytoplasm of E. coli has been well known as
strongly reducing environment (Hwang et al., 1992), while genet-
ically modified E. coli, SHuffleTM, provides considerably oxidizing
cytoplasm (Lobstein et al., 2012). FALS-mutant human SOD1 pro-
teins in E. coli BL21 were found to exist as a disulfide-reduced state
and form insoluble fibrillar aggregates. In contrast, expression of
mutant SOD1 in the oxidizing cytoplasm of SHuffleTM resulted in
the formation of insoluble oligomers crosslinked via intermolecu-
lar disulfide bonds albeit with fibrillar morphologies. Depending
upon the intracellular redox environment, therefore, mutant
SOD1 proteins form insoluble aggregates with distinct proper-
ties, suggesting roles of organelle-specific misfolding pathways of
mutant SOD1 in fALS pathomechanism.

RESULTS AND DISCUSSION
SOD1 AGGREGATES UNDER REDUCING ENVIRONMENT OF E. coli
CYTOPLASM
Introduction of an intramolecular disulfide bond between Cys57
and Cys146 in SOD1 has been known to increase the elec-
trophoretic mobility of SOD1 (Furukawa et al., 2004); therefore,

thiol-disulfide status of SOD1 can be determined by non-reducing
SDS-PAGE analysis. When overexpressed in E. coli BL21, wild-type
human SOD1 (SOD1(WT)) was found to be in a disulfide-
reduced form (SOD1SH) with a small fraction of a disulfide-form
(SOD1S−S; Figure 1A). Also notably, most of SOD1SH was insol-
uble, while SOD1S−S remained soluble (Figure 1A). These results
are consistent with a previous finding that SOD1SH is highly prone
to insoluble aggregation in vitro (Furukawa et al., 2008). Given
that cytoplasm of E. coli provides a highly reducing environment
(Hwang et al., 1992), formation of a disulfide bond in proteins will
be an unfavorable process in the cytoplasm. Furthermore, metal-
chelating capacity of bacterial cytoplasm has been reported to be
extremely high (Outten and O’Halloran, 2001; Changela et al.,
2003), where SOD1 is supposed to be in a metal-deficient apo
state. Indeed, exogenous supplementation of ZnSO4 in a growth
media increased the soluble fraction of overexpressed SOD1SH/S−S

(Figure 1A), supporting previous reports that binding of a zinc
ion protects SOD1 from aggregation (Furukawa et al., 2008). In
the reducing environment of cytoplasm, where metal-chelating
capacity is also significant, SOD1 remain in a disulfide-reduced
apo state and is prone to insoluble aggregation.

OXIDIZING ENVIRONMENT PROTECTS SOD1 FROM AGGREGATION BY
DISULFIDE FORMATION
To examine effects of disulfide formation on SOD1 aggrega-
tion in vivo, SOD1(WT) was overexpressed in E. coli SHuffleTM,
where cytoplasmic reductive pathways are genetically diminished
(Lobstein et al., 2012). More specifically, thioredoxin reductase
(trxB) and glutathione reductase (gor) have been removed in E. coli

FIGURE 1 | Redox environment of E. coli cytoplasm influences the

aggregation propensities of SOD1 by modulating its thiol-disulfide

status. (A) E. coli BL21(DE3) or (B) SHuffleTM was transformed with pET15b
(an empty vector) or pET15b harboring human SOD1(WT) cDNA, and the
protein expression was induced with IPTG (see Materials and Methods).
Results obtained by addition of 1 mM ZnSO4 at the induction of protein
expression were also included in (A) (SOD1(WT) + 1 mM ZnSO4). Also,

expression of SOD1 with C57/146S mutations, in which an intramolecular
disulfide bond cannot form, was examined in E. coli SHuffleTM and shown in
(B). Cell lysates were fractionated into soluble supernatant (s) and insoluble
pellets (p), treated with iodoacetamide, and then analyzed with non-reducing
SDS-PAGE by using a 15% polyacrylamide gel. White (SOD1S−S) and black
(SOD1SH) arrows at the right side of the gel image indicate positions of bands
corresponding to SOD1 with and without a disulfide bond, respectively.
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SHuffleTM, which provides oxidizing cytoplasm and thus enables
to introduce disulfide bonds in cytoplasmically expressed pro-
teins. As shown in Figure 1B, SOD1(WT) overexpressed in E.
coli SHuffleTM was found to form a disulfide bond and remain
soluble, showing that correct introduction of a disulfide bond
in SOD1 can prevent its insoluble aggregation in vivo. When
SOD1 with C57S/C146S mutations, in which a conserved disul-
fide bond (Cys57–Cys146) cannot form, was overexpressed in E.
coli SHuffleTM, significant amounts of mutant SOD1 was again
found in the insoluble fraction. This result hence emphasizes a
protective role of the disulfide bond against aggregation of SOD1.
In eukaryotes, a copper chaperone for SOD1 (CCS) has been
shown to introduce the intramolecular disulfide bond in SOD1
(Furukawa et al., 2004), while CCS-independent pathway(s) for
disulfide formation in SOD1 also appears to exist (Subramaniam
et al., 2002; Leitch et al., 2009). Given no CCS homologues in bac-
teria, the results obtained by using SHuffleTM (Figure 1B) implies
that oxidizing environment is sufficient for introducing a correct
disulfide bond into wild-type SOD1 even without CCS and thereby
protecting the protein from being misfolded/aggregated.

ALS MUTATIONS COMMONLY AGGRAVATE THE AGGREGATION
PHENOTYPE OF SOD1 UNDER REDUCING ENVIRONMENT
To test effects of fALS-causing mutations on SOD1 aggregation in
vivo, several types of mutant SOD1 were overexpressed in E. coli
BL21. SOD1 with A4V mutation has been reported to be expressed
in E. coli BL21 as insoluble pellets (Leinweber et al., 2004), and all
of the other mutant SOD1s tested here were found as a disulfide-
reduced form in insoluble pellets regardless of the absence (data
not shown) or presence (Figure 2) of 1 mM ZnSO4 in a growth
media. This is in sharp contrast to wild-type SOD1, which was
expressed as a soluble form when cultured in a growth media
supplemented with zinc ions (Figure 1A). It has been suggested

that the decreased affinity of zinc ion is a common pathogenic
denominator of fALS-mutant SOD1 (Goto et al., 2000; Hayward
et al., 2002); therefore, supplementation of 1 mM ZnSO4 to a
growth media is considered to be insufficient for metallation of
mutant SOD1 in the E. coli cytoplasm. Also notably, significant
amounts of SOD1S−S were observed in a soluble fraction when
the wild-type protein was expressed in E. coli BL21 (Figure 1A);
however, in fALS-mutant SOD1s, formation of the disulfide bond
was hardly observed (Figure 2). These results are consistent with
previous reports showing increased susceptibility of the disul-
fide bond to reducing agents by pathogenic mutations (Tiwari
and Hayward, 2003). Under the reducing environment with high
metal-chelating capacity of E. coli cytoplasm, therefore, SOD1
is found to exhibit increased propensities for aggregation with
fALS-causing mutations.

FALS-MUTANT SOD1 TEND TO FORM DISULFIDE-LINKED OLIGOMERS
UNDER OXIDIZING ENVIRONMENT
In wild-type SOD1, the intramolecular disulfide bond was effi-
ciently introduced under the oxidizing environment, which then
protected the protein from aggregation (Figure 1B). In contrast,
when several fALS-mutant SOD1s were expressed in the oxidiz-
ing cytoplasm of E. coli SHuffleTM, significant amounts of SOD1
were found to remain in insoluble pellets (Figure 3). More specif-
ically, a monomer and higher-order oligomers of mutant SOD1
(G37R, G41S, G85R, G93R, C111Y, and L126X) were evident in an
insoluble fraction, while SOD1s with H46R and H80R mutations
were obtained as soluble proteins with an intramolecular disul-
fide bond (Figure 3A). When analyzed in reducing SDS-PAGE,
furthermore, those higher-order oligomer bands were collapsed
and merged to the monomer band (Figure 3B), indicating that
the oligomers were formed via disulfide-crosslinks. Formation of
intra- or inter-molecular disulfide bond is considered to depend

FIGURE 2 | Aggregation of disulfide-reduced SOD1 with fALS mutations

in E. coli BL21 was not rescued by addition of ZnSO4. E. coli BL21(DE3)
was transformed with pET15b harboring human SOD1 cDNA with indicated
fALS mutations, and the protein expression was induced by IPTG in the
presence of 1 mM ZnSO4. Cell lysates were fractionated into soluble

supernatant (s) and insoluble pellets (p), treated with iodoacetamide, and
then analyzed with non-reducing SDS-PAGE by using a 15% polyacrylamide
gel. White (SOD1S−S) and black (SOD1SH) arrows at the right side of the gel
image indicate positions of bands corresponding to SOD1 with and without a
disulfide bond, respectively.
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upon intracellular concentration of SOD1 proteins, but Figure 3B
shows similar expression levels of SOD1 proteins in E. coli exam-
ined here. In those mutant SOD1s forming disulfide-linked
oligomers (G37R, G41S, G85R, G93R, C111Y, but not L126X),
small amounts of proteins were also detected in a soluble fraction
with an intramolecular disulfide bond. Notably, SOD1 with H46R
and H80R mutations have been shown to exhibit thermostability
comparable to that of the wild-type protein (Rodriguez et al., 2005;
Vassall et al., 2011); therefore, fALS-causing mutations that signif-
icantly destabilize a native structure of SOD1 favor the formation
of disulfide-crosslinked oligomers under oxidizing environment.

MUTANT SOD1 FORMS AMYLOID-LIKE FIBRILLAR AGGREGATES IN
E. coli
To further characterize the SOD1 aggregates formed in E. coli, a
protocol to purify those insoluble aggregates were first established,
in which insoluble fractions of E. coli lysates were extensively
washed with 1 M NaCl, 1% Sarkosyl, and then acetone (see Materi-
als and Methods). When purified aggregates of SOD1(G37R) were
reacted with iodoacetamide to protect free thiol groups and then
analyzed in non-reducing SDS-PAGE, disulfide-linked oligomers
were found to be successfully isolated from E. coli SHuffleTM

(Figure 4A, +IA). In contrast, purified aggregates of SOD1(G37R)

FIGURE 3 | Aggregation of mutant SOD1 in E. coli SHuffleTM associates

with the formation of inter-molecular disulfide crosslinks. E. coli
SHuffleTM was transformed with pET15b harboring human SOD1 cDNA
with indicated fALS mutations, and the protein expression was induced by
IPTG. Cell lysates were fractionated into soluble supernatant (s) and
insoluble pellets (p), treated with iodoacetamide, and then analyzed with

(A) non-reducing or (B) reducing SDS-PAGE by using a 15% polyacrylamide
gel. White (SOD1S−S) and black (SOD1SH) arrows at the right side of the
gel image indicate positions of bands corresponding to SOD1 with and
without a disulfide bond, respectively. In addition, gray arrows and braces in
(A) represent the disulfide-linked SOD1 oligomers, which disappeared in
reducing SDS-PAGE (B).
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from E. coli BL21 were mainly composed of disulfide-reduced
monomers with slight contamination of dimers (Figure 4A,
+IA). Furthermore, after extensive washes, both SOD1(G37R)
aggregates from BL21 and SHuffleTM produced a single band in
reducing SDS-PAGE (+β-ME), supporting successful purification
of the SOD1 aggregates.

Aggregates of SOD1 in vitro have been shown to have struc-
tural features similar to those of amyloid, which are characterized
by fibrillar morphologies with β-sheet-rich structures (Furukawa
et al., 2008). As shown in Figure 4B, both SOD1(G37R) aggre-
gates purified from E. coli BL21 and SHuffleTM were found to
increase the thioflavin T fluorescence but with distinct intensity.
In addition, those SOD1(G37R) aggregates were found to red-
shift an electronic absorption spectrum of Congo red (Figure 4C).
These tinctorial changes of thioflavin T and Congo red have been
typically observed in protein aggregates with amyloid-like prop-
erties (Klunk et al., 1999; LeVine, 1999). It is, therefore, possible
that SOD1(G37R) forms amyloid-like aggregates both in reducing
(BL21) and oxidizing (SHuffleTM) environment, but its molecular
structure might be dependent upon the redox environment where
the aggregates form.

While amyloid-like aggregates generally exhibit fibrillar mor-
phologies, SOD1(G37R) aggregates purified from insoluble inclu-
sions in E. coli displayed not fibrils but amorphous, large lump-like
structures under an electron microscope (Figures 4D,E, left
panels). These structures are considered to be attained with
aggregation of monomeric and disulfide-linked multimeric SOD1

proteins through SDS-sensitive interactions. When these inclu-
sions were briefly treated with a non-specific protease, Proteinase
K, however, a protease-resistant core of inclusions became exposed
and was found to exhibit fibrillar morphologies with approx.
5.5 nm of the diameter (Figures 4D,E, right panels). While
morphological differences of SOD1(G37R) aggregates were not
clear between E. coli BL21 and SHuffleTM, exposure of fibril-
lar structures by treatment with proteases have been previously
reported in E. coli inclusions of Aβ peptide (Morell et al., 2008)
and HET-s (Sabate et al., 2009), which are known to be fibrillo-
genic. Taken together, therefore, this study successfully reproduces
fibrillar aggregation of mutant SOD1 proteins in the cytoplasm
of E. coli and further implies that intracellular redox environment
could modulate the properties of SOD1 aggregates by changing its
thiol-disulfide status.

IMPLICATIONS TO PATHOLOGIES OF SOD1-RELATED fALS CASES
More than 70% of intracellular SOD1 has been detected in the
cytoplasm (Chang et al., 1988), which is normally kept as reduc-
ing environment by maintaining high concentrations of reduced
glutathione (Hwang et al., 1992). Indeed, mutant SOD1 proteins
are abnormally accumulated in the cytoplasm as Lewy body-
like hyaline inclusions (Shibata et al., 1996), and those insoluble
forms of mutant SOD1 have been characterized as a disulfide-
reduced state in SOD1-fALS model mice (Figure 5, left; Jonsson
et al., 2006; Karch et al., 2009). These observations are consis-
tent with the in vitro findings that inability to form the disulfide

FIGURE 4 | Amyloid-like characters of SOD1 aggregates purified from

insoluble inclusions in E. coli. (A) SOD1(G37R) aggregates purified from
insoluble inclusions in E. coli were reacted with iodoacetamide for protection
of free thiol groups and analyzed with reducing (+β-ME) and non-reducing
(+IA) SDS-PAGE. Disulfide-crosslinked oligomers were identified in
SOD1(G37R) aggregates purified from insoluble inclusions in E. coli
SHuffleTM but not in BL21(DE3). (B, C) Tinctorial properties of SOD1(G37R)
aggregates purified from E. coli BL21 and SHuffleTM (red and blue curves,

respectively) were examined by (B) fluorescence of thioflavin T and (C)

absorption of Congo red. Black curves represent (B) fluorescence spectrum
of thioflavin T and (C) absorption spectrum of Congo red without addition of
SOD1 aggregates. (D, E) Electron micrograms of SOD1(G37R) aggregates
purified from E. coli (D) BL21 and (E) SHuffleTM. SOD1(G37R) aggregates
exhibit large, amorphous morphologies (left panels), while fibrillar structures
become evident after brief treatment of aggregates with Proteinase K (right
panels). A bar represents 2 μm (left panels) or 50 nm (right panels).
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bond significantly increases the propensities of SOD1 for fibrillar
aggregation (Furukawa et al., 2008). In reducing environment of
the cytoplasm, the disulfide bond in SOD1 is introduced by a cop-
per chaperone protein, CCS (Furukawa et al., 2004), and appears to
be protected from the reductive cleavage by its burial at the dimer
interface. Some fALS mutations would hence disturb the inter-
action with CCS and/or facilitates the monomerization of SOD1;
thereby, stability of the disulfide bond becomes decreased, which
then triggers the fibrillar aggregation of disulfide-reduced SOD1 in
the cytoplasm (the disulfide-reduction model; Toichi et al., 2013).

In contrast to such disulfide-reduction model of SOD1 aggre-
gation, little accumulation of cytoplasmic inclusions has been
observed in some fALS model mice expressing mutant SOD1,
albeit with significant mitochondrial pathologies (Nagai et al.,
2001; Watanabe et al., 2001). Approximately 3% of total SOD1 is
known to localize at the IMS of mitochondria (Okado-Matsumoto
and Fridovich, 2001), where the redox potential is significantly
more oxidizing than that of the cytoplasm (Hu et al., 2008). Fur-
thermore, mitochondria of a motor neuron, which is the most
damaged cell in fALS cases (Bruijn et al., 2004), have been reported
to provide more oxidizing environment than those of the other
types of cells (Ferri et al., 2006). Given that reduction of a disulfide
bond in SOD1 is required for its transport into mitochondrial IMS
(Field et al., 2003), disulfide-reduced SOD1 just after transported
is considered to experience significantly oxidizing environment
of motorneuronal IMS (Figure 5, right). Transported SOD1
polypeptide then folds into the native three-dimensional confor-
mation, and the intramolecular disulfide bond is introduced by
mitochondrial CCS. The folding process of SOD1 is, however,

deterred by fALS-causing mutations (Nordlund and Oliveberg,
2006; Bruns and Kopito, 2007), which would increase the chance to
form aberrant disulfide crosslinks under oxidizing environment of
the mitochondrial IMS (Figure 5, right). Indeed, SOD1 oligomers
crosslinked via disulfide bonds have been observed in mitochon-
dria isolated from spinal cords of fALS-model mice expressing
mutant SOD1 (Deng et al., 2006). Also in cultured motorneu-
ronal cells, disulfide-crosslinked oligomers of mutant SOD1 have
been reproduced in mitochondria but not in cytoplasm (Ferri
et al., 2006). In the oxidizing environment of organelles, therefore,
disulfide-reduced mutant SOD1 is highly prone to crosslinking via
abnormal disulfide bonds, which will not occur under reducing
environment of the cytosol.

So far, it has been well known that misfolding/aggregation
of mutant SOD1 occurs both in cytoplasm and mitochondrial
IMS; however, any possible differences in the molecular proper-
ties of SOD1 aggregates between those two cellular compartments
have been hardly noticed. An intracellular folding process of
protein molecules into their native conformations has been well
known to be significantly affected or even controlled by chaper-
one proteins, but motorneurons are equipped with different sets
of chaperones from those in E. coli; therefore, a pathological pro-
cess of SOD1 aggregation in SOD1-related fALS patients, which
in general gradually proceed over several decades, would not be
precisely reproduced in the E. coli overexpression system exam-
ined here. Nonetheless, distinct forms of misfolded/aggregated
SOD1, especially in terms of their thiol-disulfide status, appear to
be possible that depend upon the redox environment surrounding
SOD1 proteins (Figure 5). While it is further required to test if

FIGURE 5 | Schematic representation of a redox-dependent SOD1

folding/misfolding model. SOD1 exists as an apo and
disulfide-reduced state (E,E-SOD1SH) and tends to form fibrillar
aggregates (SOD1SH fibrils) in reducing environment of the cytosol; in
contrast, oxidizing environment stabilizes a soluble, folded state of
SOD1 by introduction of an intramolecular disulfide bond (E,E-SOD1S−S).

Many fALS mutations are considered to destabilize the structure of
E,E-SOD1SH, increasing the fraction of misfolded state. In such a
situation, oxidizing environment favors the formation of SOD1 oligomers
cross-linked via abnormal disulfide bonds. Depending upon redox
environment where SOD1 exists, several distinct forms in SOD1
aggregates are hence possible.
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distinct properties of those SOD1 aggregates include toxicities to
motorneurons, the redox-dependent aggregation of mutant SOD1
proteins would be one of the molecular mechanisms describ-
ing pathological heterogeneity observed in SOD1-related fALS
cases.

MATERIALS AND METHODS
PLASMIDS, E. coli STRAINS AND PROTEIN EXPRESSION
A vector, pET15b (Novagen), was used for the construction of
plasmids expressing human SOD1 without any tags; a SalI site was
first introduced between BamHI and Bpu1102I sites of pET15b,
and cDNA of human SOD1 was then cloned between NcoI and SalI
site. Mutations were introduced by an inverse PCR method using
KOD-FX-neo DNA polymerase (TOYOBO), and all constructs
used in this study were confirmed by DNA sequencing. Competent
cells of E. coli, BL21(DE3; New England Biolabs) and SHuffleTM

T7 Express lysY (New England Biolabs), were transformed with
a plasmid. E. coli cells harboring a plasmid were cultured in
Luria-Broth media containing 50 mg/L ampicillin (LB/Amp) by
shaking at 200 rpm, and the expression of SOD1 proteins was
induced with 1 mM isopropyl 1-thio-β-D-galactopyranoside at
37◦C for 6 h. To test effects of Zn2+ ions on SOD1 aggrega-
tion, 1 mM ZnSO4 was further added at the induction of protein
expression.

ELECTROPHORETIC ANALYSIS OF SOD1 PROTEINS EXPRESSED IN
E. coli
E. coli cells cultured in 5 mL LB/Amp media were collected by
centrifugation (2,000 × g, 10 min) and lysed by ultrasonication
in 100 μL of PBS with 2% Triton X-100 and 100 mM iodoac-
etamide. Soluble supernatant and insoluble pellets were obtained
with centrifugation of cell lysates (20,000 × g, 10 min), and insolu-
ble pellets were further solubilized by ultrasonication in 100 μL of
PBS with 2% SDS and 100 mM iodoacetamide. The soluble super-
natant and the re-solubilized insoluble pellets were incubated at
37◦C for 30 min, which ensures the protection of thiol groups by
modification with iodoacetamide. 0.8 (BL21) or 1.5 (SHuffleTM)
μL of the samples were then mixed with an SDS-PAGE sam-
ple buffer, and 10% β-mercaptoethanol was further added for
reducing SDS-PAGE. The samples were boiled at 100◦C for 5 min,
electrophoresed on a 15% SDS-PAGE gel, and then stained with
Coomassie brilliant blue.

PURIFICATION OF SOD1 AGGREGATES FROM E. coli
Insoluble pellets obtained by cell lysis in PBS/2% Triton X-100
were re-suspended in 1 M NaCl/H2O with ultrasonication and
centrifuged at 20,000 × g for 10 min to collect insoluble pel-
lets. After washed again by 1 M NaCl, the insoluble pellets were
washed three times with PBS/1% Sarkosyl and then washed with
cold acetone. After dried up with SpeedVac (Savant), the pel-
lets were re-suspended in 100 mM Na-Pi/100 mM NaCl/5 mM
EDTA, pH 7.4 with ultrasonication. Purified pellets were analyzed
by SDS-PAGE after being re-dissolved in PBS/2% SDS/100 mM
iodoacetamide and loaded on a 15% polyacrylamide gel in the
presence and absence of 10% β-mercaptoethanol (Figure 4A).
Monomer-based concentration of SOD1 aggregates purified from
inclusions was spectroscopically determined from the absorbance

at 280 nm in 6 M guanidine hydrochloride using 5,500 cm−1M−1

as an extinction coefficient.

CHARACTERIZATION OF SOD1 AGGREGATES FROM E. coli
To test if SOD1 aggregates exhibit amyloid-like tinctorial prop-
erties, thioflavin T assay was performed. 10 μM (monomer-
based) SOD1 aggregates purified from E. coli inclusions were
mixed with 25 μM thioflavin T in 100 mM Na-Pi/100 mM
NaCl/5 mM EDTA, pH 7.4, and fluorescence spectra excited at
442 nm were measured from 460 to 600 nm by using F-4500
(Hitachi). Congo red assay was also performed to test amyloid-
like properties in SOD1 aggregates. 3 μM (monomer-based)
SOD1 aggregates purified from E. coli inclusions were mixed with
5 μM Congo red in 100 mM Na-Pi/100 mM NaCl/5 mM EDTA,
pH 7.4, and absorption spectra were measured by UV-2400PC
(Shimadzu).

Morphologies of SOD1 aggregates formed in E. coli were exam-
ined by electron microscopy. Insoluble inclusions purified from E.
coli were adsorbed on STEM100Cu grids coated by elastic car-
bon (Okenshoji), washed with water, and then negatively stained
with 2% phosphotungstic acid. Images were obtained using an
electron microscope (TecnaiTM Spirit, FEI). 500 μL of approxi-
mately 100 μM (monomer-based) SOD1 aggregates purified from
insoluble E. coli inclusions were mixed with 2 μL of 5 mg/mL
Proteinase K and incubated at 37◦C for 10 min. After ultracen-
trifuged at 110,000 × g for 15 min, insoluble pellets were washed
with 500 μL of water and again ultracentrifuged. Resultant pellets
were re-suspended in 100 μL of water and observed by an electron
microscope as mentioned above.
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