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INTRODUCTION
All forms of life on earth, from the most
ancient Archaebacteria and Lycopodiaceae
to higher eukaryotes, display phenotypes
based on genetic information transfer con-
tained within, and regulated by, hierarchic
orders of RNA. While DNA is capable of
storing large amounts of genetic infor-
mation over long periods of time, RNA-
based signaling represents a transient,
highly selective, ancient, and still evolv-
ing information transfer mechanism. The
information-storage capability of RNA,
its solubility and the mobility of small
non-coding RNA (ncRNA) species, abil-
ity to self-replicate, to catalyze chemical
reactions, to direct the amino acid poly-
merization into peptides, and to variably
regulate the expression of highly selective
genetic information underscores RNA as
an important, and perhaps pre-eminent,
driver in the evolution of genetic complex-
ity and information transfer (Crick, 1968;
Orgel, 1968; Ambros, 2004; Sempere et al.,
2004; Lukiw, 2007; Mehler and Mattick,
2007; Lukiw et al., 2008, 2012; Bartel, 2009;
Kosik, 2009; Cech, 2012). This opinion
paper will highlight some intriguing simi-
larities in evolutionary ancient, molecular,
and mechanistic features shared by small,
non-protein coding single-stranded RNA
(ssRNA) entities known as microRNAs
(miRNAs), and infective, self-replicating
circular ssRNA plant pathogens known

as viroids. We will further highlight the
intrinsic potential of miRNA and viroids
to induce pathogenetic signaling in widely
diverse species.

microRNAs (miRNAs)
micro RNAs (miRNAs) are 18–25
nucleotide, conserved, non-coding ssR-
NAs that represent the smallest known
carriers of highly selective genetic regu-
latory information in plants and animals.
Mature miRNAs are typically derived from
larger, double-stranded pre-miRNAs tran-
scribed by RNA polymerase II (RNA Pol
II) and processed by at least 2 RNA cleav-
age steps in which the activities of the
RNAses Drosha and Dicer are involved,
resulting in the generation of mature
miRNA species (Ambros, 2004; Lukiw,
2007; Bartel, 2009; Lukiw et al., 2012).
While our perceptions on the mecha-
nism and relevance of miRNA signaling
continues to evolve, it is now gener-
ally accepted that the primary mode of
miRNA action is to recognize and bind
to complementary RNA sequences in the
3′ un-translated region (3′-UTR) of target
messenger RNAs (mRNAs) and in doing
so, down-regulate their expression (Lukiw
et al., 2008; Guo et al., 2010; Witkos et al.,
2011; Lukiw, 2012a). While miRNAs are
generally considered to be vitally essential,
post-transcriptional regulators of gene
expression, it is not often appreciated that

these ssRNAs: (i) are very highly selected in
their ribonucleotide sequence; (ii) exhibit
remarkable cell and tissue specificity; (iii)
represent a nucleotide signaling system
that is evolutionarily ancient; (iv) are
the smallest yet identified ribonucleic
acid carriers of specific genetic regula-
tory information; (v) possess interesting
viroid-like properties (see below); (vi) are
the most abundant extracellular nucleic
acids contained in human circulatory flu-
ids including the cerebrospinal fluid (CSF)
and blood serum; and (vii) as such may
spread genetic information and gene sig-
naling information, both homeostatic and
pathogenic, amongst neighboring cells,
tissues and perhaps between individual
species (Arteaga-Vazquez et al., 2006;
Lukiw, 2007, 2013; Yuva-Aydemir et al.,
2011; Zhao et al., 2013). Rudimentary
ribonucleic acid sequence analysis indi-
cates that a “typical” 22 nucleotide ssRNA
composed of the 4 different ribonu-
cleotides (A,G,C,U) could have over 1013

possible sequence combinations. However,
the fact that there typically only about
2 × 103 different miRNAs so far identified,
suggests an extremely high evolutionary
selection pressure to utilize only spe-
cific ribonucleotide sequences in miRNA
that will yield biologically useful miRNA–
mRNA interactions (Orgel, 1968; Lukiw,
2007, 2013; Bartel, 2009). Diverse inves-
tigative methods that include miRNA
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array-, RNA-sequencing-, Northern dot
blot-, and RT-PCR-based analysis suggest
that abundant miRNAs in specialized cells
such as human brain cells probably num-
ber less than ∼50, and only a signifi-
cantly smaller fraction of these are utilized
in pathological signaling of, for exam-
ple, neurological disorders (Burmistrova
et al., 2007; Lukiw and Pogue, 2007; Lukiw,
2012a). Interestingly, the abundance, spe-
ciation, and complexity of these highly
selected miRNAs may vary amongst dif-
ferent human populations in health and
disease (Lukiw, 2012b, 2013). Similar to
messenger RNA (mRNA), miRNAs appear
to follow the same stability rules involv-
ing adenine-uridine (AU) rich elements
(AREs) in their primary sequence; a higher
content of AREs in miRNAs are generally
correlated with short miRNA half-lives,
and absence of AU or UA dinucleotides
may confer miRNA stability (Chen and
Shyu, 1995; Cui et al., 2005; Sethi and
Lukiw, 2009). Interestingly, while mam-
malian brain and retinal miRNAs in par-
ticular may have in general a relatively
short half-life, miRNA half-lives may be
considerably extended by miRNA-binding
proteins, extensive miRNA secondary and
tertiary structures, circularization or inter-
action with RNA circles, containment
within vesicles, or by combinations of
these and other factors (Krol et al., 2010;
Boon and Vickers, 2013; Hansen et al.,
2013; Kosaka et al., 2013; Memczak et al.,
2013; Perkel, 2013). In double stranded
miRNA precursors, virtually all of the
miRNA sequence base-pairs with comple-
mentary sequences in other parts of the
same molecule to form a highly structured
pre-miRNA considerably more resistant to
degradation than ssRNA alone (Figure 1).

The conservation amongst specific
miRNAs and ribonucleotide sequence
preservation is remarkable. Using RNA-
sequencing and novel genome-wide
computational approaches to detect
miRNAs based on nucleotide sequence
structure and alignment, the miRNA-854
family has been shown to be expressed
in Arabidopsis thaliana, Caenorhabditis
elegans, Mus musculus, and Homo sapiens
(Arteaga-Vazquez et al., 2006; unpublished
observations). In these widely diverse
species (Arabidopsis—Homo sapiens diver-
gence about 1.5 billion years) miRNA-854
commonly targets an oligouridylate

binding protein 1b mRNA 3′-UTR that
normally encodes a member of a hetero-
geneous nuclear RNA binding protein
family, suggesting a common origin of
miRNA-854 as an ancient regulator of
basal eukaryotic transcription (Wang et al.,
1999; Hedges, 2002; Arteaga-Vazquez
et al., 2006; Taft et al., 2010; unpublished).
Moreover, secondary and/or tertiary struc-
tures may also be conserved between
miRNAs, and internal stems, loops and
mis-paired “bulges” commonly appear in
specific positions in many pre-miRNA
sequences (Figure 1) (Saetrom et al.,
2006). Unique ssRNA sequences, some
of which are conserved across both plant
and animal species, further define and reg-
ulate the expression a relatively discrete
subset of mRNAs with which they may
interact, thus defining a complex, inter-
woven miRNA-mRNA regulatory network
(Orgel, 1968; Lukiw et al., 1992; Ambros,
2004; Taganov et al., 2006; Bartel, 2009;
Lukiw, 2012a,c). ssRNAs presumably also
carry a signal encoded within the sequence
of their RNA which may be transmitted
via a unique molecular shape, molecu-
lar topology, and/or RNA charge density
across the entire molecule. Intriguingly
miRNAs enriched in certain foods may
pass horizontally between species, carry-
ing genetic regulatory information well
outside of the cells in which they were ini-
tially generated (Alexandrov et al., 2012;
Sarkies and Miska, 2013; Zhang et al.,
2013).

VIROIDS
The smallest known ssRNA viruses are
retroviruses, such as Rous Sarcoma virus
(RSV), with a 3.5 × 104 nucleotide
genome (Adams and Carstens, 2012;
http://www.ictvonline.org/). Smaller than
any known ssRNA viruses are minimal-
ist plant pathogens known as viroids. It
remains debatable whether viroids are a
biological oddity, an evolutionary fossil of
pre-cellular evolution, and/or a highly
novel and evolving, self-perpetuating
pathogenic entity (Diener, 1991, 2003;
Rocheleau and Pelchat, 2006; Ding, 2009;
Diermann et al., 2010; Sano et al., 2010;
Wang and Ding, 2010; Navarro et al.,
2012). The host range of many viroids
is currently expanding, essentially as a
result of a fast and continuing evolu-
tion of sequences/structures that gain

new biological functions (Diener, 1991,
2003; Ding, 2009; Navarro et al., 2012).
Comprising a small family of about 35
different, non-coding, un-encapsulated,
autonomously infectious circular ssRNA
plant pathogens ranging in size from 246
to 401 nucleotides, viroids possess the
highest in vivo mutation rate among all
known nucleic acids (Ding, 2009). Viroids
are not only of evolutionary, virologi-
cal and biological interest but are also of
agricultural and economic concern since
viroid infections compromise the yield
of several important food crops world-
wide (Diener, 1991, 2003; Sano et al.,
2010; Wang and Ding, 2010). The first
discovered viroid was the 359 nucleotide
potato spindle tuber viroid (PSTV) of
the viroid family Pospiviroidae, a cir-
cular ssRNA which primarily causes
an infectious disease of potato plants
(chiefly Solanum tuberosum) (Figure 1)
(Ding, 2009; Adams and Carstens, 2012;
Hammann and Steger, 2012). Viroids are
transcribed using a unidirectional rolling-
circle mechanism in the infected plant
nuclei (for the family Pospiviroidae; involv-
ing stunting diseases of potato, apple, and
coconut) or the chloroplast (for the viroid
family Avsunviroidae; involving stunting
diseases of avocado, eggplant, and peach).
After replication, viroid precursors exit the
nucleus or chloroplast via an Exportin-5 or
related transport mechanism (in a fashion
similar to miRNA translocation); viroids
then traffic from cell to cell to establish
systemic infection. Recent findings indi-
cate that like miRNAs, viroid infection
and pathogenic activity is associated with
the appearance of a small viroid-specific
ssRNA (vsRNA), 21–24 nucleotides in
size, processed by an RNaseIII of the fam-
ily of Dicer-like proteins from a double
stranded RNA (dsRNA) viroid precur-
sor (Figure 1) (Diener, 2003; Ding, 2009;
Adams and Carstens, 2012; Hammann
and Steger, 2012). Mature vsRNA is there-
fore highly analogous to miRNA in their
mechanism of generation and transloca-
tion, and both have potential to not only
alter the normal gene expression patterns
in the host to cause disease, but also to
spread these pathogenic signals to other
cells and tissues via diffusion or through
circulating fluids (Diener, 2003; Diermann
et al., 2010; Sano et al., 2010; Wang and
Ding, 2010; Adams and Carstens, 2012;
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FIGURE 1 | Typical representative structures of (A) a 99 nucleotide

“hairpin”-shaped precursor to a 22 nucleotide homo sapien microRNA

146a (hsa-miRNA-146a) and (B) a 359 nucleotide circular potato spindle

tuber viroid (PSTV) indicate extensive intra-strand base pairing and

formation of doubled stranded RNA (dsRNA), imperfect base-pairing

resulting in “bulges” and stem-loop structures (Krol and Krzyzosiak,

2006; Ritchie et al., 2007; Ding, 2009; Triboulet and Gregory, 2010). In
both cases these RNA precursors are further processed by an RNase III of
the family of Dicer-like proteins to generate smaller ssRNA species 18–25
nucleotides in length; these “mature” miRNA and viroid specific RNA
(vsRNA) sequences are highlighted in red; note that these sizes are similar to
endogenous small interfering RNA (as miRNA or vsRNA) and thus might alter
the normal cultivar- and viroid-dependent gene expression in the host plant by
viroids, or of mRNA in other plant and animal species, including humans

(Arteaga-Vazquez et al., 2006; Krol and Krzyzosiak, 2006; Ritchie et al., 2007;
Lukiw et al., 2008; Ding, 2009; Triboulet and Gregory, 2010; Hammann and
Steger, 2012; Navarro et al., 2012). PSTV is the smallest known pathogen of
all living species; it is interesting that both the plant and animal kingdoms
have adopted similar ssRNA strategies to convey only the most essential
genetic regulatory information in miRNA or vsRNA translocation and/or signal
propagation, some of which may convey, in whole or part, pathological
effects. Human miRNA-146a and PSTV ssRNA sequences and/or precursor
structures were derived from GenBank accession NR_029701.1;
GI:262205399 (http://www.ncbi.nlm.nih.gov/nuccore/NR_029701.1); miRBase
(http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000477); or
M36163.1; GI:333356 (http://www.ncbi.nlm.nih.gov/nuccore/M36163.1);
secondary structures were predicted using online web servers such as
http://mfold.rna.albany.edu/?q=mfold.

Hammann and Steger, 2012). Indeed vsR-
NAs have sizes, structures and actions
strikingly similar to both naturally occur-
ring endogenous miRNAs, and each are
known to have considerable potential
to transiently or permanently alter the
ssRNA-dependent gene expression pat-
terns in the host (Diener, 2003; Ritchie
et al., 2007; Ding, 2009; Hammann and
Steger, 2012).

miRNAs AND VIROIDS; EXTENSIVE
SIMILARITY IN STRUCTURE,
PROCESSING, AND BIOLOGICAL
FUNCTION
That 21–24 nucleotide viroid-generated
vsRNA are sufficient to induce diseases
in plants is highly reminiscent of the
finding that miRNAs, through analogous
genetic mechanisms, have capabilities to
contribute to disease processes in both
plant and animal species (Diener, 1991,
2003; Lukiw and Pogue, 2007; Ding, 2009;
Pogue et al., 2010; Hammann and Steger,
2012). Very much like miRNAs, pre-viroid
ssRNAs and vsRNAs encode no pro-
teins, have no naturally protective pro-
tein coat, do not reverse-transcribe into
DNA when they replicate, and are signif-
icantly inducible by external stress or envi-
ronmental factors (Diener, 2003; Ritchie
et al., 2007; Adams and Carstens, 2012).
Naked, infectious viroids are initially gen-
erated as a precursor dsRNA (pre-viroid)

structure from which a mature ssRNA is
excised by RNAse III-type nuclease activ-
ities (see Figure 1) (Ritchie et al., 2007;
Lukiw, 2012b; Navarro et al., 2012; Perkel,
2013). As far as is known, miRNAs do not
replicate in vivo; in fact they are probably
physically too small to do so, and in in vitro
experiments usually require nucleotide-
linkers to effectively copy miRNAs using
RT-PCR-based systems. Interestingly, cir-
cularization of pre-viroids, pri-miRNAs or
miRNAs and/or the formation of com-
plex higher order secondary and/or ter-
tiary structures may further stabilize them
(Rocheleau and Pelchat, 2006; Sethi and
Lukiw, 2009; Perkel, 2013). The potential
transmission and spreading of miRNA and
viroid information-carrying signals from
cell to cell, tissue to tissue and perhaps
between species has a tremendous bear-
ing on our understanding on the com-
plex genetic interactions between diverse
forms of life in the plant and animal
kingdoms, and their symbiotic exchanges
of biological information in natural envi-
ronments (Hedges, 2002; Arteaga-Vazquez
et al., 2006; Hammann and Steger, 2012;
Sarkies and Miska, 2013).

CONCLUDING REMARKS
Intriguing similarities between the struc-
ture and function of miRNAs and
viroids underscore the idea that dur-
ing evolution, once nature has found

and tested a successful molecular design
and “information transfer mechanism”
it is highly preserved, and this design
is used repeatedly in diverse biologi-
cal applications across diverse species.
These biological applications range from
the post-transcriptional modulation of
gene expression to the potential for dis-
ease induction in both the plant and
animal kingdom. Such conservation
appears to lie in the molecular-genetic
mechanism of miRNA and viroid ribonu-
cleotide sequence structure and ensuing
complementarity-based ssRNA-mRNA
interaction. Intriguingly, ssRNA miRNA
and viroid ribonucleotide sequences con-
tain fingerprints for conservation across
many diverse species, and these finger-
prints represent some of the most highly
conserved nucleic acid sequences known
(Triboulet and Gregory, 2010; Witkos
et al., 2011; Figure 1). It has recently been
shown that infection of human brain cells
with a high phenotypic re-activator strain
of the double-stranded linear DNA her-
pes simplex-1 (HSV-1) induces, and then
utilizes a host-specific miRNA-146a to
maintain and support HSV-1 invasive-
ness to propagate successful infection
(Figure 1; Hill et al., 2009; Lukiw et al.,
2010; Ball et al., 2013). It will be inter-
esting to ascertain if other RNA—or
DNA-based “helper viruses” promote or
intensify miRNA or viroid re-activities,
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if miRNA effects can be moderated by
vsRNA or other ssRNA or dsRNA, if
miRNA and viroid activities are equally
affected by the presence of circular RNA
(circRNA), if miRNAs are able to inter-
act with helper viruses to modulate or
amplify miRNA effects, and what potential
roles other environmental factors might
play in miRNA—or vsRNA-mediated
gene activity and pathogenicity (Krol and
Krzyzosiak, 2006; Lukiw, 2012a; Hansen
et al., 2013; Memczak et al., 2013).
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