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Brain wiring is a highly intricate process in which trillions of neuronal connections are
established. Its initial phase is particularly crucial in establishing the general framework
of neuronal circuits. During this early step, differentiating neurons extend axons, which
reach their target by navigating through a complex environment with extreme precision.
Research in the past 20 years has unraveled a vast and complex array of chemotropic
cues that guide the leading tip of axons, the growth cone, throughout its journey. Tight
regulation of these cues, and of their receptors and signaling pathways, is necessary for
the high degree of accuracy required during circuit formation. However, little is known
about the nature of regulatory molecules or mechanisms fine-tuning axonal cue response.
Here we review recent, and somewhat fragmented, research on the possibility that
microRNAs (miRNAs) could be key fine-tuning regulatory molecules in axon guidance.
miRNAs appear to shape long-range axon guidance, fasciculation and targeting. We also
present several lines of evidence suggesting that miRNAs could have a compartmentalized
and differential action at the cell soma, and within axons and growth cones.
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INTRODUCTION
Brain wiring occurs during the development of the nervous sys-
tem and ensures the formation of a highly complex network
of inter-communicating neurons. For these circuits to be estab-
lished, neurons form remarkably accurate connections with their
target cells. Initially, neurons send out cell protrusions called
axons, which navigate a complex environment to reach their exact
targets: a process known as axon guidance (or “pathfinding”).
How do axons know where to go? Specific molecules present
along the pathway act as signposts to guide axons to their final
destination by either repelling or attracting the leading tip of
the axon—the growth cone. These guidance cues are also capa-
ble of promoting axon fasciculation, i.e., the bundling of axons
together, and interactions between axons and their substrate
(Tessier-Lavigne and Goodman, 1996). Over the past two decades,
genetic, biochemical and cell culture analysis have unraveled four
major families of guidance molecules, which can be classified into
four families: Ephrins, Semaphorins, Slits, and Netrins (Dickson,
2002). More recent works demonstrated that some morphogens,
growth factors, and cell-adhesion molecules also have guidance
function (Kolodkin and Tessier-Lavigne, 2011). Cue-mediated
signaling leads to complex remodeling of the cytoskeleton in
growth cones, which in turn regulates its directional steering and
interactions with other axons, cells, and the environment (Dent
et al., 2011).

The nervous system contains up to a few billions of neurons
depending on the species, and each neuron is at the core of a
highly complex connectome, which can receive and project to up
to hundreds of thousands of synaptic partners. The startling com-
plexity of this system has long confronted neuroscientists with
the incongruity of the seemingly inadequate size of the genome
of roughly 20,000 defined genes. Alternative splicing is thought

to partly account for such complexity, since it can generate hun-
dreds of isoforms from a single coding gene (Schmucker et al.,
2000; Li et al., 2007). In addition to this, the non-coding regu-
latory regions of the transcriptome, or “dark matter” (Johnson
et al., 2005), is increasingly thought to account for the com-
plexity of the neuronal connectome at the molecular level. This
includes a growing number of families of small RNAs, primarily
the microRNAs (miRNAs).

miRNAs are a class of small ∼22 nt non-coding RNAs that
have emerged, in recent years, as key post-transcriptional regula-
tors in most eukaryotic cells. They do so by specifically binding
to mRNA through partial complementarity, thereby inhibiting
transcript translation, and/or stability (Bartel, 2009). Since the
discovery of the first miRNA, lin-4, more than 20 years ago in C.
elegans (Lee et al., 1993; Wightman et al., 1993), hundreds of new
miRNAs have been identified (Griffiths-Jones, 2004; Griffiths-
Jones et al., 2008; Kozomara and Griffiths-Jones, 2011, 2013)
(www.miRbase.org). Importantly, the nervous system is the site
of an intricate “miRNnome,” as numerous miRNAs are enriched
or specifically expressed there in time and place (Johnston and
Hobert, 2003; Krichevsky et al., 2003; Chang et al., 2004b; Hsieh,
2012; Zou et al., 2013). Recent large-scale studies have further
revealed that individual miRNAs fine-tune the expression of hun-
dreds of transcripts (Baek et al., 2008; Selbach et al., 2008; Guo
et al., 2010). The regulatory potential of miRNAs in developing
organisms, and particularly in the nervous system, thus appears
infinite. The roles of miRNAs in promoting the complexity and
accuracy required for circuit formation, and axon guidance in
particular, has however just started to emerge.

Here, we review a small, but compelling body of research
suggesting that miRNAs are important players in axon guid-
ance. We first examine the roles of miRNAs in key steps of axon

Frontiers in Cellular Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 78 | 1

CELLULAR NEUROSCIENCE

http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/about
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncel.2014.00078/abstract
http://community.frontiersin.org/people/u/141147
http://community.frontiersin.org/people/u/141329
http://community.frontiersin.org/people/u/125473
mailto:marielaure.baudet@unitn.it
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Iyer et al. microRNAs in axon guidance

pathfinding, namely long-range guidance, fasciculation, and tar-
geting. We then expose some evidence which points toward the
possibility that miRNAs might have a compartmentalized action
in projecting neurons, in the soma, axon, or growth cone.

ROLES OF miRNAs IN AXON GUIDANCE
LONG-RANGE GUIDANCE
In the initial phase of axon navigation, axons must first polar-
ize, and subsequently navigate through a complex cellular terrain
containing guidance cue-expressing “guidepost” cells. Neuronal
or glial cells can take on the role of guidepost cells and act as
substrates or intermediary targets for the growing axon. This
enables axons to extend in a directed manner rather than by pas-
sive adhesion in a step-wise manner, using mechanisms that are
highly conserved in both vertebrates and invertebrates (Raper
and Mason, 2010). miRNAs could impact the transcriptome of
projection neurons, regulating the expression of molecules that
transduce cue signaling. Alternatively, they could affect guide-
post cells to regulate directly or indirectly cue expression. In this
section, we review a few recent findings on different model sys-
tems suggesting multiple roles and sites for miRNA action, which
regulates both the navigating neuron and its environment.

Pinter and Hindges (2010) were the first to report that miR-
NAs, as a class of molecules, are important for long-range axon
navigation using mice retinal ganglion cells (RGCs) as a model.
RGCs are the only projection neurons of the retina and convey
visual information to higher brain centers. In wild type monoc-
ular species, almost all RGC axons decussate at the optic chiasm,
a midline structure. Whereas in binocular species, such as mice,
some axons do not cross at the chiasm, but remain ipsilateral.
The midline is thus an important choice point. The authors
observed that, in absence of most miRNAs, many contralateral-
projecting RGC axons failed to cross at the chiasm, and instead,
aberrantly navigated ipsilaterally or overshot the midline. The
molecular mechanisms leading to this phenotype is unknown
to date. To abolish miRNAs function, Pinter and Hindges used
mutants mice where Dicer, a key enzyme responsible for the
maturation of most miRNAs (Bernstein et al., 2001; Grishok
et al., 2001; Ketting et al., 2001; Knight and Bass, 2001), was
conditionally ablated in Rx-expressing cells including RGCs and
cells forming the optic chiasm. Depletion of miRNAs in these
mutants could, therefore, either lead to impaired cue expres-
sion by guidepost cells at the midline, or to altered sensitivity
of RGC growth cones to midline cues following misexpression of
their cognate receptors or associated signaling molecules. Several
ligand-receptor pairs are known to mediate midline crossing in
mice: ephrin-B2/EphB1 (Nakagawa et al., 2000; Williams et al.,
2003) Slit 1/2/Robo 1/2 (Plump et al., 2002; Plachez et al., 2008)
VEGF164/Neuropilin-1 (Erskine et al., 2011), Sema 6D/Nr-CAM,
and Plexin A1 (Kuwajima et al., 2012). Their direct or indirect
regulation by miRNAs is however unknown to date except for
Neuropilin-1 (Baudet et al., 2012; Cui et al., 2012; Zhang et al.,
2012) and Robo 1 and 2 (Alajez et al., 2011; Fish et al., 2011; Yang
et al., 2012). Of interest, miR-218 was documented to target Slit
receptors Robo 1 and 2 in non-neural cells such as cancer cells
(Alajez et al., 2011; Fish et al., 2011; Yang et al., 2012) suggest-
ing it might also play a role in neurons including axons where

it is also expressed (Sasaki et al., 2013). Overall, this study is the
first in vivo evidence to show that miRNAs may impact projecting
neurons, guidepost cells, or both.

miR-9 was also recently documented to regulate the long-
range guidance of thalamocortical (TCAs) and corticofugal axons
(CFAs) tracts (Shibata et al., 2011). Both tracts cross the telen-
cephalon and navigate through the internal capsule, a telen-
cephalic structure, before reaching their final destination (Molnár
et al., 2012). Migration of guidepost cells called “corridor cells” to
the internal capsule is a crucial event in TCA and CFA pathfind-
ing. These cells create a permissive corridor within the medial
ganglionic eminence (MGE), a telencephalic region, normally
non-permissive to the growth of TCAs, and thus enable these
axons to cross the telencephalon prior to reaching their final desti-
nation (López-Bendito et al., 2006). To address the roles of miR-9
specifically in telencephalic development, Shibata, and colleagues
generated miR-9-2/3 double mutant mice lacking two of the
three miR-9 pre-cursors, namely miR-9-2, and miR-9-3 (Shibata
et al., 2011). In miR-9-2/3 double mutants, CFAs and TCAs
were severely misrouted. CFAs poorly innervated the internal
capsule. Similarly, TCAs failed to reach this region, and instead
aberrantly projected into the hypothalamus, an area that they
normally avoid. The deregulated molecular mechanisms leading
to this phenotype are unclear, and likely to be complex. Evidence
suggests that the TCA and CFA aberrant projections might be
attributed to impaired patterning of corridor cells, although the
possibility that miR-9 acts cell-autonomously in these projecting
tracts cannot be excluded. Indeed, the topographical distribution
of corridor cells within the telencephalon was affected; corridor
neurons were expanded or dispersed in mutant animals. In addi-
tion, corridor cell markers islet-1 and Meis2 (predicted targets of
miR-9) expression appeared to be qualitatively up-regulated in
miR-9-2/3 double mutant mice. The mechanistic implication of
this dysregulation on the pathfinding defects observed is, how-
ever, unclear. Thus, these data suggest that miR-9 may ensure the
proper development of corridor cells and in turn the accurate
projection of TCA and CFA to this intermediate target. Together,
this study points to the interesting possibility that long-range
axon guidance defects might indirectly rise from miRNA-induced
impaired patterning of guidepost cells.

Finally, lin-4 was recently reported to also regulate long-range
guidance of the axonal projection of anterior ventral microtubule
(AVM) neurons in C. elegans larvae (Zou et al., 2012). In wild
type animals, AVM axons project to the nerve ring, a neuropil
considered as the C. elegans’ brain. Before projecting anteriorly
toward their target, AVM neurons are guided by two chemotropic
cues that, together, orient the axons ventrally toward the midline.
SLT-1 (Slit) repels AVM axons, preventing them from project-
ing dorsally, and UNC-6 (Netrin) attracts AVM axons ventrally
(Chang et al., 2004a). The authors examined whether lin-4, a
miRNA expressed in AVM during axon pathfinding, is important
for UNC-6-mediated axon guidance. lin-4 was found to inhibit
UNC-6 signaling during AVM axon guidance (Zou et al., 2012).
Importantly, lin-4 acted cell-autonomously, at least in part, and
specifically in post-migrating neurons. LIN-14, a transcription
factor and well-described target of lin-4, is also expressed in AVM
neurons. LIN-14 was found to mediate lin-4 action on AVM
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guidance and to potentiate UNC-6 mediated attraction of AVM
axons by acting on UNC-40 (DCC) receptors. Surprisingly, lin-
14 did not alter unc-40 promoter activity. Instead, it enhanced
UNC-40 protein expression via an unknown mechanism, shifting
its distribution from the confined perinuclear region to the whole
cell. Intriguingly, lin-4 and lin-14 are broadly expressed in C. ele-
gans, and both are found in several UNC-40 guided neurons. This
suggests that a lin-4/lin-14 based conserved regulatory pathway
might modulate UNC-6-mediated axon attraction of other tracts.
In addition, miR-125, a lin-4 ortholog, is also present in neu-
rons of vertebrates (Sempere et al., 2004; Smirnova et al., 2005),
indicating that this ancient microRNA may have conserved its
guidance function. Overall, this study revealed that lin-4 regulates
cue-mediated attraction by modulating the signaling pathway of
a receptor to guidance cue. Importantly, it also provided evidence
that miRNAs can act cell-autonomously to modulate axon guid-
ance to the midline. In summary, a few studies have revealed
that miRNAs regulate long-range axon navigation, acting cell
autonomously on projecting neurons, and possibly on guidepost
cells.

FASCICULATION
Pioneers axons begin their pathfinding journey in an environ-
ment devoid of axons and are the first to establish connection
with the target. Follower axons arise at a later time point in devel-
opment and can progress along the pathway through axon-axon
contact, thereby using topographical information provided by
pioneers (Pittman et al., 2008). The process by which those co-
extending axons form tight bundles is called fasciculation and is
thought to be mediated by various classes of molecules including
neural cell adhesion molecules (NCAM) but also guidance cues
(Huber et al., 2005; Luxey et al., 2013). As reviewed below, some
evidence suggests that miRNAs could play a role in the formation
of these fasciculated bundles.

Giraldez et al. (2005) reported that Maternal Zygotic (MZ)
Dicer zebrafish mutants, devoid of maternal and embryonic
sources of Dicer, exhibit several defasciculated axon tracts.
Specifically, fasciculation of the post-optic commissure and hind-
brain axonal scaffold, formed by longitudinal and commissural
tracts, were severely disrupted in the absence of most miRNAs.
Although defasciculation can lead to aberrant axonal trajectory
(Huber et al., 2005), projections were correctly established at
least for longitudinal hindbrain axons. In addition, early pat-
terning and fate specification was preserved in these animals.
This suggests that these defects may be linked to altered molec-
ular programs specifically in these projecting neurons, although
impaired cue expression within the axonal environment cannot
be formally ruled-out. Interestingly, exogenous miR-430 family
members partly rescued this phenotype. This suggests that mem-
bers of this family, or other uncharacterized miRNAs, may alter
the expression or signaling of molecules mediating bundling of
these tracts. Such molecules may include Sema3D and its cognate
receptor Neuropilin-1A, which is known to promote fascicula-
tion of hindbrain longitudinal axons in zebrafish (Wolman et al.,
2004; Kwok et al., 2012). A defasciculation phenotype of RGC
axons was also observed in Rx-conditional Dicer knockout mice
(Pinter and Hindges, 2010). In these animals, RGC axons failed to

form a tight bundle within the retina. In addition at the midline,
axons that aberrantly projected ipsilaterally were defasciculated,
while axons overshooting the chiasm formed a secondary defasci-
culated tract. Interestingly, Sema 3D, Plexin A-1, Nr-CAM, Slit1,
and 2 are implicated in the fasciculation of RGC axons (Ringstedt
et al., 2000; Plump et al., 2002; Kuwajima et al., 2012) suggesting
that their signaling might be derailed in Dicer mutants. Overall,
miRNAs appear to regulate fasciculation, although the molecu-
lar mechanisms and the nature of the miRNAs involved are still
largely elusive.

AXON TARGETING
After their long journey, axons reach their final destinations.
Targeting of axons to their exact partner is absolutely essential, as
it ensures proper circuit formation. This process is highly complex
and requires several classes of molecules that promote defas-
ciculation and specific entry within the target region, restricts
any further elongation but also prevent axons from exiting the
target-area. Cue-mediated restriction of the target-area is a highly
regulated process in which miRNAs have been recently shown to
play a role (Baudet et al., 2012).

Using Xenopus laevis, Baudet et al. (2012) uncovered a miRNA
based signaling pathway that regulates axon targeting of RGCs
to the optic tectum. Knockdown of miR-124 neither altered the
birth of RGCs nor the general progression of their differentiation.
However, it appeared to affect post-mitotic RGCs axon projec-
tion. While long-range guidance was unaffected, a subset of axons
failed to appropriately stall within the optic tectum. Instead, they
invaded Sema3A expressing territories in the ventral border, nor-
mally repellent to these axons at this stage. The effect of miR-124
is likely to be cell-autonomous, as straying axons were observed
both when miR-124 was knocked down in cells of the central ner-
vous system (which include RGCs and tectal cells), and also when
knocked down at a later developmental stage in retinal cells. In
addition, growth cone responsiveness to Sema3A was impaired
in miR-124 morphants. The authors also elucidated the molec-
ular pathway mediating miR-124-regulated Sema3A repulsion.
miR-124 indirectly promoted the expression of Neuropilin-1, a
Sema3A receptor, at the growth cone, since its depletion decreased
Neuropilin-1 levels within growth cones in vitro and axons in vivo.
miR124 regulated Neuropilin-1 via the silencing of its conserved
target coREST, a cofactor of the global neuronal repressor REST
(RE1-silencing transcription factor). Indeed, knockdown of coR-
EST rescued Neuropilin-1 levels at the growth cone, and also
growth cone responsiveness to Sema3A, in miR-124 morphants
in vitro. Overall, this study uncovered a complex mechanism
whereby miR-124 ensures RGC axonal response to Sema3A, at the
right time and place, by dynamically inhibiting coREST repres-
sion of Neuropilin-1 within maturing RGCs. It also revealed for
the first time that a miRNA regulates axon guidance (targeting)
in vivo.

CONCLUSION
In summary, several studies have together revealed the function
of miRNAs in axonal navigation to their final destinations using
central nervous system projections as model (Table 1, Figure 1)
(Giraldez et al., 2005; Pinter and Hindges, 2010; Shibata et al.,
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Table 1 | List miRNAs and their target involved in guidance.

miRNA mRNA Age Species Neuron type Phenotype* References

lin-4 LIN-14 L1 and L2 stage C. elegans AVM Impaired long-range guidance Zou et al., 2012

miR-124 CoREST St 24,32,40 X. laevis RGC Impaired targeting Baudet et al., 2012

miR-134 Xlimk1 St 22 X. laevis Spinal Loss of BDNF-induced growth cone turning Han et al., 2011

*upon loss of function.

Abbreviations: AVM, Anterior Ventral Microtubule; RGC, Retinal Ganglion Cells; st, stage; X, Xenopus.

FIGURE 1 | Key processes of axon guidance regulated by miRNAs.

During axon pathfinding toward a target, miRNAs regulate (A) the
long-range guidance of axons by acting within projection neurons and/or
guidepost cells located along permissive corridors or at the midline, (B) the
fasciculation of axons in a given tract, and (C) the restriction of the axonal
targeting area. The components of the miRNA pathway involved in each
process are specified under each scheme.

2011; Baudet et al., 2012; Zhang et al., 2013; Chiu et al., 2014).
Earlier work took a broad approach, and knocked down the entire
pool of miRNAs using a Dicer loss-of-function strategy (Giraldez
et al., 2005; Pinter and Hindges, 2010). This was particularly
important at that time to determine whether miRNAs, as a class
of molecules, are involved in axon guidance. Although striking
phenotypes were observed suggesting the importance of miR-
NAs in this process, the full extent of miRNAs’ implication in
guidance maybe somewhat underestimated for several reasons.
miRNA turn-over varies, and some can be particularly stable for
a long time following ablation of Dicer (Schaefer et al., 2007). In
addition, recent studies have shown that miRNAs can be synthe-
sized via a Dicer-independent mechanism (Cheloufi et al., 2010;
Cifuentes et al., 2010; Yang et al., 2010)—although, only one
miRNA, miR-451, is documented to employ this non-canonical
pathway (Yang et al., 2010). Of interest, Dicer is also involved in
small interfering (si) RNA processing from various sources such
as small nuclear (sn) RNA and viral double stranded (ds) RNA
(Bernstein et al., 2001; Grishok et al., 2001; Ketting et al., 2001;
Knight and Bass, 2001; Li et al., 2002). Dicer loss-of-function in
these initial analyses (Giraldez et al., 2005; Pinter and Hindges,
2010) could thus impair this processing also. The importance
of these additional roles has yet to be demonstrated in neurons
however. Later studies went on to unravel the roles of individual

miRNAs in axon guidance. New insight has come from those that
have explored the cell-autonomous roles of miRNAs in vivo; for
instance directly in projecting neurons (Baudet et al., 2012; Zou
et al., 2012). Future research in vivo should however reveal addi-
tional functions of miRNAs, and their associated mechanisms
of action. In particular, it is unknown whether miRNAs modu-
late cue expression in the pathway, either by acting directly on
post-transcriptional regulation of transcripts expressed in guide-
post cells, or on their patterning. However, gaining future insight
will be complicated by the fact that this field has several pitfalls.
High level of redundancy of miRNA function exists, especially for
those miRNAs derived from the same family (Choi et al., 2008)
or the same polycistron (Ventura et al., 2008) making the iden-
tification of individual guidance miRNAs particularly difficult.
Deciphering the molecular mechanisms at play represents also a
hurdle, since miRNAs are often part of complex molecular net-
works. Overcoming these challenges will thus be crucial in the
future elucidation of miRNA function in guidance.

COMPARTMENTALIZED ACTION OF miRNAs
Numerous miRNAs appear to be differentially distributed within
organisms, tissues, and cells. This is particularly true for the
nervous system where miRNAs are enriched and specifically
located in different regions and cell types (Krichevsky et al., 2003;
Landgraf et al., 2007; Pichardo-Casas et al., 2012). Intriguingly,
differential distribution is also observed at the subcellular level.
Specific miRNAs are found to be enriched at synapses and den-
drites compared to the cell soma (Siegel et al., 2009). This is
perhaps not surprising considering that neurons are highly polar-
ized cells with compartmentalized mRNA repertoires (Taylor
et al., 2009; Zivraj et al., 2010; Gumy et al., 2011; Kaplan et al.,
2013) implying that different compartments may have different
regulatory requirements. Recent data have emerged suggesting
that miRNAs are localized and might function within different
subcellular location of projection neurons. For instance, some
miRNAs may act within soma, affecting targets that have a global
range of action; whilst others may have a more restricted, com-
partmentalized action within axons, and possibly, restricted to
growth cones. The following section presents data summarizing
these two possibilities.

SOMATIC ROLES OF miRNAs
Aforementioned studies have provided evidence that at least two
specific miRNAs are likely to act primarily within the neuronal
cell body during axon guidance. miR-124 in Xenopus (Baudet
et al., 2012) and lin-4 in C.elegans (Zou et al., 2013) have somatic
distribution within RGCs and AVM, respectively. lin-4 ortholog
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miR-125b is enriched in axons of the superior cervical ganglion
(SCG) in mice (Natera-Naranjo et al., 2010) however, suggesting
that the subcellular distribution might be cell or species specific.
In contrast, miR-124 is enriched in the perinuclear cell soma of
various neurons, compared to axons, synapses, or dendrites (Kye
et al., 2007; Siegel et al., 2009; Natera-Naranjo et al., 2010), sug-
gesting that this miRNA might have a conserved site of action. In
addition, the molecular nature of the miR-124 and lin-4 targets
strongly suggest restricted action within cell bodies, as both tar-
gets are transcription factors: coREST (Baudet et al., 2012) and
lin-14 (Zou et al., 2012). Taken together, this suggests that miR-
124 and lin-4 acts within neuronal cell soma of projecting neurons
to regulate axonal pathfinding.

miRNAs were first described as heterochronic genes regulat-
ing the developmental timing of many C.elegans cell lineages (Lee
et al., 1993; Wightman et al., 1993; Reinhart et al., 2000). Their
roles as timers also occur in vertebrates including in neuronal
lineages (Decembrini et al., 2009; Cremisi, 2013; La Torre et al.,
2013). Intriguingly, miRNAs might also function as timers in in
post-mitotic neurons during later developmental events (Olsson-
Carter and Slack, 2010; Baudet et al., 2012; Zou et al., 2012) but
also following terminal differentiation (Chiu and Chang, 2013;
Zou et al., 2013). In particular, lin-4 and miR-124 were reported
to affect the developmental aging of post-mitotic differentiat-
ing neurons during the period of axon elongation and guidance.
As mentioned above, miR-124 regulates Sema3A-mediated RGC
axon targeting within the tectum through transcriptional de-
repression of Neuropilin-1 by coREST silencing (Baudet et al.,
2012). Importantly, RGC axons gain responsiveness to Sema3A
over time, as they navigate along the pathway, and this onset of
responsiveness is due to the increase in Neuropilin-1 expression
at the growth cone (Campbell et al., 2001). Remarkably, miR-
124 may act as a timer, regulating the timetable of neuropilin-1
expression. Indeed, Baudet et al. (2012) showed series of evidence
suggesting that a temporal increase of miR-124 in differentiating
RGCs, during the period of guidance, accelerates the clearance
of coREST transcripts, which progressively releases the transcrip-
tional repression on Neuropilin-1. In turn, Neuropilin-1 protein
levels increase at the growth cone over time. All-in-all, miR-124
indirectly determines the time at which Neuropilin-1 is expressed
above a level that is necessary for growth cones to gain sen-
sitivity to Sema3A. This mechanism enables growth cones to
respond appropriately to this repellent at the right time and
place.

Similarly to RGC growth cones, AVM axons progressively
switch and lose responsiveness to UNC-6 toward the end of the
axon guidance period (Zou et al., 2013). This loss-of-sensitivity
is thought to enable axons to subsequently proceed with synapto-
genesis (Zou et al., 2013). C. elegans lin-4 is a well acknowledged
regulator of developmental timing, affecting numerous cell types
(Chalfie et al., 1981; Lee et al., 1993; Wightman et al., 1993). In
AVM neurons, lin-4, like miR-124, displays a clear dynamic tem-
poral regulation suggesting it might also regulate developmental
timing in these cells. Importantly, it starts being expressed in AVM
neurons only after cell fate determination and cell migration has
occurred. Moreover, the 3’UTR activity of its target, lin-14, is
also down-regulated overtime in these cells (Zou et al., 2013).

This indicates that it could act as a timer to promote neuronal
differentiation and axon guidance.

Two different molecular pathways have thus been uncovered,
where miRNAs appear to endorse a timer function by regulating
a switch in growth cone responsiveness over time. The regula-
tory mechanisms leading to the dynamic expression of these two
miRNAs is however unknown. It would be interesting to investi-
gate whether a master clock, regulating this common timetable of
growth cone sensitivity, exists upstream that regulate the temporal
expression of these miRNAs.

LOCAL ROLES OF miRNAs AT THE GROWTH CONE
The growth cone is a subcellular compartment that can function
with a great deal of independence from the cell body, since severed
growth cones can navigate on their own along the pathway for a
few hours (Harris et al., 1987) and possess all the machinery nec-
essary to respond to cues (Vitriol and Zheng, 2012). Remarkably,
growth cones and axons are packed with complex and dynam-
ically changing mRNA repertoires (Taylor et al., 2009; Zivraj
et al., 2010). mRNA translation is also shown to mediate growth
cone turning in response to several cues (Jung and Holt, 2011).
Interestingly, mRNA regulation has emerged as an important
mechanism to promote crisp growth cone steering (Jung et al.,
2011). However, the identity of key molecular players, their modes
of action, and the mechanisms employed by extracellular signals
to modulate mRNA translation, are largely unknown. miRNAs
may thus be important post-transcriptional regulators for growth
cone behavior (Jung et al., 2011), since they ensure that pro-
teins are expressed at precise levels, at the right time and place
(Bartel, 2009; Ebert and Sharp, 2012). Although this has yet to be
demonstrated, a few lines of evidence support this possibility.

miRNA profiling within axons
Recent studies have profiled miRNAs directly within developing
distal axons (also comprising growth cones) using different tech-
nical approaches and biological systems (Natera-Naranjo et al.,
2010; Sasaki et al., 2013; Hancock et al., 2014). These have
revealed that a complex miRNome exists in distal axons and that
several miRNAs are enriched (or depleted) in this compartment
(Table 2). As suggested (Hancock et al., 2014), this would be
consistent with the differential expression of axonal mRNA reper-
toires at different developmental stages or in different species
(Zivraj et al., 2010; Gumy et al., 2011). High throughput pro-
filing of miRNAs have yet to be documented. However, in these
studies, several miRNAs were also detected in growth cones by
fluorescent in situ hybridization: miR-16 and miR-221 in SCG
neurons (Natera-Naranjo et al., 2010), miR-532 and miR-181a-1∗
in E16 cortical neurons and in dissociated hippocampal neurons
(Sasaki et al., 2013) and miR-132 in E13.5 DRG explants cul-
ture (Hancock et al., 2014). Importantly the list and number of
enriched axonal miRNAs, in all three studies, is strikingly differ-
ent. Several reasons might explain these results. First, miRNAs
might be differentially distributed in axons depending on the
species (rat vs. mouse), cell type (SCG, cortical, and DRG neu-
rons) and developmental stage (P3, E16, E13.5). Second, these
differences may be due to different axonal culture (compartmen-
talized chamber vs. neuronal ball) and profiling methodologies
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Table 2 | List of miRNAs enriched or depleted in axons, or present in growth cones during axon development.

miRNAs Age Species Neuron type Enriched/Depleted Method used References

in axonsa

let-7c P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

let-7-e E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

let-7-i E13.5d Mouse DRG Depleted qRT-PCR Hancock et al., 2014

miR-9 E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-9a E17d Mouse Cortical Present qRT-PCR Dajas-Bailador et al., 2012

miR-15b P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-16b P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-16 E13.5d Mouse DRG Depleted qRT-PCR Hancock et al., 2014

miR-17 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-18a E18 Rat Cortical Enriched RT-PCR Zhang et al., 2013

miR-19a E18 Rat Cortical Enriched RT-PCR Zhang et al., 2013

miR-19b E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-23a P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-23b P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-24 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-24 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-26a P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-29a E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-30b E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-30c E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-34b-3p E13.5d Mouse DRG Depleted qRT-PCR Hancock et al., 2014

miR-92 E18 Rat Cortical Enriched RT-PCR Zhang et al., 2013

miR-103 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-106a E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-124 P3c Rat SCG Depleted Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-125a-5p E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR- 125b P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-127 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-132b E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-134a St22 Xen. Spinal Present qRT-PCR, FISH Han et al., 2011

miR-135a E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-137 E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-138 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-181a-1b E16d Mouse Cortical Enriched Multiplex qRT-PCR Sasaki et al., 2013

miR-182 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-185 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-191 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-195 E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-196c E13.5d Mouse DRG Depleted qRT-PCR Hancock et al., 2014

miR-204 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-206 P3c Rat SCG Depleted Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-218 E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-221b P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-296 E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-297 P3c Rat SCG Depleted Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-320 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-328 E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-328 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-329 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-342-3p E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-361 E16d Mouse Cortical Enriched Multiplex qRT-PCR Sasaki et al., 2013

(Continued)
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Table 2 | Continued

miRNAs Age Species Neuron type Enriched/Depleted Method used References

in axonsa

miR-379 E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-382 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-384-5p E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-423 E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-434-3p E16d Mouse Cortical Depleted Multiplex qRT-PCR Sasaki et al., 2013

miR-434-3p E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-484 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-495 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-532b E16d Mouse Cortical Enriched Multiplex qRT-PCR Sasaki et al., 2013

miR-541 P3c Rat SCG Enriched Microarray and qRT-PCR Natera-Naranjo et al., 2010

miR-680 E13.5d Mouse DRG Enriched qRT-PCR Hancock et al., 2014

miR-685 E16d Mouse Cortical Enriched Multiplex qRT-PCR Sasaki et al., 2013

miR-709 E16d Mouse Cortical Enriched Multiplex qRT-PCR Sasaki et al., 2013

miR-720 E16d Mouse Cortical Enriched Multiplex qRT-PCR Sasaki et al., 2013

amiRNA detected (“present”) in axons and growth cones.
bmiRNAs enriched in axons and detected in growth cones by fluorescent in situ hybridization.
cneuron cultured for 3–10 days in vitro.
d neurons cultured for 4 days in vitro.

Abbreviations: E, embryonic day; DRG, Dorsal Root Ganglion; SCG, Superior Cervical Ganglion; st, stage; P, postnatal day; Xen., Xenopus.

(microarray/qRT-PCR vs. multiplex qRT-PCR). Third, they may
be due to limited coverage of the known mature miRNAs to
date (miRbase release 19), and the different cut-off values used
for analyses. In addition in the first two studies, the majority of
miRNAs appear to be distributed in both cell body and axonal
compartments, suggesting that most miRNAs might not have
a preferred site of action (Natera-Naranjo et al., 2010; Sasaki
et al., 2013). Intriguingly, the presence of miRNAs in axons and
growth cones, and to some extent differentially expressed miR-
NAs derived from the same polycistron (Natera-Naranjo et al.,
2010; Kaplan et al., 2013; Zhang et al., 2013), suggest that a mech-
anism of transport similar to that speculated for dendrites exists
(Kosik, 2006). Mature miRNAs could thus be translocated along
axons to growth cones either as individual molecules, as pre-
cursors, or within ribonucleoparticle bound to their targets and
components of the silencing machinery. For instance, pre-miR-
134 was recently documented to localize to dendrites through
DEAH-box helicase DHX36-mediated transport (Bicker et al.,
2013). Overall, these findings point to the possibility that miR-
NAs might be transported to and function within growth cones
to modulate steering.

miRNA RISC machinery is present in growth cones
Several studies have demonstrated the silencing machinery RISC
(RNA-induced silencing complex) is present and functional in
growth cone, further supporting a potential role of miRNA in
growth cones. Argonautes (ago) are the catalytic components of
RISC. Four Ago proteins are reported in vertebrates (mammals),
each binding a similar repertoire of miRNA and mRNA targets
(Meister, 2013). While ago 2 was reported to induce mRNA target
cleavage with perfect complementarity with a given miRNA, the
roles of ago1, 3, and 4 are still elusive. Another RISC component,

Table 3 | Reports of miRNA processing machinery in neurons.

RISC Species Neuron Age References

component type

Dicer Rat DRG E15a Hengst et al., 2006

Rat Cortical E18 Zhang et al., 2013

Rat SCG P3b Aschrafi et al., 2008

Mouse DRG E13.5b Hancock et al., 2014

ago2 Rat Cortical E18 Zhang et al., 2013

Mouse DRG E13.5b Hancock et al., 2014

ago3 Rat DRG E15b Hengst et al., 2006

ago4 Rat DRG E15b Hengst et al., 2006

GW-182 Mouse Cortical E17b Dajas-Bailador et al., 2012

aneurons cultured for 3–7 days in vitro; bneurons cutlured for 3 days in vitro.

Abbreviations: DIV, Days in vitro; DRG, Dorsal Root Ganglion; SCG, Superior

Cervical Ganglion.

GW182 protein family (TNRC6 in mammals), coordinates all
downstream steps in gene silencing (Pfaff et al., 2013). Key
molecules for small RNA-mediated silencing such as ago2 (Zhang
et al., 2013; Hancock et al., 2014), ago 3 and 4 (Hengst et al.,
2006), eIF2c (Eukaryotic Initiation Factor 2C) (Aschrafi et al.,
2008) and GW182 (Dajas-Bailador et al., 2012) were detected in
the embryonic and perinatal distal axons, and/or growth cones of
various cell types (Table 3). In addition, one study also revealed
that RISC is functional in distal axons (Hengst et al., 2006).
Exogenous siRNA directed against RhoA, a small GTPase protein
led to the decrease in RhoA transcript and RhoA immunoreac-
tivity in distal axons. Importantly, FITC-labeled siRNA was not
detected in proximal axons, and no RhoA mRNA knockdown was
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detected in the somatodendritic compartment. Taken together,
these data revealed that exogenous siRNA-induced silencing exists
in distal axons (Hengst et al., 2006). It would be interesting
to explore whether RISC can also mediate endogenous miRNA
action in this compartment, and most specifically in growth
cones. Intriguingly, the RISC component Dicer is also detected
in distal axons, including growth cones (Hengst et al., 2006;
Zhang et al., 2013; Hancock et al., 2014). This suggests that, as
in dendrites (Bicker et al., 2013), pre-miRNAs could be trans-
ported and processed into mature miRNAs, in this compartment.
Axonal transfection of pre-miR-338 and pre-miR-16 indeed result
in a substantial increase in their concomitant mature form in
axons, suggesting that miRNA processing does occur in distal
axons (Aschrafi et al., 2008; Kar et al., 2013). Several key compo-
nents are thus present in growth cones and/or distal axons, and
RNA interference occurs in this compartment, suggesting that
miRNAs are likely to be functional there. The documented pres-
ence of RISC components Armitage, MOV10 and Dicer (Lugli
et al., 2005; Ashraf et al., 2006; Banerjee et al., 2009) in pre- and
post-synaptic compartments underscore that miRNAs may have
broader subcellular sites of action in polarized cells like neurons.

Do miRNAs play a local role in growth cone turning?
The presence of RISC within growth cones suggests that miR-
NAs could act locally within this compartment and shape the
local transcriptome during axon guidance. In particular, miR-
NAs could regulate local translation, known to play a role in
growth cone steering in response to some cues (Jung et al., 2011).
Although this has yet to be clearly demonstrated, recent studies
suggest that it might be the case.

miRNAs are known to regulate outgrowth in development and
following injury (Wu and Murashov, 2013; Chiu et al., 2014).
miRNA-mediated silencing of mRNA was recently reported to
occur locally within axons to modulate outgrowth. Axonal miR-
NAs were initially documented to inhibit the translation of
cytoskeletal regulatory molecules locally (Dajas-Bailador et al.,
2012; Hancock et al., 2014). Using mice cortical neurons, Dajas-
Bailador et al. (2012) first revealed that a miRNA, miR-9,
modulates the translational repression of exogenous Map1b
(microtubule-associated protein 1b) 3′UTR, which has a key role
in the regulation of dynamic microtubules. Short BDNF stim-
ulation modulated miR-9 expression, while inhibition of miR-9
affected axonal growth only when applied locally in axons, sug-
gesting that BDNF affects this developmental process via local,
miRNA-mediated translational control of a cytoskeletal regulator.
Further support for such local mechanisms came in a recent study
from Flanagan’s group (Hancock et al., 2014). Hancock and col-
leagues reported that axon-enriched miR-132 promotes embry-
onic DRG axon outgrowth by targeting endogenous p120RasGAP
(Rasa1), a protein involved in cytoskeletal regulation (Hancock
et al., 2014). Interestingly, miR-132-induced increase in axonal
Rasa1 protein level was dependent on local protein synthesis, as
it was abolished in the presence of translation inhibitor applied
to severed axons (Hancock et al., 2014). This demonstrated that
miR-132 acts indeed within this cell compartment to regulate tar-
get translation, removing the possibility of cross-talk with the
cell body. Of note, Rasa 1 was previously reported to mediate

responsiveness to chemotropic cues but here, miR-132 activity
did not change upon stimulation by a few guidance molecules
suggesting that these findings may not be strictly transposed to
the guidance field (Hancock et al., 2014). In addition, axonal
miRNAs were also recently documented to promote outgrowth
by silencing axonal transcripts other than cytoskeletal regula-
tors. Using 3d rat SCG neurons, Kar and colleagues reported
that axon abundant miR-16 reduces the levels of the eukary-
otic translation initiation factors eIF2B2 and eIF4G2 mRNAs,
specifically within axons without affecting the levels of these tran-
scripts in the soma (Kar et al., 2013). Interestingly, axonal miR-16
reduced outgrowth, and siRNA-mediated decrease in eIF2B2 and
eIF4G2 levels in axons lead to inhibition of local protein synthesis
and reduced axon extension. Together, this suggests that miR-16
might regulate elongation by modulating the axonal protein syn-
thetic system. Finally using rat E18 cortical neurons, Zhang et al.
(2013) documented that axonal miR-19a, a member of the miR-
17-92 cluster, regulates axon outgrowth via PTEN (phosphatase
and tensin homolog), a negative regulator of the PI3K/mTOR
signaling pathway. Importantly, axonal miR-19a regulates PTEN
protein levels specifically within axons and not at the cell soma
suggesting compartmentalized action for this miRNA. Local reg-
ulation of mRNA by miRNA has thus been reported in axons in a
biological context of elongation.

The possibility that miRNA-mediated regulation of growth
cone turning via local regulation of mRNA is further supported
by a recent study. Several years ago, miR-134 was shown to locally
modulate the size of dendritic spines of rat hippocampal cells
(Schratt et al., 2006). This miRNA keeps Limk1, a kinase regu-
lating actin polymerization, in a dormant untranslated state, and
releases its repression in response to extracellular BDNF stimu-
lation. Limk1 is thus translated, resulting in spine size increase
(Schratt et al., 2006). Zheng’s group recently investigated whether
this mechanism is conserved in growth cones of X. laevis spinal
neurons, where they detected this miRNA (Han et al., 2011).
Similar to dendritic spines, miR-134 was found to be important
for BDNF-induced growth cone attraction. In addition, miR-134
appeared to regulate protein synthesis in response to this cue,
as loss- and gain-of-function of miR-134 in the whole embryo
blocked protein synthesis dependent turning response of growth
cones. The effect of this miRNAs on spinal neuron cell bodies
cannot be formally excluded, since miR-134 was knocked down
or overexpressed in whole embryos, and not exclusively in axons.
Limk1, also detected in spinal growth cones, was confirmed as
a bona fide target of miR-134 in Xenopus by in vivo luciferase
assay. This suggests that Limk1 may mediate miR-134 regulation
of BDNF-induced growth cone attraction. All-in-all, this study
provided the first evidence, that growth cone turning can be mod-
ulated by miRNAs. It also indicated that conserved miRNA-based
local control may exist in neuronal compartments, enabling the
acute regulation of cytoskeletal dynamics in response to external
stimuli.

Based on these recent findings, one could speculate that sev-
eral possible mechanisms of mRNA regulation in growth cones
exist during steering. On the one hand miRNAs could silence
translation, keeping the transcript dormant until a cue is encoun-
tered, and a newly synthesized protein is asymmetrically required.

Frontiers in Cellular Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 78 | 8

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Iyer et al. microRNAs in axon guidance

Similar mechanisms of action are also reported in dendrites
(Schratt et al., 2006; Siegel et al., 2009) suggesting they could
be conserved across neuronal compartments. On the other end,
cue-induced activation of miRNAs could lead to the inhibition
of transcript translation and/or stability, when newly synthesized
protein(s) are no longer required for guidance. In particular, such
silencing could arrest cue-induced translation of mRNA, thereby
terminating growth cone response to a given chemotropic cue.
Furthermore, an asymmetric rise in local mRNA translation of a
cytoskeletal protein was reported to occur at the growth cone on
the side of cue exposure (Leung et al., 2006). From this, one could
finally conceive that miRNAs may have an asymmetric function in
this compartment, allowing silencing to occur on one side of the
growth cone, and translation on the other. This putative mecha-
nism might be unique to growth cones, as opposed to dendrites
or synapses, to support directional steering.

CONCLUSIVE REMARKS AND PERSPECTIVES
In conclusion, recent studies have uncovered that miRNAs are
hitherto unsuspected, important regulatory molecules in axon
guidance (Figure 1) (Giraldez et al., 2005; Pinter and Hindges,

2010; Han et al., 2011; Shibata et al., 2011; Baudet et al., 2012;
Zou et al., 2012). These have revealed that miRNAs are likely to
have widespread and important roles, affecting different species
and several projections, and when knocked out, result in vary-
ing degrees of severity in guidance errors. The studies have also
shown that miRNAs are likely to regulate both guidance response
to cues or cue expression. In particular, miRNAs can specifically
modulate growth cone steering (Han et al., 2011; Baudet et al.,
2012). To do so, they can act cell-autonomously to fine-tune
the molecular make-up of projection neurons, thereby affect-
ing their responsiveness to cues. This regulation may take place
at the soma, via transcription factor regulation, which in turn,
modulates expression levels of receptors to cues (Baudet et al.,
2012; Zou et al., 2012). miRNAs are also suspected to act locally,
and affect downstream signaling molecules of various nature
including axon cytoskeleton (Han et al., 2011; Dajas-Bailador
et al., 2012; Kar et al., 2013; Hancock et al., 2014). Although the
evidence is more elusive, miRNAs could also modulate brain pat-
terning, and thereby control either the presence of guidepost cells
or the expression of guidance cues at key topographical locations
(Pinter and Hindges, 2010; Shibata et al., 2011) (Figures 1, 2).

FIGURE 2 | Model of miRNA-mediated regulation of axon guidance.

During pathfinding, tight regulation of mRNAs occurs to ensure protein
expression of guidance molecules at the right time and place, and
enable accurate growth cone steering. Within projection neurons,
transcripts are translated into the cell body and are subsequently
transported within the axon to the growth cone to mediate guidance
cue-induced signaling. Alternatively, mRNAs associate into messenger
ribonucleoprotein particles (mRNPs) to be transported to the growth
cone, where they can be locally translated. Retrograde transport of
transcripts from growth cones to cell soma also exists (not represented
here). miRNAs are speculated to act at multiple level. They may regulate
transcripts translation and stability (1) within the cell body as suggested
for miR-124 and lin-4 (Baudet et al., 2012; Zhang et al., 2013) or (2)

directly within growth cones as suggested for miR-134 (Han et al.,
2011) and by the presence of RISC within this compartment (Table 3).
(3) As speculated (Kosik, 2006), miRNAs may translocate along the
axons alone or within mRNPs (shown here) and/or be transported as
pre-miRNAs and locally produced within growth cones. Guidepost cells
are important partners for projection neurons, as they provide them
with positional information through the expression of guidance cues.
The regulation of guidepost cell transcriptome is thus of crucial
importance to ensure the correct patterning of these cells and also the
delivery of the right guidance cue at the right place. miRNAs could act
by directly regulating the expression of guidance cues within guidepost
cells (4) or by indirectly regulating molecules involved in the patterning
of these cells (5), as suggested for miR-9 (Shibata et al., 2011).
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Guidance molecules appear to have pleiotropic roles and as
such, are involved in several processes outside of the nervous sys-
tem development. In particular, they are now acknowledged reg-
ulators of the immune and cardiovascular systems, including of
vascular development, and angiogenesis (Adams and Eichmann,
2010; Kumanogoh and Kikutani, 2013). Guidances cues are also
involved in pathological processes such as cancer and tumor pro-
gression (Chédotal, 2007; Mehlen et al., 2011). miRNAs, as key
post-transcriptional regulator in most eukaryotic cells, are also
implicated in these physiological and pathophysiological pro-
cesses (Croce, 2009; Xiao and Rajewsky, 2009; Small and Olson,
2011) suggesting a possible mechanistic link between the two class
of molecules outside of the nervous system. Importantly, several
miRNAs modulate guidance cues and their receptors in cells other
than neurons, including cancer cell lines but also in endothelial
cells (Table 4) (Baudet et al., 2013). This raises the intriguing
possibility that a given miRNA may regulate the same guidance
molecules in different cellular contexts.

miRNAs may have conserved important developmental roles,
including axon guidance, throughout evolution. Indeed, miR-
NAs appear to regulate pathfinding in several species, ranging
from Drosophila and C. elegans to mice and guidance miRNAs
affect the same pathway in different species (e.g., the visual path-
way of lower vertebrate Baudet et al., 2012 vs. higher vertebrates
Pinter and Hindges, 2010). Moreover, a specific miRNA, miR-
9, regulates guidance of different tracts (Shibata et al., 2011).
Interestingly, two of the four miRNAs involved in guidance,
miR-124, lin-4/miR-125, are highly conserved, and considered
as ancient miRNAs with neural-like function (Christodoulou
et al., 2010).Unsurprisingly, these miRNAs appear to have

Table 4 | List of miRNAs regulating guidance molecules in

non-neuronal cells.

miRNA Target Cell type References

miR-9 Neuropilin-1 Endothelial cells Cui et al., 2012

miR 27a/b Sema 6a Endothelial cells Urbich et al., 2012

miR-34 Sema 4b Cardiomyoblast
H9c2 cells

Bernardo et al., 2012

miR-181b Neuropilin-1 Endothelial cells Cui et al., 2012

miR-210 EphrinA3 U2OS ostesarcoma
cell line

Fasanaro et al., 2008

miR-210 EphrinA3 293T cells Pulkkinen et al., 2008

miR-214 Plexin -B1 HeLa cells Qiang et al., 2011

miR-218 Robo1 Human breast
cancer cells

Yang et al., 2012

miR-218 Robo1 Nasopharyngeal
carcinoma

Alajez et al., 2011

miR-218 Robo1 and 2 HeLa cells Fish et al., 2011

miR-218 Robo1 and 2 COS cells Small et al., 2010

miR-218 Robo1 Human gastric cell
lines

Tie et al., 2010

miR-320 Neuropilin-1 Colorectal cancer
cells

Zhang et al., 2012

miR-331-3p Neuropilin-2 Glioblastoma
multiforme

Epis et al., 2009

multifactorial neural action, and besides regulating guidance, also
modulate earlier developmental events such as neurogenesis, cell
fate determination, lineage progression, and later events such as
synaptogenesis (Gao, 2010).

Guidance miRNAs appear to have a delicate regulatory action
on guidance signaling pathways. The three miRNAs, for which
signaling mechanisms have been uncovered, fine-tune the lev-
els of their endogenous (Baudet et al., 2012; Zou et al., 2012)
or exogenous targets (Han et al., 2011). This is very much in
agreement with recent evidence that miRNAs do not act as off-
switches, as originally thought from earlier studies in C. elegans,
but rather as a rheostat, which fine-tunes protein output to func-
tional levels (Baek et al., 2008; Selbach et al., 2008; Bartel, 2009;
Guo et al., 2010). It is thus particularly interesting that mRNAs
translated in the growth cone give rise to only small increases in
protein levels (Jung et al., 2011), consistent with the hypothesis
that miRNAs might be responsible for this. miRNAs may thus
provide an additional layer of gene regulation in projection neu-
rons, to ensure that guidance molecules are expressed at the right
time and place, supporting the high level of precision critical for
axon guidance.

Navigating growth cones are exposed to a myriad of cues along
their pathway, and it appears that cross-talk exists between these
cues and miRNAs. miRNAs can intrinsically alter the way growth
cones respond to a cue, modulating the levels of their cognate
receptor (Baudet et al., 2012; Zou et al., 2012). Conversely, cues
also modulate miRNA’s silencing potential at the growth cone. For
instance, they are suspected to repress miRNA-mediated silenc-
ing, leading to local protein translation and growth cone steering
(Han et al., 2011). Cues can induce a rise in miRNA levels in
axons, which in turn leads to increased post-transcriptional gene
silencing (Dajas-Bailador et al., 2012). The exact signaling mecha-
nisms mediating cue-regulated miRNA action are unknown. One
possibility, as has been previously shown in dendrites (Schratt
et al., 2006), includes phosphorylation and activation of mTOR
pathway, which is a suspected global regulator of translational
activity in growth cones (Jung et al., 2012). Furthermore, cues or
any external stimulus affecting the neuronal projection could also
shape the miRNA repertoire of the whole neuron or specifically
that of the growth cone. External stimuli were reported to either
activate Dicer (Lugli et al., 2005) or degrade the RISC component
(MOV10) (Banerjee et al., 2009) at the synapse- another neuronal
compartment. In addition, neuronal activity was also shown to
regulate miRNA turnover rate, by modulating their transcription
or promoting their decay (Krol et al., 2010a), which in turn can
affect dendritic remodeling (Fiore et al., 2009). A similar cue-
mediated regulation of miRNA levels is conceivable in axons of
projecting neurons.

Recent evidence has revealed that miRNA function could be
modulated by different means. For instance, RNA-binding pro-
teins (RNA-BP) were shown to either act in concert with miRNAs
to promote silencing or, on the contrary, to compete for bind-
ing sites (Krol et al., 2010b). For instance miR-125a and Fragile
X mental retardation protein (FMRP) were revealed to act coop-
eratively at the 3′UTR of PSD-95 mRNA to inhibit translation of
this transcript within synapses (Muddashetty et al., 2011). miR-
NAs can also actively regulate RNA-BP in neurons (Fiore et al.,
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2009). RNA-BPs play important roles in developing projection
neurons, ensuring mRNA transport and translational repres-
sion (Hörnberg and Holt, 2013). It is therefore conceivable that
these two classes of molecules act in a coordinated manner to
modulate transcript levels during axon guidance. In addition,
other classes of non-coding RNAs, such as endogenous circu-
lar miRNA (Hansen et al., 2013; Memczak et al., 2013) and
long-non-coding RNAs, have emerged as important regulators of
miRNA action, acting as decoy or sponges that sequester, and thus
buffer miRNAs in the cell (Salmena et al., 2011). Such endoge-
nous competing RNAs (ceRNAs) might also include transcripts
of protein-coding genes, whose miRNA-mediated silencing does
not affect their function (Seitz, 2009; Salmena et al., 2011). In
projection neurons, these ceRNAs could modulate miRNA access
to their target transcript, providing an additional layer of regula-
tion, and enabling fine-tuning of their translation. However, their
existence and function in cells during axon guidance is yet to be
demonstrated.

In conclusion, while the body of work reviewed here has just
started to reveal the role of miRNAs in axon guidance, future
research promises to unravel how these key regulatory molecules
are embedded in the molecular network that enables axons to
navigate to their targets with extreme precision.
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