{fronfiers in

CELLULAR NEUROSCIENCE

ORIGINAL RESEARCH ARTICLE
published: 26 March 2014
doi: 10.3389/fncel.2014.00079

—

Reduced synaptic activity in neuronal networks derived
from embryonic stem cells of murine Rett syndrome model

Lydia Barth, Rosmarie Stitterlin, Markus Nenniger and Kaspar E. Vogt*

Neurobiology and Pharmacology, Biozentrum, University of Basel, Basel, Switzerland

Edited by:
Andrea Barberis, Fondazione Istituto
Italiano di Tecnologia, Italy

Reviewed by:

Melanie A. Woodin, University of
Toronto, Canada

Annalisa Scimemi, University at
Albany —The State University of New
York, USA

*Correspondence:

Kaspar E. Vogt, Neurobiology and
Pharmacology, Biozentrum, University
of Basel, Klingelbergstrasse 50/70,
4056 Basel, Switzerland

e-mail: kaspar.vogt@unibas.ch

Neurodevelopmental diseases such as the Rett syndrome (RTT) have received renewed
attention, since the mechanisms involved may underlie a broad range of neuropsychiatric
disorders such as schizophrenia and autism. In vertebrates early stages in the functional
development of neurons and neuronal networks are difficult to study. Embryonic stem cell-
derived neurons provide an easily accessible tool to investigate neuronal differentiation
and early network formation. We used in vitro cultures of neurons derived from murine
embryonic stem cells missing the methyl-CpG-binding protein 2 (MECPZ2) gene (MeCP2-/y)
and from wild type cells of the corresponding background. Cultures were assessed
using whole-cell patch-clamp electrophysiology and immunofluorescence. We studied the
functional maturation of developing neurons and the activity of the synaptic connections
they formed. Neurons exhibited minor differences in the developmental patterns for
their intrinsic parameters, such as resting membrane potential and excitability; with the
MeCP2-/y cells showing a slightly accelerated development, with shorter action potential
half-widths at early stages. There was no difference in the early phase of synapse
development, but as the cultures matured, significant deficits became apparent, particularly
for inhibitory synaptic activity. MeCP2-/y embryonic stem cell-derived neuronal cultures
show clear developmental deficits that match phenotypes observed in slice preparations
and thus provide a compelling tool to further investigate the mechanisms behind RTT
pathophysiology.
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INTRODUCTION
Rett (1966) described an unusual neurodevelopmental disorder in
girls, now called Rett syndrome (RTT). Today the key diagnostic
criteria for RTT are stereotypic hand movements, deficits in motor
coordination, speech disorders, and autistic behavior (Hagberg
and Hagberg, 1997). Children develop normally for 6-18 months
after birth, reaching the usual motor, language and social mile-
stones. This brief period of developmental progress is followed
by stagnation with growth arrest and microcephaly. During the
following rapid regression phase, the previously acquired skills
are lost and a variety of neurological symptoms develop. These
include sleep disturbances, problems with gait, decelerated head
growth, breathing arrhythmia, stereotypical hand movements, loss
of motor coordination, and seizures (Zoghbi, 2003; Moretti and
Zoghbi, 2006; Chahrour and Zoghbi, 2007).

Amir etal. (1999) identified the primary cause of RTT as
a defect in the MECP2 gene on the X chromosome, coding
for the methyl-CpG-protein 2 (MeCP2). More than 95% of
individuals with classic RTT carry de novo mutations. MeCP2
is highly enriched in neurons in the central nervous system
(Zhou etal., 2006). It regulates genes essential for neuronal sur-
vival, dendritic growth, synaptogenesis, and synaptic plasticity
(Fukuda etal., 2005; Chang etal., 2006; Smrt etal., 2007). The
function of MeCP2-targeted genes seems especially important
in GABAergic neurons (Huang etal., 2007; Chao etal., 2010).

GABAergic interneurons provide the main inhibitory function
in the central nervous system and thereby contribute to the
essential balance between excitation and inhibition. A disturbed
excitation/inhibition balance will in severe cases result in epilep-
tic discharges, which are found in 70-90% of RTT patients
(Nissenkorn et al., 2010).

Generation of different mouse models in 2001 by targeting of
the MECP2 gene has provided significant advances in understand-
ing of MeCP2 function and mimicking relevant aspects of human
RTT (Chen etal., 2001; Guy etal., 2001; Shahbazian etal., 2002).
MeCP2- null male mice (MeCP2-/y) were generated by replacing
exons 3 and 4 of MECP2 starting in early embryonic development
(Guy etal., 2001). Most studies use such male hemizygous mice
because they develop a severe and characteristic behavioral phe-
notype much earlier than female heterozygous mice. The mice
develop motor impairments, tremor, breathing abnormalities,
limb stereotypies, and epilepsy as in the human condition (Colic
etal., 2013). Remarkably, it was later shown that re-expression of
endogenous MeCP2 can reverse aspects of RTT in the adult (Guy
etal., 2007). Within a few weeks the affected mice were largely
indistinguishable from their wild type (wt) controls. This does not
yet suggest a prompt therapeutic approach to RTT but it clearly
establishes the principle of reversibility in this mouse model.

The causal link between MeCP2 dysfunction and the neurobe-
havioral phenotype is still unclear. Given the reversibility of the
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phenotype, a better understanding of the neuronal phenotype
becomes more and more important. Especially early developmen-
tal stages are hard to study functionally since the neurons are not
easily accessible for targeted manipulations at these stages.

Murine embryonic stem cell (mES)-derived neurons allow a
straightforward functional analysis of neuron maturation from
very early stages up to network formation.

Here we investigate the differentiation of neural precur-
sors derived from MeCP2-/y mice and from the corresponding
E14Tg2a wt background. We compared intrinsic parameters, such
as resting membrane potential (RMP), the function of voltage-
gated sodium- and potassium channels as well as generation
of action potentials (APs) from immature and mature neurons.
As soon as the neurons formed synaptic networks, we studied
spontaneous excitatory and inhibitory synaptic activity and its
maturation over time.

METHODS AND MATERIALS

CELL CULTURE AND DIFFERENTIATION

Embryonic stem cells derived from a E14Tg2a background with
the MeCP2+/y (wt) and MeCP2-/y genotype were cultured and
differentiated into neurons as described (Bibel et al., 2007). Briefly,
after 4 days of embryoid body formation these are treated with
5 uM all-trans-retinoic acid (Sigma Inc., Buchs, Switzerland) for
additional 4 days. Embryoid bodies are dissociated and neuronal
precursors were plated on poly-L-ornithine (Sigma Inc., Buchs,
Switzerland)/laminin (Roche Inc., Buchs, Switzerland) — coated
glass cover slips (Assistent, Karl Hecht GmbH, Sondheim/Rhén,
Germany). At day in vitro (DIV) 0 and 1 neuronal precursors were
cultured in neural medium containing DMEM/F12, N-2 Supple-
ment (100X) and penicillin/streptomycin and 1 mM glutamine (all
Invitrogen Inc., Lucerne, Switzerland). From DIV 2 the medium
was changed to the differentiation medium containing Neurobasal
medium, B-27® Supplement (50X), N-2 Supplement (100X),
0.6 mM glutamine and penicillin/streptomycin (all Invitrogen Inc.,
Lucerne, Switzerland).

ELECTROPHYSIOLOGY

Cover slips with neurons were transferred to a bath chamber
mounted to an inverted microscope (Axiovert 25, Carl Zeiss
GmbH, Miinchen, Germany). Experiments were performed on
DIV 0-8 and DIV 11-23 neurons in culture using the whole-cell
voltage-clamp technique. Data were collected using a Multiclamp
700A amplifier (Axon Instruments, Union City, CA, USA). We
used electrodes with an open tip resistance of 4-5 M2 obtained
by pulling borosilicate pipettes (Clark, Warner Instruments Inc.,
Edenbridge, United Kingdom) with 1.5 mm external diameter
and 1.17 mm internal diameter without filament to a tip diame-
ter of ~1 wm on a horizontal Puller (DMZ Puller, Zeitz GmbH,
Martinsried, Germany). The intracellular solution was adapted to
the medium the cells were cultivated in; for N2 medium it con-
tained (mM): 110 K-D-gluconate, 5 KCl, 11 Tris-phosphocreatine,
1 EGTA, 4.5 MgATP, 10 HEPES, 0.3 Tris-GTP (pH 7.4 with KOH,
290 mOsm). The extracellular solution for cells coming from N2
medium used for DIV 0 and DIV 1 contained (in mM): 120 NaCl,
29 NaHCOj3, 4 KCl, 1 CaCly, 0.7 MgCly, 18 glucose, pH 7.4 when
bubbled continuously with 95% O, and 5% CO,;. Intracellular

solution for cultures coming from complete medium contained
(mM): 100 K-D-gluconate, 5 NaCl, 1 EGTA, 5 MgATP, 10 HEPES,
and 0.5 Tris-GTP (pH 7.4 with KOH, 210 mOsm). The extracellu-
lar solution for complete medium contained (in mM): 125 NaCl,
26 NaHCOs, 1.25 NaH,PO4*H, 0, 2.5 KCl, 1.0 MgSO4, 2.0 CaCl,
and 11 glucose, pH 7.4 when bubbled continuously with 95% O,
and 5% CO;. Voltage-gated sodium- and potassium channels were
detected in voltage-clamp mode at a holding potential of —60 mV.
The holding potential was changed in a stepwise fashion from
—75 to 425 mV in 5 mV increments for 800 ms and the voltage-
gated peak inward current and the sustained outward current
(between 600-800 ms) were measured for each step. The inward
currents were tetrodotoxin (TTX) sensitive, while the outward cur-
rents were blocked by tetraethyl-ammonium and 4-aminopyridine
[TEA (3 mM) and 4-AP (1 mM; data not shown)]. For statis-
tical comparisons the maximal evoked currents for a given cell
were used. RMPs and APs were recorded in current-clamp mode.
Somatic current injections were applied in 2.5 pA steps from
—2.5 to 430 pA, in older cells up to +60 pA. Synaptic activity
was measured in voltage-clamp mode using the same K-gluconate
based internal in order to maximise cell-yield: to detect sponta-
neous excitatory synaptic currents (sEPSCs), cells were held at
—60 mV, while for spontaneous inhibitory synaptic currents (sIP-
SCs), cells were held at —40 mV. This allowed us to unambiguously
identify EPSCs and IPSCs in the same recording without phar-
macological agents present, which might have affected network
activity. Responses were filtered at 5 kHz and digitized at 20 kHz.
The excitatory glutamate receptor blocker 2,3-dihydroxy-6-nitro-
7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX; 10 uM) and
antagonists of inhibitory GABA receptors picrotoxin (100 pM)
or bicuculline (20 wM) were added to the perfusate at the end
of recordings to block the respective synaptic activity (Tocris Inc.,
Bristol, United Kingdom). All other chemicals were purchased
from the same supplier (Sigma Inc., Buchs, Switzerland). Recorded
SsEPSC and sIPSC were detected and analyzed using Mini Anal-
ysis 6 (Synaptosoft, Decatur, Georgia). All other data analysis
was done with IGOR PRO 6.0 (Wavemetrics, Lake Oswego, OR,
USA) software. Two-way ANOVA were used for all statistical anal-
ysis (unless otherwise mentioned), with Tukey’s HSD tests where
indicated.

IMMUNOCYTOCHEMISTRY

Cells cultured on glass coverslips were rinsed twice with phos-
phate buffered saline (PBS) pH 7.4 and fixed with 10% neutral
buffered formalin (Sigma Inc., Buchs, Switzerland) for 20 min
at room temperature (RT). After rinsing with PBS, coverslips
were permeabilized for 5 min in 0.2% TritonX-100/PBS, rinsed
with PBS and incubated for 1 h at RT in a humidified chamber
with the following primary antibodies and dilutions (rb: rab-
bit, ms: mouse): doublecortin (rb, 1:1000, Cell Signaling, Bio
Concept, Allschwil, Switzerland), microtubule-associated protein
2 (MAP2; rb, 1:1000, Chemicon, Millipore Inc., Zug, Switzer-
land), glutamic acid decarboxylase, 67 kDa isoform, (GAD67; ms,
1:500, Chemicon, Millipore Inc., Zug, Switzerland) and synapto-
physin (ms, 1:300, Sigma Inc., Buchs, Switzerland). After several
washes with PBS, coverslips were incubated for 1 h with cor-
responding secondary antibody: Cy5 [donkey anti rabbit IgG
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FIGURE 1| mES cell-derived neurons show early maturation.

(A-C) DIC images of early neuronal differentiation in stem cell-derived
cultures. (A) Image of embryoid bodies before dissociation; scale bar:
100 wm. Progenitor cells 6 h after plating (B) and at DIV 1 (C); scale
bar: 20 pm. Immunostainings against doublecortin (D), actin staining
with phalloidin (E). (F) Overlay of doublecortin and phalloidin stain with
DAPI stain (blue) and the corresponding DIC image (G) in wt cultures

-48mV 5

M2

34mV M
at DIV 3. (H-K) The corresponding pictures from MeCP2-/y cultures.
Scale bar: 20 um. (L,M) Early development of neuronal physiology;
the numbers next to the traces indicate the resting membrane
potential. (L) Reaction of wt and MeCP2-/y neurons to negative (bottom
traces) and positive (top traces) somatic current injections at DIV 3.

(M) Reaction of wt and MeCP2-/y neurons to positive somatic current
injections at DIV 6.

Iﬂmv

02s

(H+L), 1:300, Immuno Jackson, Suffolk, United Kingdom], Alexa
488 [donkey anti mouse IgG (H+L), 1:800, Invitrogen Inc.,
Lucerne, Switzerland], Alexa 488-phalloidin (1:400, Molecular
Probes, Eugene, OR, USA) and 4/,6-diamidino-2-phenylindole
(DAPI) (1:1000, Molecular Probes, Eugene, OR, USA). After
several washes in PBS, coverslips were mounted in Mowiol-
1188 as previously described (Baschong etal., 1999). Confocal
sections were recorded with a confocal laser scanning micro-
scope Leica TCS SPE with DMI 4000B (Leica Switzerland) and
processed with Imaris software (Bitplane, Zurich, Switzerland)
and Adobe Photoshop version 10.0 (Adobe Inc., San Jose, CA,
USA).

RESULTS

MORPHOLOGICAL DEVELOPMENT

We differentiated MeCP2+/y (wt) and MeCP2-/y mES cells from
the same E14Tg2a background into neurons using an estab-
lished protocol (Bibel etal., 2007). Progenitors dissociated from
embryoid bodies (Figure 1A) showed already at DIV 0 a distinct,
spindle shaped morphology (Figure 1B), which transformed into
a multipolar shape by DIV 1 (Figure 1C). To characterize their
morphological development, wt (Figures 1D-F) and MeCP2-/y
cells (Figures 1H-J) were stained on DIV 3 with antibodies
against doublecortin (Figures 1D,H), a marker of immature neu-
rons. In addition we used the actin cytoskeleton label phalloidin

Frontiers in Cellular Neuroscience

www.frontiersin.org

March 2014 | Volume 8 | Article 79 | 3


http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Barth etal.

MeCP2 and synaptic maturation

(Figures 1E,I), the nuclear marker DAPI (Figures 1EJ) and dif-
ferential interference contrast (DIC) images (Figures 1G,K). By
DIV 3 more than 90% of the cells in culture were immature neu-
rons with a multipolar shape. The DAPI staining indicated that
the cell densities were similar in both genotypes (wt: 21.4 & 2.2
cells/10000 pum?, n = 10; MeCP2-/y: 21.8 = 3.0 cells/10000 pm?,
n =10, p > 0.91 Student’s ¢-test).

FUNCTIONAL DEVELOPMENT OF VOLTAGE-GATED CURRENTS

The wt progenitors exhibited a RMP of —56 £ 2.2 mV at DIV
0 (n = 15) compared to —35 £ 3.0 mV for MeCP2-/y progen-
itors (n = 8). At DIV 2 RMP of wt cells (n = 21) depolarized
to —41 % 3.3 mV, while for MeCP2-/y (n = 16) we measured
a RMP of —36 & 2.1 mV. In the following days cells from both
genotypes showed a gradual hyperpolarization to —57 & 0.9 mV
for wt and —57 £ 1.0 mV for MeCP2-/y, which stabilized around
DIV 11 (n = 180 for wt and 151 for MeCP2-/y). Statistical anal-
ysis revealed a highly significant influence of developmental age
(p < 0.01), but no significant effect of the genotype (p > 0.08) on
the RMP.

We observed voltage-dependent inward sodium currents (In)
with fast activation and inactivation kinetics, as well as slow, non-
inactivating outward potassium currents (Ix) during all stages of
differentiation. Already 6 h after plating in 6 of 10 cells a small Iny
0f 0.04 £ 0.02 nA in wt and 0.02 & 0.01 nA in MeCP2-/y and a Ix
of 0.11 £ 0.03 nA in wt and 0.04 &= 0.01 nA in MeCP2-/y could be
found. Both types of currents showed a substantial increase dur-
ing development in culture (Figure 2). In,increased continuously
from 0.48 & 0.04 nA in wt and 0.60 £ 0.04 nA in MeCP2-/y (DIV
3-5)t03.06 £ 0.16 nA in wtand 3.14 + 0.23 nA in MeCP2-/y (DIV
20-23; Figure 2E). For Ik an initial increase from 0.36 &= 0.025 nA
inwtand 0.45 & 0.03 nA in MeCP2-/y (DIV 3-5) to 1.24 +0.07 nA
in wt and 1.78 &£ 0.11 nA in MeCP2-/y (DIV 11-14) then leveled
off at 1.52 4 0.09 nA in wt and 1.31 & 0.09 nA in MeCP2-/y (DIV
20-23; Figure 2F). For Iy, the effect of genotype was not signif-
icant (p > 0.82), while the developmental age exerted a highly
significant effect (p < 0.01; n = 25 per day and genotype). Both
genotype and developmental age significantly affected Ix (p < 0.01
for both variables, n = 25 per day and genotype). Pairwise post hoc
analysis did not reveal a significant difference between genotypes
at any specific time point (p > 0.5).

ACTION POTENTIALS AND EXCITABILITY

Action potentials were detected from DIV 3 (Figure 1L) in both
genotypes. Typical APs are shown for DIV 6 (Figure 3A), DIV 12
(Figure 3B) and DIV 21 (Figure 3C). A quantitative analysis of the
APs was performed between the age ranges DIV 4-6, DIV 11-13,
and DIV 20-23 in 61 wt and 44 MeCP2-/y cells (Figures 3D-G)
by measuring the size of the first AP in a train (see Figure 1M)
and its half-width, as well as the initial frequency of APs in a
train and their frequency adaptation. First AP size (Figure 3D)
increased from DIV 4 to DIV 23 in wt neurons from 59.5 =+ 2.5 to
87.6 = 3.7 mV and in MeCP2-/y from 60.3 £ 4.9 t0 95.7 + 2.8 mV.
First AP half width (Figure 3E) decreased over time in wt from
6.7 £ 0.5 to 2.2 + 0.3 ms and in MeCP2-/y from 4.4 + 0.7 to
1.6 £ 0.08 ms. Initial AP frequency within a train (Figure 3F)

showed no clear developmental pattern and varied between 10—
20 Hz for both genotypes. Cells from both genotypes exhibited a
weak frequency adaptation to between 60 and 90% of the initial
frequency (Figure 3G) throughout their development. Statistical
analysis revealed a significant effect of age (p < 0.0.1), but not of
genotype (p > 0.3) on AP size. Both age and genotype significantly
affected the AP half-width (p < 0.01) with a significant interac-
tion (p < 0.01). Initial AP frequency was significantly affected by
both age (p < 0.01) and genotype (p < 0.05) without significant
interaction (p > 0.2). AP frequency adaptation was significantly
affected by age (p < 0.05), but not by genotype (p > 0.9).

SYNAPTIC ACTIVITY

We detected the first spontaneous excitatory (SEPSCs) and
inhibitory (sIPSCs) post-synaptic currents by DIV 11 in neurons
from both wt and MeCP2-/y cultures (Figure 4). We measured
sEPSCs as inward currents (Figures 4A—-C bottom traces) at a
holding potential of —60 mV, while sIPSCs were best visible and
measured as outward currents at a holding potential of —40 mV
(Figures 4A—C top traces). sEPSCs were blocked by the addition of
the AMPA-receptor blocker NBQX (10 wM) to the bath medium,
whereas sIPSCs were blocked by bath application of the GABAA
receptor antagonists picrotoxin (100 wM) or bicuculline (20 wM)
respectively, in all cultures tested (n = 21; Figure 4D).

Between DIV 11-23 the frequency of sEPSCs increased from
26.2 + 4.8 to 71.8 &+ 7.4 events per minute in wt (n = 186) and
from 21.2 & 2.6 to 43.8 & 4.6 events per minute in MeCP2-/y
(n=172; Figure 4E). This represents a highly significant increase
with age (p < 0.01) as well as a significant reduction at DIV 20—
23 in excitatory activity in MeCP2-/y cultures compared to wt
(p < 0.05).

The frequency of sIPSCs rose from 23.5 £ 5.1 to 97.8 £ 13.3
events per minute between DIV 11-23 for wt neurons, while in
neurons from MeCP2-/y cultures it went from 19.7 &+ 3.4 to
58.8 & 7.9 events per minute over the same time (Figure 4F).
Both developmental age (p < 0.01) and the cell’s genotypes
(p < 0.01) exerted a highly significant influence in inhibitory
synaptic activity.

To see whether the reduced synaptic activity was accompanied
by a change in synaptic density we stained cultures at DIV 12, 18,
and 21 with antibodies against the neuronal marker MAP2 and
against the presynaptic marker synaptophysin (Figures 5A-F). We
measured synapse density by counting the number of synapto-
physin positive puncta along 6—-12 MAP2-positive dendrites per
age range and genotype. In wt cultures the densities were 61 & 2.2,
89+ 8.9,and 64 £ 8.1 puncta/100 umat DIV 12,18, and 21 respec-
tively. In MeCP2-/y cultures the values were 46 + 2.6, 76 &+ 7.3,
and 81 + 7.1 puncta/100 pm for the same time points. While
age had a significant influence on the density of synaptophysin
puncta (p < 0.01), there was no significant effect of the genotype
(p > 0.45) on synapse density. We also stained the cultures against
GADG67, a specific marker for GABAergic neurons. A clear increase
in staining could be observed from DIV 12 to 18 to 21, without
an obvious difference in the amount of GAD67 immunoreactivity
between the two genotypes (Figures 5G-L). Between DIV 18-21
the percentage of GAD67- and MAP2-double-positive neurons
among all MAP2-positive cells was 414/—3 % for wt and 36+/—2

Frontiers in Cellular Neuroscience

www.frontiersin.org

March 2014 | Volume 8 | Article 79 | 4


http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Barth etal.

MeCP2 and synaptic maturation

A1 wt A2 MeCP2-/y
nA
mV
DIV3 60 30
-4
DIV6
DIV12
60 -30 =30
LI TLLY L L
-4
D1
DIv21
-60
E F 10 ms
= 4 4+
<€
£3 £, 31
= —
c
o2 o 21
= =
=
; 1 O 11
<0 <0
0-2 3-5 6-8 11-1415-1920-23 0-2 3-5 6-8 11-1415-1920-23
[DIV] [DIV]
FIGURE 2 | Developmental characterization of voltage-gated sodium- holding potential after depolarization. (A-D) Increase in voltage-activated
and potassium currents. Sample traces and |-V curves for voltage whole-cell currents from DIV 3 to DIV 21. (E) Comparison of inward
activated inward sodium currents (red) and voltage activated outward sodium current as a function of developmental age for wt (black) and
potassium currents (black). Data points for the |-V curves plot peak MeCP2-/y (red) cultures. (F) Comparison of outward potassium currents
inward current (red squares) against the holding potential after as a function of developmental age for wt (black) and MeCP2-/y (red)
depolarization and the sustained outward current (black dots) against the  cultures.
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FIGURE 3 | Neuronal spiking patterns as a function of parameters in wt (black) and MeCP2-/y (red) cultures as a function of
developmental age. Representative single spikes evoked by time in culture. (D) Data for the amplitude of the first AR (E) the
supra-threshold current injections in cultured neurons at (A) DIV 6, half-width at half height for the first AR (F) the initial firing frequency
(B) DIV 12, and (C) DIV 21. Repetitive spiking was evoked by current and (G) the frequency at the end of the train relative to the initial
injections shown in Figure 1M. (D-G) Analysis of the spiking firing frequency.

% for MeCP2 -/y cultures (n = 8 for each genotype, p > 0.39,
t-test).

DISCUSSION

Networks formed by neurons differentiated from MeCP2-/y mES
cells show clear functional deficits compared to wt cultures. Both
overall excitatory- and particularly inhibitory synaptic activity was

clearly significantly lower in MeCP2-/y compared to wt cultures.
Both sEPSCs and sIPSCs appeared at the same age (DIV 11) in
MeCP2-/y and wt cultures; and while we could not statistically
resolve it, the deficit in synaptic activity appears larger at later com-
pared to early developmental stages. We did not detect a significant
difference in the synapse density between wt and MeCP2-/y cul-
tures. A deficit in initial synapse formation or later in the number
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FIGURE 4 | Synaptic activity as a function of development. (A-C) Traces of (A), after bath application of NBQX (10 wM) and bath application of picrotoxin
spontaneous activity in voltage-clamp. Top traces at —40 mV holding potential (100 wM; C). (D2) Inserts show the same regions as in (D1) at higher temporal
bottom traces at —60 mV, respectively. (D) Pharmacological characterization of resolution. (E) Frequency of sSEPSCs as a function of time in culture for wt (black)
synaptic currents. (D1) Sample trace of one experiment with baseline recording and MeCP2-/y (red) cultures. *p < 0.05. (F) Same data for sIPSCs. *p < 0.01.
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FIGURE 5 | Comparison of synaptic marker expression. Mature neurons
from wt (A-C, G-1) and MeCP2-/y (D-F, J-L) were assessed
immunocytochemically on DIV 12, DIV 18 and DIV 21 for expression of the
presynaptic marker synaptophysin (A-F) and the marker of GABAergic
neurons GAD-67 (G-L). Scale bar: 20 um.

of synapses can therefore not fully explain the reduced synap-
tic activity. While we did not observe substantial differences in
cell densities between MeCP2-/y and wt cultures during develop-
ment, we cannot rule out subtle differences in cell numbers, which
may contribute to our findings. In particular, small changes in
the number of interneurons can also not be ruled out as a rea-
son for some of the deficit in GABAergic signaling, even though
our GAD67 stains did not show overt differences between the two
genotypes. Due to the technical difficulties in unambiguously dif-
ferentiating between glutamatergic and GABAergic neurons we
pooled the recordings from all recorded cells. Since glutamatergic
cells are clearly dominant in our cultures, our findings certainly
apply to this cell type. For future studies it would be interesting to
look at synaptic activity in the different neuron types and to fur-
ther investigate the mechanisms underlying the deficit in synaptic
activity.

We found small, but significant differences in voltage-gated
potassium currents and in AP half-with and -frequency between
genotypes. The biological significance of these small differences
is not clear. Voltage-gated potassium currents are significantly
stronger in young MeCP2-/y neurons compared to age-matched
wt neurons; this is compatible with the shorter AP half-width that

we observe in young MeCP2 deficient neurons. The AP frequency
is significantly higher in MeCP2-/y cultures; however, the effect
is not stable over time. Since MeCP2-/y neurons actually show a
higher propensity to spike and since the effects on synaptic activ-
ity are most pronounced at later developmental stages the lower
synaptic activity is clearly not a consequence of lower excitability
in MeCP2-/y cultures.

Previous studies using ES and iPS cultures have found dif-
ferences in the activity of voltage-sensitive sodium channels in
cultures of MeCP2-/y neurons (Okabe etal., 2010; Farra etal.,
2012). Such differences were not found in another study of cul-
tured neurons (Marchetto et al., 2010). Interestingly we do not find
a difference in Iy, but in Ix between MeCP2-/y and wt cultures
in our system. Several recent studies have looked at the impact
of MeCP2 mutations on intrinsic excitability in different brain
regions. In one study on locus coeruleus neurons, the authors
found altered expression levels of several voltage-dependent con-
ductances in MeCP2-/y mice compared to wt controls (Zhang
etal.,, 2010a). APs had a lower threshold, but were slightly pro-
longed in MeCP2-/y neurons; the overall effect of the loss of
MeCP2 on neuronal excitability in this study depended some-
what on the cell type studied (Zhang et al., 2010a). In other brain
regions, such as the cortex, no differences in intrinsic excitability
were detected between MeCP2 deficient and wt mice (Dani etal.,
2005). MeCP2 expression seems to affect neuronal excitability
relatively mildly and in a cell-type dependent manner.

Several groups have studied synapse development and plasticiy
in MeCP2 mutated mice (Nelson etal., 2006; Chao etal., 2007;
Dani and Nelson, 2009; Wood etal., 2009; Zhang etal., 2010b).
In all of these studies, deficits in synaptic maturation either of
excitatory, or inhibitory connections were found after a certain
developmental delay. This indicates that deficits in connectivity
after an initially normal period of synapse formation are a com-
mon finding in mouse models of RTT. A lack of fundamental
deficits in neuronal excitability, paired with a deficit in synapse
maturation is also compatible with RTT patient’s symptoms,
which occur after a phase of initially normal mental develop-
ment. We now describe a variant of such a pathology in our mES
cell-derived neurons.

The molecular nature of the synaptic deficit has not yet been
elucidated for any of the systems tested. The initially normal devel-
opment and the different effects on either excitatory or inhibitory
synaptic transmission in various brain regions argue against key
elements of the synaptic release machinery to be affected. In some
studies a reduced number of dendritic spines or of synapses was
described (Fukuda etal., 2005; Smrt et al., 2007). While we found
no difference in the overall density of presynaptic terminals, we
cannot be sure that the exact distribution of terminals is the same
in MeCP2-/y compared to wt cultures. Different studies have
found different types of synapses to be affected by a lack of MeCP2,
depending on the brain region studied (Noutel etal.,2011; Durand
etal., 2012). Alterations in cell adhesion molecules or scaffolding
proteins with differential distributions in different brain regions
could explain such findings.

Murine embryonic stem cell cell-derived neuronal cultures can
produce relatively homogeneous neuronal tissue with an essen-
tially limitless supply. Transcriptome analysis of such tissue might
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yield candidate molecules responsible for the deficits we observe.
Key elements of the known RTT pathology in early developing
neural networks could be replicated in our system. This makes it
a useful tool to further investigate functional deficits of MeCP2
deficient neurons and to study candidate interventions aimed at
slowing or reversing the changes observed.
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