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Neurodegenerative diseases in general and specifically late-onset Alzheimer’s disease
(LOAD) involve a genetically complex and largely obscure ensemble of causative and risk
factors accompanied by complex feedback responses. The advent of “high-throughput”
transcriptome investigation technologies such as microarray and deep sequencing is
increasingly being combined with sophisticated statistical and bioinformatics analysis
methods complemented by knowledge-based approaches such as Bayesian Networks or
network and graph analyses. Together, such “integrative” studies are beginning to identify
co-regulated gene networks linked with biological pathways and potentially modulating
disease predisposition, outcome, and progression. Specifically, bioinformatics analyses
of integrated microarray and genotyping data in cases and controls reveal changes in
gene expression of both protein-coding and small and long regulatory RNAs; highlight
relevant quantitative transcriptional differences between LOAD and non-demented control
brains and demonstrate reconfiguration of functionally meaningful molecular interaction
structures in LOAD.These may be measured as changes in connectivity in “hub nodes” of
relevant gene networks (Zhang et al., 2013). We illustrate here the open analytical questions
in the transcriptome investigation of neurodegenerative disease studies, proposing “ad
hoc” strategies for the evaluation of differential gene expression and hints for a simple
analysis of the non-coding RNA (ncRNA) part of such datasets. We then survey the
emerging role of long ncRNAs (lncRNAs) in the healthy and diseased brain transcriptome
and describe the main current methods for computational modeling of gene networks. We
propose accessible modular and pathway-oriented methods and guidelines for bioinformat-
ics investigations of whole transcriptome next generation sequencing datasets. We finally
present methods and databases for functional interpretations of lncRNAs and propose a
simple heuristic approach to visualize and represent physical and functional interactions of
the coding and non-coding components of the transcriptome. Integrating in a functional
and integrated vision coding and ncRNA analyses is of utmost importance for current and
future analyses of neurodegenerative transcriptomes.

Keywords: neurodegenerative diseases, bioinformatics and computational biology, next-generation sequencing,

non-coding RNA, biological networks

INTRODUCTION
Recently emerging bioinformatics analyses of integrated
microarray, next generation sequencing (NGS) and genotyping
data in brain and peripheral blood cell samples from neurode-
generative disease cases and matched healthy controls consistently
reveal changes in gene expression of both protein-coding and small
and long regulatory non-coding RNAs (ncRNAs); highlight rele-
vant quantitative transcriptional differences between demented
and non-demented control brains and demonstrate reconfigura-
tion of functionally meaningful molecular interaction structures
that may be measured as changes of connectivity in “hub nodes”
of relevant gene networks (Karni et al., 2009; Zhang et al., 2013).
These developments call for constructing complete and coherent

tool kits whereby the contributions of these specific groups of
transcripts to the initiation and progression of disease will be
elucidated.

“Regulatory” ncRNAs predominantly affect the expression
and/or functioning of protein-coding genes. NcRNAs show dif-
ferent biogenesis routes and modes of action, and can be broadly
classified based on their size. Small RNA species of less than 200
nucleotides include the microRNAs (miRNAs), which have already
emerged as important modulators of development, homeostasis
and disease by regulating protein levels, mainly at the post-
transcriptional stage. Recent evidences suggest that miRNAs may
also directly regulate transcription by interaction with the pro-
moter region of divergently transcribed genes (Matsui et al., 2013),
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suggesting new insights in the complex relationship between small
RNAs, longer transcripts and the quantitative ratio between them.

A substantial fraction of longer transcripts (>200 bp) in mam-
malian genomes do not code for proteins and are usually expressed
at a low level. These are classified according to their relative
position with respect to the coding gene structure and include
long ncRNAs (lncRNAs) and long intergenic ncRNAs (lincRNAs).
LncRNAs (also known as processed transcripts) by definition are
found within protein-coding genes, overlapping with promoters,
exons or introns in either sense or antisense orientations. LincR-
NAs, on the other hand, are always found in intergenic regions.
There is increasing evidence that lncRNAs are involved in brain
development and that different lncRNAs are expressed in dif-
ferent neuroanatomic areas, and possibly acting on chromatin;
hinting at a regulatory function at the spatio-temporal level of
gene expression (Mercer et al., 2008). It is now widely accepted
that lncRNAs can have numerous molecular functions, including
modulating transcriptional patterns, regulating protein activities,
serving structural or organizational roles, altering RNA processing
events, and serving as precursors to small RNAs.

The number of lncRNA species increases in genomes of devel-
opmentally complex organisms, which highlights the importance
of RNA-based levels of control in the evolution of multicellular
organisms (Fatica and Bozzoni, 2013). Most common neurode-
generative diseases of the human brain, however, are either not
detected in other species, or else they manifest themselves in dif-
ferent ways. Furthermore, a significant fraction of ncRNAs are
primate-specific. Taken together, these two pieces of evidence
may suggest that the progressive disruption of regulatory lncR-
NAs plays an important role in neurodegenerative syndromes.
However, current systems-level analyses of gene regulatory net-
works are primarily focused on protein-coding genes, which make
up a mere 2% of the human transcriptional output but whose
cellular functions are better understood. That highly structured
ncRNAs interact with chromatin or provide docking sites for bind-
ing proteins or other RNAs suggests that they bridge the gap
between protein complexes and sequence information encoded
in the genome. This hidden layer of RNA regulatory networks
may be central to developmental and homeostatic processes, and
its deregulation could be consequently involved in degenera-
tive neurological disorders such as Alzheimer’s and Parkinson’s
disease.

The different and diverse modes of action of regulatory RNAs
adds another level of complication, in that such regulation would
not necessarily change the observed level of expression of the tested
coding transcripts but may block or support their functioning in
other upstream or downstream ways. This implies that the cus-
tomary use of threshold-dependent technologies may miss part of
these effects and mask others, and calls for developing threshold-
independent analysis modes. Based on all of these considerations,
we propose here the concepts and tools for functional investigation
of full-transcriptome next-generation sequencing datasets, with
focus on both the coding and non-coding ensembles. We examine
in a first instance the statistical aspects linked with the evaluation
of differential expression in these systems. We then analyze the
relevance of ncRNAs in neurodegeneration. We suggest a strat-
egy to implement a network-based integrated exploration of the

outcome of differential gene expression analysis. We introduce
lncRNAs Finally, we suggest a strategy to integrate and display the
coding and ncRNA aspects in a gene network. Such a bioinfor-
matics procedure could be then adapted and applied to original
experimental data in late-onset Alzheimer’s disease (LOAD) and
other neurodegenerative diseases, where complex cell diversities
are involved and no drastic transcriptional changes are measured
between disease and control as opposed, for instance, to cancer
studies.

GUIDELINES FOR TRANSCRIPTOME DIFFERENTIAL
EXPRESSION ANALYSIS APPLIED TO NEURODEGENERATIVE
DISEASES
Systematic transcriptome study in neurodegenerative diseases
such as amyotrophic lateral sclerosis, Parkinson’s, and Alzheimer’s
diseases (AD) has advanced considerably in recent years, allud-
ing to common patterns such as dys-regulation of genes related
with neuroinflammation, splicing, intracellular signaling path-
ways and mitochondrial dysfunctions (Cooper-Knock et al., 2012).
In LOAD, the best distinction refers to cognitive deterioration;
hence, cognitive stratification of samples may help to identify
gradual transcriptome changes along disease progression.

Our laboratory (Barbash and Soreq, 2012) recently proposed
a novel strategy to explore brain transcriptome datasets from
cognitively stratified patients at different disease stages for uni-
fying the AD molecular patterns involved in disease initiation and
progression. Conventional threshold-dependent analysis methods
identify transcripts that are drastically modified in AD, ignoring
those within-threshold transcripts whose level was only marginally
changed. However, if each member of a group of genes rele-
vant to AD etiology is marginally up-regulated, one might expect
a relevant pathological state in the observed tissue even in the
absence of major gene changes. In this threshold-independent
approach, therefore, we compared the distribution of changes in a
well-defined gene group with the global distribution of the exper-
iment. This method allows identification of cumulative changes
in groups of genes defined by a common parameter: acting in the
same pathway, located in the same cellular organelle, and so on.
This approach has been applied to the meta analysis of a large
number of microarray datasets (Barbash and Soreq, 2012), con-
tributing to the identification of coherent and progressive early
onset hippocampal-specific changes in biological processes such
as synaptic transmission, protein folding and RNA splicing known
to be affected in end stage AD, but for which the dynamics was not
yet reported in the literature.

Starting from this background, we reasoned that many rele-
vant gene changes in AD and other neurodegenerative diseases
may go unnoticed also in the differential expression analysis of
whole transcriptome NGS datasets, which in addition to known
exons and transcripts identifies previously unknown regulatory
RNAs. There are two main conceptual starting points for the anal-
ysis of this kind of data. The older, and widely used, strategy
(TopHat/Cufflinks/Cuffdiff) starts from sequence assembly and
transcript reconstruction, performs abundance estimation and
evaluates differential expression (Trapnell et al., 2010). Cufflinks
constructs a parsimonious set of transcripts that “explain” the
reads observed in a RNA-seq experiment, doing so by reducing the
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comparative assembly problem to a mathematical problem (max-
imum matching in bipartite graphs). It works particularly well
with paired reads; and in systems where there is a relevant change
in gene expression associated with a relative amount of change in
alternative splicing. Nevertheless, apparent changes in neurode-
generative disease transcriptomes may reflect relevant and massive
changes in the alternative splicing pattern, while being accompa-
nied by complex modest changes in gene expression (Berson et al.,
2012). Therefore, it is doubtful that this algorithm can handle well
the kind of analyses that are associated, for instance, with cognitive
stratification of LOAD samples.

A second and more recent strategy for the analysis of NGS
transcriptome datasets is based on the assumption that the cor-
rect distribution for modeling the distribution of reads on the
target genome is a binomial negative, and that an “ad hoc” nor-
malization method should be employed (Robinson et al., 2010).
This method; however does not (yet) provide relevant informa-
tion on the structural transcript variations, since it is based on
read counts associated with each gene, and hence it is insensi-
tive to at least part of the relevant splicing changes associated
with the progression of neurodegenerative events. On the other
hand, for the same reason, statistical values [false discovery
rate (FDR)] will be often reported as non-significant due to
the small and widely distributed changes in gene expression
that may only be detected by the non-threshold methods. A
third analytical strategy consists of using a method very similar
to the primary analysis of microarray datasets: perform upper
quantile normalization of the values of gene-associated Read
Counts per Million (i.e., the read count scaled to 1 million
for each sample); evaluate differential expression with an exact
t-test; and correct multiple testing using the Benjamini–Hochberg
approach.

A strategy we propose here for the evaluation of ranked dif-
ferential gene expression in neurodegenerative diseases, especially
in cohorts stratified by cognitive deterioration, is to apply to the
same samples two different differential gene expression methods
from the three which we have listed above; correlate by sign and
compare the Log2 Fold Change values, without in a first instance
imposing a statistical threshold or even considering the FDR val-
ues; finally, to apply a simple linear model with residual plots to
evaluate the statistics and the residuals. Only those genes that show
the same sign of variation between two methods, with a Log2FC of
at least ±0.40, should be included in a differentially expressed gene
list for the subsequent functional analyses. The statistic (corrected
P-values) of the method that worked better for the FDR evalu-
ation should confirm the generation of reliable results with this
simple strategy. Figure 1 shows the effect of comparing the same
samples (AD vs. non-demented healthy controls) using two dif-
ferent methods: Cufflinks and edgeR vs. Cufflinks and Fisher. The
different convergence of methods will produce non-correlated, or
correlated, lists of differentially expressed genes with the same
sign, when sorted by Fold Change. Examining Figure 1, it is read-
ily apparent from the correlation plots and values and from the
residuals histogram and normal plot that only analyzing these
NGS whole transcriptome datasets with the intersection of edgeR
and a method based on upper quantile normalization and Fisher
test we will obtain a robust set of differentially expressed genes,

upregulated and downregulated. Recent advances in Bayesian
methods applied to the analysis of differential expression (Glaus
et al., 2012; Bi and Davuluri, 2013) reveal interesting advantages in
comparison to the other established methods based on transcript
reconstruction or binomial negative read mapping distribution, so
they may represent interesting alternatives to the strategy reported
here.

Concerning lncRNA transcriptome analyses, important con-
sideration must be given to the choice of reference transcriptome
database. A comprehensive specialized lincRNA database has
recently become available (Xie et al., 2014; Noncode1), and
the Ensembl project2 and related annotation from the BioMart
project/Havana group at the Sanger Institute provide effec-
tive identification, classification and counting of differentially
expressed non-coding transcriptomes associated with Parkinson’s
disease treatment including an elaborate lincRNA subset (Goedert
and Spillantini, 2006). Software capable of local alignments such
as the latest version of bowtie23 is suggested for ncRNA searches,
given the high sequence heterogeneity of these transcripts. Prelim-
inary results of in-house unpublished bioinformatics analyses of
whole transcriptomes from early and advanced AD and Control
samples identified around 9.900 lncRNA transcripts, of which 600
were differentially expressed in the diseased brains (P value < 0.05
for each comparison). Among these annotated ncRNA transcripts
we found antisense RNAs; small nucleolar RNA host genes; tran-
scribed pseudogenes and non-coding transcripts from human
leukocyte antigen regions. This example highlights a varied non-
canonical transcript panorama, which calls for further functional
and integrated transcriptome annotation and functional predic-
tions. Section 5 will introduce some updated approaches to tackle
this problem.

THE ROLE OF LONG ncRNAs IN NEURODEGENERATIVE
DISEASES
A growing body of evidence links various ncRNAs with neurode-
generative diseases in general and specifically with AD. Both small
and long non-coding RNAs are identified as possible suspects
in this context by involvement with various neurodegeneration-
related processes and proteins; these ncRNAs might be involved
both in disease etiology and its progression. Therefore, intensified
research of these ncRNAs can assist in both unveiling the mysteries
that still remain in the processes underlying various neurodegener-
ative conditions and in identifying possible candidate target genes
for therapeutic interference.

The first example we will describe is that of β-Secretase-1
(BACE1). Cleavage of amyloid precursor protein (APP) to yield the
amyloid beta (Aβ) peptide by BACE1 rather than by α-Secretase
at a later stage enables the protein’s cleavage by γ-Secretase,
which causes the formation of characteristic LOAD neuropathol-
ogy of aggregated amyloid “plaques” (Faghihi et al., 2008). BACE1
mRNA is regulated by both short and lncRNAs. The transcript
is subjected to down-regulation by several miRNAs, as well as
to up-regulation by the lncRNA BACE1-anti-sense (BACE1-AS;

1http://www.noncode.org/
2http://www.ensembl.org/info/genome/genebuild/ncrna.html
3http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
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FIGURE 1 | (Left) Statistics on the differential expression results of AD whole
transcriptome samples vs. non-demented controls, calculated by edgeR and
Cufflink/Cuffdiff, sorted, and compared by Log2 Fold Change only, i.e.,

without any FDR threshold. (Right) Same statistics on the same samples,
using the Log2 Fold Changes elaborated with edgeR and the simple Fisher
test procedure described in the text. Hist: histogram.

Faghihi et al., 2008). The miRNA mechanism of operation was
already described; but BACE1-AS displays a different mechanism
of action. Specifically, the non-coding transcript is partially com-
plementary to the coding transcript. The two bind to form a
partially double-stranded RNA, increasing BACE1 mRNA stabil-
ity – and therefore increasing both BACE1 mRNA and protein
levels in the cell (Faghihi et al., 2008). Interestingly, both BACE1
and BACE1-AS transcripts are up-regulated in Alzheimer’s brains,
compared to control brains (Faghihi et al., 2008). Therefore, dis-
ruption of the regulatory nature of both short and long transcripts
might change BACE1 protein levels, either promoting or inter-
rupting with Aβ aggregates formation and consequently with AD
pathology.

Sortilin-related receptor-1 (SORL1) is yet another protein that
is connected to AD. This protein’s function is still not entirely
understood; however, it is believed to be involved in endocy-
tosis, and also in APP recycling. SNPs in this gene have been
associated with LOAD, by a possible mechanism of improper recy-
cling of APP that allows the latter’s compartmentalization with
BACE1, resulting in Aβ formation (Rogaeva et al., 2007). SORL1
was found to be down-regulated in cerebrospinal fluids removed
from AD patients (Ma et al., 2009) – However, an ncRNA tran-
scribed in an antisense fashion from intron1 in the SORL1 gene is
up-regulated in post-mortem AD brains. This ncRNA, annotated
A51, promotes alternative splicing of SORL1, to the formation of
a protein with poorer performance in APP localization, elevating
Aβ accumulation and aggregation – hence possibly escalating neu-
rodegenerative events and pushing toward the development of AD
(Ciarlo et al., 2013).

Another antisense lncRNA which up-regulates protein levels
is ubiquitin carboxyl-terminal esterase L1-AS (UCHL1-AS; Car-
rieri et al., 2012). UCHL1 is a De-Ubiquitinase highly abundant
in the brain. A mutation in this gene was identified in a rare
form of a familial Parkinson’s disease (Leroy et al., 1998), known
as PARK5 (Lesage and Brice, 2009). A different mutation was
found in a rare progressive neurodegenerative disease (Bilguvar
et al., 2013). Both mutations lead to the creation of a loss of
function protein (Leroy et al., 1998; Bilguvar et al., 2013), indi-
cating that proper de-ubiquitination and UCHL1 amounts are
critical to avoid neurodegenerative deterioration. The UCHL1-
AS ncRNA binds in its 5′ Region to the coding transcript’s 5′
Region and causes up-regulation of protein levels without affecting
mRNA levels (Carrieri et al., 2012). Such change in protein levels
might have functional implications, and might have an impact
on neurodegenerative pathology without any change in transcript
levels.

Another possible aspect of lncRNA involvement in neurode-
generative disease may be in their functioning as competing
endogenous RNAs (ceRNA). CeRNAs are transcripts that include
miRNA recognition elements (MREs), and are therefore com-
peting with other miRNA targets on miRNA binding, providing
a layer of regulation over miRNA function (which is, by itself,
regulatory). CeRNAs can be either pseudogenes (Poliseno et al.,
2010) or lncRNAs (Cesana et al., 2011). Many lncRNAs with pos-
sible MREs have been identified through bioinformatics analyses
as being differentially expressed in several neurodegenerative dis-
eases – Huntington’s disease (HD), AD and PD (Costa et al., 2012;
Soreq et al., 2014). These lncRNAs might each affect multiple
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miRNAs, and through them many mRNA targets and the expres-
sion of many proteins – possibly explaining at least part of the vast
transcriptional differences caused by neurodegenerative disease.

A possible emerging therapeutic aspect for ncRNAs can be
observed in HD. HD is a severe progressive neurodegenerative dis-
order, with a known genetic cause – additional CAG nucleotides
repeats in the Huntingtin (htt) gene. The disease involves deple-
tion of brain-derived neurotrophic factor (BDNF) in the caudate
and putamen nuclei of the striatum, involved in HD pathology
(Ferrer et al., 2000). BDNF is weakly transcribed in the stria-
tum, but is rather efficiently transcribed in the cerebral cortex
from where it is anterogradely transported to the striatum (Altar
et al., 1997). Over-expression of BDNF in the frontal cortex of
HD-model mice seems to improve many of the HD symptoms
(Gharami et al., 2008). The lncRNA BDNF-AS, also known as
BDNF opposing strand (BDNFOS) is an antisense non-coding
transcript to BDNF that down-regulates the amount of BDNF
(Modarresi et al., 2012). Inhibition of this antisense transcript by
small interfering RNA (siRNA) causes up-regulation of BDNF,
both in vitro (in mouse and human cell lines) and in vivo (in
mice; Modarresi et al., 2012). Is it possible to use such siRNA
to up-regulate BDNF and ameliorate HD symptoms? Time will
tell.

GENE NETWORKS AND THEIR APPLICATION IN
INTERPRETING WHOLE TRANSCRIPTOME DATASETS: AN
APPLICATION TO A NEURODEGENERATION STUDY
The cell is an integrated device made of several thousand types of
interacting proteins, each of which is a molecular machine that
carries out a specific task with precision. Cells live in a dynamical
environment, where different situations require different proteins.
For instance, when a cell senses a nutrient, or a risk of damage,
it reacts accordingly by synthesizing transport channels or repair
proteins. The cell therefore continuously monitors its environ-
ment and keeps calculating the amounts at which each type of
protein is required. This information-processing function largely
determines the rate of production and turnover of each protein,
and is primarily carried out by gene networks.

The most familiar gene networks illustrate the dynamics
behavior of the cell following exposure to an external signal
(input): transcription networks where nodes are genes and edges
represent transcriptional regulation of one gene by the pro-
tein product of another gene. Other gene networks include
signaling pathways; functional interaction (FI) networks and
modules; physical interaction networks; biochemical networks
and so on. Biologically significant gene networks show a set
of features which distinguishes them from random networks:
the median number of gene connections must be greater than
two; the degree distribution of the gene-to-gene connections
must exhibit a tail indicating that many genes are poorly con-
nected while few are highly connected (“gene hubs”); gene-to-gene
interconnections must indicate that the network is enriched
in “cliques,” that is, sets of genes that are all pairwise con-
nected. Such properties of non-random gene-to-gene connections
and the structure of these interconnections to form cliques are
characteristic of many biological networks (Khanin and Wit,
2006).

Differential equations currently form the most prominent
approach for the modeling, analysis and simulation of molecu-
lar interaction networks. There is, however, a growing interest
in qualitative network analysis approaches, capable of inferring
qualitative properties of the system dynamics from the cur-
rently available incomplete and non-quantitative data. Non-linear
dynamics networks, Boolean networks and graphs are the most
popular approaches to qualitative networks, and the last approach
is the one mostly used in the applications we present here.

The representation of a gene network (such as a gene regulatory
network) as a graph allows the analysis of its structural properties
by means of graph-theoretical techniques. The global connectivity
properties of the network can, for instance, be described by the
average degree and the degree of distribution of the vertices. The
degree k of a vertex indicates the number of edges to which it is
connected; together with the average k degree and the k degree
distribution of the graph, it forms a set of properties that give an
indication of the complexity of the graph and allow different types
of graphs, and therefore networks, to be distinguished.

A very interesting, comprehensive and recent work compared
microarray gene expression datasets between LOAD (376 samples)
and control (173 samples) non-demented subjects, using a com-
plex integrated approach (Zhang et al., 2013). Many hundreds of
carefully selected brain tissues were profiled both by gene expres-
sion analyses using microarrays and by genomic DNA genotype
analyses. Gene expression traits showing individual variability
in transcript profiles were identified; the correlation (connectiv-
ity) strength between differentially expressed genes was calculated,
and hierarchical cluster analysis was performed to construct the
undirected gene co-expression network. Simultaneously, single
nucleotide polymorphisms in brain DNA (eSNPs) were used as
causal anchors in the construction of directed relationships among
nodes in the network. Comparison of networks in LOAD and non-
demented brains was performed to explore any effect on molecular
interaction structures associated with the disease. Differentially
connected modules in LOAD were investigated for their func-
tional organization, module relevance to clinical outcome, as well
as the enrichment of brain eSNPs. Finally, modules were rank-
ordered for their strength of the functional enrichment, module
correlation to neuropathology, and eSNP enrichment.

While this huge effort could not have detected lncRNAs
which may be absent from the employed microarrays, the
results highlight interesting functional modules. A module cor-
related with multiple LOAD clinical covariates was identified as
being enriched with immune functions and pathways related
to microglia activity. This module includes many classified as
members of the complement cascade, such as toll-like receptor
signaling, chemokines/cytokines, the Major Histocompatibility
Complex, and the Fc-receptor system. This and many other
studies on the neuro-inflammation correlates of LOAD supports
the notion that targeting genes “located” in the center of the
most inter-connected hubs may effectively disrupt disease-related
networks for the purpose of therapy.

Another recent computational approach to identify functional
network modules possibly implied in AD (Mayburd and Bara-
nova, 2013) starts from gene lists, processed into different tiers
of evidence consistently established by enrichment analysis across
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subsets of the same experiments and across different experiments
and platforms. The “Cut-offs” were established through ontolog-
ical and semantic enrichment, and the resulted shortened gene
lists were re-expanded by Ingenuity Pathway Assistant tool4. The
resulting sub-networks provided the basis for generating mecha-
nistic hypotheses on the AD etiology that were partially validated
by literature searches; these were called Compact Disease Model
(CDM).

A simple and accessible, yet quite powerful, system for perform-
ing functional network analysis starting from gene sets is based
on functional protein interaction networks (Wu et al., 2010). The
focus here is on biological pathways. Pathway-based hypothesis
generation is the basis for several popular data analysis systems,
including GOMiner (Zeeberg et al., 2005), Gene Set Enrichment
Analysis (Subramanian et al., 2005) and commercial tools such as
Ingenuity Systems.

Reactome (Matthews et al., 2009)5 is an expert-curated, highly
reliable knowledgebase of human biological pathways. Pathways in
Reactome are described as a series of molecular events that trans-
form one or more input physical entities into one or more output
entities in catalyzed or regulated ways by other entities. Entities
include small molecules, proteins, complexes, post-translationally
modified proteins, and nucleic acid sequences. Each physical entity
is assigned a unique accession number and associated with a sta-
ble online database. This connects curated data in Reactome with
online repositories of genome-scale data such as UniProt and
EntrezGenes; ad makes it possible to un-ambiguously associate
a position on the genome with a component of the pathway.

In contrast to pathway databases, collections of pairwise rela-
tionships among protein and genes offer much higher coverage but
can draw in their results a noticeable number of “false” relation-
ships between gene products, since a physical interaction does not
obligatorily include a biological relationship. A FI network (Wu
et al., 2010) combines curated interactions from Reactome and
other pathway databases with un-curated pairwise relationships
obtained from physical protein–protein interactions (PPi’s) net-
works in human and model organisms, gene co-expression data,
protein domain-domain interactions, protein interactions gener-
ated from text mining, and gene ontology (GO) annotations. This
approach uses a naive Bayes classifier (NBC) to distinguish high-
likelihood FIs from non-functional pairwise relationships as well
as outright false positive ones.

Cytoscape (Saito et al., 2012)6 is an open source software plat-
form for visualizing molecular interaction networks and biological
pathways and integrating these networks with annotations, gene
expression profiles and other datasets. This software integrates
analytical components through the concepts of “plugins,” and a
plugin is available for the generation of Reactome FI networks
from gene lists7.

Based on all of the above, we propose a strategy to extract func-
tionally connected modules from lists of differentially expressed
coding genes by following one of the analytical approaches detailed

4http://www.ingenuity.com/products/ipa
5http://www.reactome.org/
6http://www.cytoscape.org
7http://wiki.reactome.org/index.php/Reactome_FI_Cytoscape_Plugin

under “Differential Expression Analysis.” Our strategy involves
application of the Reactome search for FI to selected lists of genes
with their relative Log2 Fold Change values (up- or down-) in
the neurodegenerative brain. Manual selection from Cytoscape
of a particular FI network containing a subset of the input gene
lists enables to plugin a request to globally evaluate pathway and
GO (MF/BP/CC) enrichment within this network. Given the
importance and relevance of transcript modules, their FI plu-
gin identification in the main networks of Cytoscape or Reactome
should be followed by repeated enrichment analysis on each mod-
ule. An update to the Reactome FI interaction module has been
recently added (in 2013); however, using a more regularly main-
tained annotation resource such as Ingenuity could be important
in terms of the sensibility and specificity of network identifica-
tion. Enriched pathway lists can then be compared and intersected
between different comparisons and conditions, yielding a high-
profile view of the main functional clusters mobilized under
disease progression or, simply, in the healthy/diseased transition.
Figure 2 presents an example of such a functional module based
on NGS differential expression analysis from LOAD compared
to non-demented brain and generated from the main FI network.
This module highlights a calculated enrichment in down-regulated
major histocompatibility complex genes, supporting the recent
report by Zhang et al. (2013).

INTERPRETING LONG ncRNAs THROUGH FUNCTIONAL
ANNOTATION AND TRANSCRIPTIONAL NETWORKS;
PRIMARY APPLICATION TO A NEURODEGENERATION STUDY
The ncRNA-oriented interpretation of NGS transcriptome
datasets in disease (and often in neurodegeneration) studies
involves innovative and promising emerging directions. These
include integration of the information derived from the dif-
ferential analysis of coding and ncRNAs based on biomedical
annotations reported in specialized resources such as ncRNA
databases, Pubmed and OMIM. In addition, interesting semi-
supervised learning methods have recently been proposed for
efficient classification of lncRNA and disease state based on
lncRNA expression profiles and associated comparisons (Chen and
Yan, 2013; Yang et al., 2014). A recently proposed global prediction
method for functional annotation of lncRNAs (Guo et al., 2013)
involves the construction of a so-called “bi-colored” biological
network combining two type vertices (protein-coding and non-
coding genes) as well as two type edges (co-expression and PPi’s) in
the network. A number of case studies, including brain-expressed
lncRNAs with predicted neuronal functions, suggest an advantage
of bi-colored networks as compared to, for instance, co-expression
networks (Guo et al., 2013). Although this approach has only been
applied to murine data and is not yet available as usable software,
it is clearly a very promising and powerful predictive annotation
method.

The rapidly growing list of ncRNA sequences annotated in pub-
lic databases such as Noncode (Xie et al., 2014)8 has reached the
noticeable total number of 210,831 lncRNAs in its latest release
(v.4). However, immediately usable and well-established meth-
ods for understanding the functional role of lncRNAs are still

8http://www.noncode.org
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FIGURE 2 | A functional interaction network module from an AD

vs. control NGS dataset analysis. The intensity of the green color in
the border of the nodes represent the Log2FC – darker green
corresponds to minor negative Log2FC, i.e., the most down-regulated

genes. The edges represent functional interactions detected between
the nodes; these can be non-directed, directed stimulatory (arrows),
directed repressor (T-shaped edges) or inferred (discontinuous line
edges).

lacking, even for those associated with the phenotype of interest.
Likewise, it is still impossible to readily integrate the regulatory
roles of differentially expressed lncRNAs with the gene networks
of differentially regulated coding RNAs identified in the samples
of interest. A simple strategy we propose to address this issue is
to integrate the representation of regulatory relationships between
coding and non-coding genes in terms of networks by combining
the use of publicly available information resources (specialized
ncRNA databases, PubMed etc.) and the Cytoscape software. The
starting point is a table of regulatory links, e.g., literature search
for ncRNAs/coding gene or PPi relationships in neurodegenera-
tive diseases, starting from NGS transcriptome-based ncRNA gene
list. Table 1 presents an example for such a study based on datasets
derived from AD vs. normal control brains.

This table can be suitably reformatted and elaborated in
Cytoscape, generating one or more network representation. In
Figure 3, every interaction type described in Table 1 corresponds
to a different edge line format; for instance, the “alternative
splicing” relationship is represented by continuous line edges
between the nodes; “repress_transcription” by a discontinuous
point and segment line; “promotes_amyloid beta” by a double
line edge and so on. Diamonds and ellipses represent ncRNA
and coding genes, respectably. Directions of edges represent
the direction of the FI, with arrow colors specifying positive
(red), negative (green), or unknown (black) interactions. Such

visual representation of literature-derived lncRNA/coding RNA
interactions can be a useful starting point for integrating other
functional information associated with the coding genes in these
nodes.

A parallel strategy has recently been extended by another group
(Xie et al., 2014), generating two distinct networks which can be
integrated through a single bipartite lncRNA-disease network: a
lncRNA-implicated disease network (lncDN), in which the nodes
are disease and the links are lncRNAs; and a disease-associated
lncRNA network (DlncN), in which the ncRNAs are nodes and
the diseases are edges. Formal network analysis techniques, such
as analysis of the network degree of distribution or topology
and comparison with random networks highlighted the biological
plausibility of this initial representation. The starting approach
was the same as the one proposed here [data mining of specialized
databases such as LncRNADisease (Chen et al., 2013) and manual
paper scanning], and two tables were released: one linking dis-
eases (including AD) with lncRNAs and another linking lncRNAs
with other elements such as other RNAs, proteins, transcription
factors and so on. These tables could be used to originate represen-
tations in Cytoscape with the method described above including
also original information from the transcriptome NGS experiment
under examination.

Current strategies for constructing databases of interaction
networks primarily rely on the “heuristic” interactions derived
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Table 1 | A selection of known coding/non-coding or coding/coding gene or protein–protein interactions involved in neurodegenerative

diseases, derived from the current literature.

Gene_ID ncRNA ? TGT_ID ncRNA ? Interaction_type Direction Pos/Neg Reference

A51 Y SORL1 N Alternative_splicing > ? Ma et al. (2009)

BACE1-AS Y BACE1 N Post-transcriptionally_activate > + Faghihi et al. (2008)

17A Y GABA B2 N Alternative_splicing > ? Massone et al. (2011)

NMD29 Y APP N Promotes_amyloid beta > + Massone et al. (2012)

HAR1F Y REST N Repress_transcription < − Johnson et al. (2010)

HAR1R Y REST N Repress_transcription < − Johnson et al. (2010)

BDNFOS Y BDNF N Post-transcriptionally_repress > − Ferrer et al. (2000)

UCHL1-AS Y UCHL1 N Post-transcriptionally_activate > + Carrieri et al. (2012)

HTTAS Y HTT N Post-transcriptionally_repress > − Chung et al. (2011)

BACE1 N APP N Promotes_amyloid beta > ? Goedert and Spillantini (2006)

HTT N BDNF N Promotes_transport > + Gauthier et al. (2004)

UCHL1 N APP N Unknown ? ? Cottrell et al. (2005)

HTT N REST N Promotes_proper_localization > + Zuccato et al. (2003)

The first and third columns report the source and target genes for a given interaction. The second and fourth column report whether the gene or the target is a
non-coding RNA. The fifth column reports a range of classified interaction types which have been created “ad hoc” from what is available from the literature. The
sixth column reports the direction of the interaction, the seventh column whether this is a positive or a negative interaction, and the last column reports the relevant
reference.

FIGURE 3 | A Cytoscape network representation of ncRNA/coding RNA and coding RNA/coding RNA manually annotated functional interactions

described inTable 1. Diamonds represent ncRNA genes, ellipses represent coding genes. The functional meaning of the graphical format of the edges,
including the color, is explained in the main text.
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from careful database and literature scans. Yet more recently, a
growing number of databases of RNA–RNA and protein-RNA
interactions from CLIP-Seq experiments report annotated inter-
action networks between miRNA–circRNAs, miRNA–mRNA, and
miRNA–lncRNAs (Li et al., 2014; Yuan et al., 2014). In par-
ticular, NPinter9 is focused on interactions between ncRNAs
(excluding tRNAs and rRNAs) and other biomolecules (proteins,
RNAs and genomic DNA). These interactions are represented
with the same Cytoscape web layout we propose here, are anno-
tated as far as this is currently possible and their use may
complement the procedure described above, providing a func-
tional view of entire NGS transcriptome analyses, with focus on
lncRNAs.
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