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The microtubule-associated protein (MAP) tau plays a critical role in the pathogenesis of
Alzheimer’s disease (AD) and several related disorders collectively known as tauopathies.
Development of tau pathology is associated with progressive neuronal loss and cognitive
decline. In the brains of AD patients, tau pathology spreads following an anatomically
defined pattern. Mounting evidence strongly suggests that accumulation of abnormal
tau is mediated through spreading of seeds of the protein from cell to cell and point
at the involvement of extracellular tau species as the main agent in the interneuronal
propagation of neurofibrillary lesions and spreading of tau toxicity throughout different
brain regions in these disorders. That would support the concept that pathology initiates
in a very small part of the brain many years before becoming symptomatic, spreading
progressively to the whole brain within 10–20 years. Understanding the precise molecular
mechanism underlying tau propagation is crucial for the development of therapeutics for
this devastating disorder. In this work, we will discuss recent research on the role of
extracellular tau in the spreading of tau pathology, through synaptic and non-synaptic
mechanisms.
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INTRODUCTION
A common pathological feature of many neurodegenerative dis-
eases, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), Huntington’s disease (HD), amyotrophic lateral sclerosis
(ALS) or prion diseases, among others, is the abnormal deposition
of proteins in the brain. Among these pathological proteins,
the MAP tau forms intraneuronal filaments in a spectrum of
neurological disorders collectively known as tauopathies.

Tau protein is a MAP that under physiological conditions
regulates microtubules (MT) assembly, dynamic behavior, and
spatial organization, and has also been shown to regulate the
axonal transport of organelles, including mitochondria. The gene
encoding tau protein MAPT is located on chromosome 17q21.3,
spans approximately 150 kb and consists of 16 exons (Pittman
et al., 2006) from which six major isoforms are expressed in
adult brain through alternative splicing (reviewed in Andreadis,
2012). The interaction between tau and tubulin is mediated by
four imperfect repeat domains (encompassing 31–32 residues)
encoded by exons 9–12 (Lee et al., 1989). Alternative splicing of
exon 10 results in the production of isoforms containing 3 or 4
binding domains (3R and 4R tau) (Himmler et al., 1989).

Adult human brain contains equal amounts of 3R and 4R
isoforms whereas foetal brain, however, only expresses 3R tau,
demonstrating developmental regulation of exon 10 splicing
(Goedert et al., 1989). Different brain regions also differ in the
relative levels of 3R and 4R isoforms with granule cells in the hip-
pocampal formation reported to have only 3R tau. Disturbances,

usually increases, in the 3R/4R ratio are a common feature in
most neurodegenerative tauopathies. Furthermore, morpholog-
ical differences exist among different diseases or disease types
as different tau isoforms are accumulated in diseased brains,
namely, six tau isoforms in AD, 3R tau isoforms in Pick’s disease,
and 4R tau isoforms in profressive supranuclear palsy (PSP) and
cortical basal degeneration (CBD; Goedert and Spillantini, 2011).
Interestingly, a recent study has shown that the 4R/3R ration may
have been underestimated in AD brains when compared with
PSP or CBD, presumably due to extensive deamidation at Asn279
(Dan et al., 2013).

Within neurons, tau is predominantly found in axons (Hanger
et al., 2009) as a highly soluble phosphoprotein (Iqbal et al.,
2009). Phosphorylation is also developmentally regulated, with a
high tau phosphorylation level during embryogenesis and early
development, when only the shortest of the isoforms is being
expressed. By contrast, adult brain expresses all six isoforms
with relatively reduced phosphorylation levels compared with the
foetal one (Liu et al., 2007).

The key discovery directly involving tau protein in neurode-
generation and dementia came from the finding that highly
penetrant, dominant mutations in the MAPT gene encoding
tau cause an inherited form of frontotemporal dementia and
parkinsonism (Hutton et al., 1998; Poorkaj et al., 1998; Spillantini
et al., 1998). A number of neurodegenerative disorders present
prominent tau pathology in the CNS, predominantly within the
neuronal compartment, but also within glial cells. Because of this
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shared histopathological feature, they are referred collectively as
tauopathies, although they constitute a group of etiologically het-
erogeneous, clinically and neuropathologically overlapping dis-
ease entities (Ballatore et al., 2007; Spillantini and Goedert, 2013).
In tauopathies, the intracellular soluble tau forms filamentous
structures of aggregated, hyperphosphorylated tau, which are
associated with synaptic loss and neuronal death. The occurrence
of fibrillar tau inclusions in tauopathies strongly supports a key
role in the observed clinical symptoms and pathology.

Further insights into the overlapping pathogenic and etiologic
aspects of the discrete diseases will help to design (perhaps com-
mon) disease-modifying treatment strategies (Medina, 2011). To
achieve that goal however, it is critical to understand the normal
biological roles of tau, the specific molecular events that induce
tau to become neurotoxic, the biochemical nature of pathogenic
tau, the means by which pathogenic tau exerts neurotoxicity, and
how tau pathology propagates.

As mentioned, the recognition of the MAP tau as a key player
in the pathobiology of human neurodegenerative diseases has
led to major efforts to understand its biological and pathological
function(s). This has resulted in an improved understanding of
tau cellular functions beyond its classical role in stabilizing MT
(Morris et al., 2011) to unveil novel physiological tau functions
that may also play a role in pathogenesis. Such functions include
axonal transport (Terwel et al., 2002; Rodríguez-Martín et al.,
2013), neuronal polarization (Caceres and Kosik, 1990; Dawson
et al., 2010), axonogenesis (DiTella et al., 1994; Klein et al.,
2002; Belkadi and LoPresti, 2008), interactions with the plasma
membrane (Brandt et al., 1995; Lee et al., 1998; Maas et al., 2000),
signal transduction (Lee et al., 2004; Ittner et al., 2010) and cell
cycle (Andorfer et al., 2005). Furthermore, despite lacking an
identified nuclear localization signal, tau has also been reported
in nuclei in a number of cell lines (Loomis et al., 1990; Wang et al.,
1993) and human brain (Brady et al., 1995) where it may play a
role in DNA protection (Sultan et al., 2011).

EXTRACELLULAR TAU
It has been over 20 years since the original report that intracellular
tau levels are increased in the brains of AD patients when com-
pared to non-demented controls (Barton et al., 1990; Khatoon
et al., 1992). This increase in the amount of tau could be toxic
to neurons since a reduction in the amount of intracellular tau
has indeed a protective effect in mouse models of neurodegen-
eration (Rapoport et al., 2002; Roberson et al., 2007) and it has
been suggested that reducing tau levels may be therapeutically
beneficial (Götz et al., 2013). However, we must be cautious since
other studies in similar tau-deficient mice point in the opposite
direction, suggesting that loss of tau function can actually lead to
neurodegeneration (Dawson et al., 2010).

Little is known about how tau synthesis is regulated although
some factors such as fibroblast growth factor (Tatebayashi et al.,
1999), Dyrk1A (Qian et al., 2013), or the haplotype H1 have been
involved in increased synthesis whereas the miRNA-34 family
(Dickson et al., 2013) seems to downregulate tau levels.

Conventional wisdom has suggested that the presence of tau
in the brain parenchyma or in the cerebrospinal fluid (CSF) is
a consequence of tau protein being released from dead cells.

However, this has recently been challenged by a number of studies
showing extracellular tau being released from cell lines and neu-
rons via multiple pathways, strongly supporting the notion that
secretion of tau protein may be an important biological function
of tau protein, especially in disease. Despite the fact that tau
lacks a signal sequence a number of reports have now shown
that tau is released into culture medium from neuroblastoma
cells, tau-expressing non-neuronal cells, induced pluripotent stem
cell-derived human neurons, and mouse primary neurons (Kim
et al., 2010; Shi et al., 2012). Thus, tau has been reported to
be secreted unconventionally in naked form (Chai et al., 2012)
or associated to exosomes (Saman et al., 2012) and/or other
membrane vesicles (Simón et al., 2012a). Since increased tau
cellular levels are detrimental, secretion has been proposed as
a mechanism to eliminate the excess of tau protein thereby
avoiding its toxicity (Simón et al., 2012b). Interestingly, while full
length tau has been detected in the extracellular space, C-terminal
cleavage of tau has been shown to enhance its secretion (Plouffe
et al., 2012) which could have pathological relevance since some
truncated tau species appears to be characteristic of particular
tauopathies whereas other tau fragments may be common to
several tauopathies (Hanger and Wray, 2010; Kovacech et al.,
2010).

Extracellular tau has also been detected in the brain interstitial
fluid of both wild-type and P301S tau-expressing mice in micro-
dialysis studies (Yamada et al., 2011), as it has also been the case in
patients following severe traumatic brain injury (Marklund et al.,
2009; Magnoni et al., 2012). Actually, exosomal tau secretion has
been suggested to account for the elevated CSF tau levels typically
observed in early AD (Saman et al., 2012). Interestingly, tau
mutations that are associated with the development of tauopathy
appears to reduce tau release (Karch et al., 2012). Interestingly,
physiological secretion of endogenous tau by cortical neurons
appears to be regulated by neuronal activity, as tau release is
enhanced by glutamate receptor stimulation induced by the
agonist S-AMPA (Pooler et al., 2013). This process is calcium-
dependent and modulated by phosphorylation and released tau
is present in a relatively dephosphorylated state, compared to that
of intracellular tau.

Thus, increasing evidence point out to extracellular tau as
a physiological process independent of cell death (Figure 1),
although the precise relationship between tau release under phys-
iological conditions and the propagation of pathology in AD and
other tauopathies remains to be determined.

Tau can be toxic when applied extracellularly to cultured
cells (Gómez-Ramos et al., 2006; Kopeikina et al., 2012). Sev-
eral mechanisms for internalization of tau has been proposed,
such as internalization of soluble, uncoated (“naked”) tau via
receptor-mediated endocytosis (Gómez-Ramos et al., 2009),
dynamin-driven endocytosis of non-fibrillar, soluble tau aggre-
gates (Wu et al., 2013) or even actin-dependent, proteoglycan-
mediated macropynocytosis (Holmes et al., 2013). Furthermore,
it has been suggested that extracellular tau might provoke
a receptor-activated increase in intracellular calcium through
M1/M3 muscarinic receptor stimulation (Gómez-Ramos et al.,
2008; Díaz-Hernández et al., 2010) and that such receptor acti-
vation could lead to endocytosis of extracellular tau. Remarkably,

Frontiers in Cellular Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 113 | 2

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Medina and Avila Progression of tau pathology

FIGURE 1 | Cell-to-Sources of extracellular tau and -cell spreading. The
established view has long considered the presence of tau in the brain
parenchyma or in the CSF as a consequence of tau protein being released
after cell lysis. However, extracellular tau appears to result from a
physiological process independent of cell death, as tau being can be
released from cell lines and neurons via multiple pathways, either in naked
form or vesicle-associated. In addition, tau misfolding in diseased brain
leads to abnormal conformations of tau that can be taken up by surrounding
neurons. Thus, pathological progression could involve transmission of tau
protein through a prion-like mechanism resulting in neurodegeneration in
susceptible brain regions.

tau phosphorylation could inhibit its interaction with M1/M3
receptors and it has been proposed that such alterations might be
involved in the transmission of tau pathology (Simón et al., 2013).

The discovery of extracellular tau as a physiological process
that is independent of cell death (Pooler et al., 2013), indicates
that tau release does not occur only as a result of reduced
neuronal viability, and therefore that the increased tau observed
in interstitial fluid and CSF in tauopathies may not be due
solely to tau release from dying neurons (Yamada et al., 2011;
Nedergaard, 2013). It is worth mentioning that tau phosphory-
lation at threonine 181 and total tau levels in CSF are considered
useful biomarkers of neuronal degeneration or injury in the recent
National Institute on Aging and Alzheimer Association (NIA-AA)
revised criteria for the diagnosis of AD (Jack et al., 2012).

PROPAGATION OF TAU PATHOLOGY
Development of tau pathology is associated with progressive
neuronal loss and cognitive decline. In the brains of AD patients,
tau pathology propagates following an anatomically defined pat-
tern described by the neuropathological Braak sequential staging
(Braak et al., 2011). As a matter of fact, recent NIA-AA guidelines
recommend the assessment of Braak and Braak staging of neu-
rofibrillary degeneration as part of the so called “ABC score” for
the neuropathological diagnosis of AD (Montine et al., 2012).

The originally staging system (Braak and Braak, 1991) defined
six stages based on the presence and density of characteristic
argyrophylic inclusions (neurofibrillary tangles (NFT), neuropil
threads) in the medial temporal lobe and several brain iso-
cortical regions. This system was subsequently adapted by the
authors for routine use in paraffin-embedded tissue based on tau

immunohistochemistry (Braak et al., 2006). Stages I–II (transen-
torhinal) correlate with the lengthy preclinical phase of the dis-
ease; whereas stages III–IV (limbic) do so with mild cognitive
impairment (loss of episodic memory) or mild dementia; and
advanced V–VI stages (isocortical) usually correspond to cases
with moderate to severe dementia. Accurate staging of AD-related
tau-positive pathology may be particularly important in the clas-
sification of preclinical disease and in the identification of atypical
AD phenotypes. The above mentioned NIA-AA guidelines allow
for standardization for diagnostic and research purposes.

Clinicopathological studies show that tau pathology progres-
sion from the entorhinal cortex through the hippocampus and
into the limbic and association cortex is the main neuropatho-
logical variable that correlates with the clinical cognitive status of
the patient (Arriagada et al., 1992; Nelson et al., 2012). Whether
that pattern of accumulation reflects cell-to-cell spreading of
disease, or simply successive involvement of differentially resistant
neuronal populations, has been a matter of debate in recent years.
Recent evidence from human studies suggests that tau pathology
is actually linked to existing networks of neuronal connectivity.
Thus, rather than diffuse, random, or confluent, tau pathology
would target specific large-scale distributed networks that in
the healthy brain feature convergent intrinsic functional and
structural covariance (Seeley et al., 2009). However, the precise
molecular and cellular mechanisms by which tau propagates and
neuronal networks degenerate are still unknown.

Increasing evidence suggests that synaptic dysfunction is a
key pathophysiological hallmark in neurodegenerative disorders,
including AD which has been indeed considered a synaptopa-
thy (Selkoe, 2002; Sheng et al., 2012), as synapse density best
correlates with the cognitive decline observed in patients. Long
regarded primarily as an axonal protein, when hyperphosphory-
lated tau also accumulates in the somatodendritic compartment
during AD (Ballatore et al., 2007). Actually, tau mislocation in
dendritic spines has been proposed to lead to synaptic dysfunc-
tion by various mechanisms, including regulating the amount
of glutamate receptors in spines (Hoover et al., 2010), interact-
ing with post-synaptic signaling complexes, targeting of synap-
tic mitochondria (Pooler et al., 2014) or destabilizing dendritic
spines and dendritic arbor (Koleske, 2013). Presence of tau in
the synapse in healthy brains suggests a role for tau in regulating
normal synaptic function whereas during neurodegeneration, tau
synaptotoxicity seems to be related to soluble forms rather than
insoluble aggregates (Pooler et al., 2014).

On the other hand, emerging evidence strongly suggests that
tau is essential for Aβ-induced synaptotoxicity (Ittner et al., 2010),
a process that may involve EphB2, and NMDA receptors (Cissé
et al., 2011; Sheng et al., 2012). Furthermore, studies in mouse
organotypic hippocampal slice cultures from amyloid precurssor
protein transgenics have demonstrated that extrasynaptic NR2B-
containing NMDA receptors are required for tau-induced neu-
rodegeneration (Tackenberg et al., 2013). Could then tau play a
role in the transition between synaptic and extrasynaptic NMDA
receptors? Although we do not have a definitive answer to that, the
improved NMDA receptor antagonist nitromemantine protects
against Aβ-induced synaptic dysfunction (Talantova et al., 2013).
Nitromemantine selectively inhibits extrasynaptic over synaptic
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FIGURE 2 | A potential role for tau in synapsis during aging and AD.
During AD, tau is hyperphosphorylated and mislocates to the axonal
compartment. Furthermore, tau appears essential for Aβ-induced
synaptotoxicity whereas extrasynaptic NR2B-containing NMDA receptors
are required for tau-induced neurodegeneration. An increase of
extrasynaptic receptors with aging and AD may also explain the progression
of the disease.

NMDA receptor activity (Kaufman et al., 2012), thus preventing
the toxic effect of the activation of extrasynaptic NMDA receptors.
Aβ binding to synaptic or extrasynaptic receptors may lead to
different signaling and consequences (protection or death) (Li
et al., 2011). Increase of extrasynaptic receptors with aging and
AD may also explain the progression of the disease (Figure 2).

Interestingly, recent in vivo studies in tauopathy transgenic
mouse models expressing human mutant tau specifically in the
entorhinal cortex have shown relocation of tau from axons to
the somatodendritic compartment as well as propagation of tau
pathology to regions outside the entorhinal cortex, strongly sug-
gesting a trans-synaptic mechanism of spreading of pathology
through anatomically connected neuronal networks (de Calignon
et al., 2012; Liu et al., 2012). These findings have been further
supported by more recent neuropathological studies in post-
mortem brains from argyrophylic grain disease (AGD), a sporadic
tauopathy mainly involving the medial temporal lobe and the
limbic region (Ferrer et al., 2008). This pathology exhibits a
short number of closely related tau-positive inclusions and a
highly homogeneous pattern of distribution and progression of
pathology along several regions of the medial temporal lobe with
known connectivity between them and with extra-temporal areas
of involvement, leading to its proposition as a natural model for
studying tau propagation in human brain (Rábano et al., 2014).

Recently, release and subsequent uptake of tau fibrils that
directly contact native protein in recipient cells have been shown
to mediate propagation of tau misfolding among cells, at least
in vitro (Frost et al., 2009; Kfoury et al., 2012). Remarkably, intrac-
erebral inoculation of synthetic preformed tau fibrils induced
NFT-like inclusions that propagated from injected sites to con-
nected brain regions in a time-dependent manner (Iba et al.,
2013). Furthermore, conformation-specific trans-cellular propa-
gation of tau fibrils after release into the extracellular space and
subsequent triggering of aggregation in recipient cells by con-
tacting native protein has been show in co-culture experiments
(Kfoury et al., 2012). Thus, newly aggregated intracellular tau
can transfer between co-cultured cells (Figure 1), thus providing
a mechanism for tau-targeted immunotherapies as therapeutic

strategy for AD and tauopathies (Gu and Sigurdsson, 2011;
Medina, 2011; Golde et al., 2013). Actually, it has been suggested
that the most likely mechanism of action for anti-tau antibodies
is targeting tau released from cells (Yanamandra et al., 2013). The
recent development of imaging-based biomarkers (Maruyama
et al., 2013) will enable to track the progression of tau pathology
in living patients and greatly facilitate the early phase testing of
tau immunotherapy and other tau-based therapeutic strategies.

CONCLUSIONS
In summary, we have highlighted recent developments in tau biol-
ogy relevant to AD and tauopathies. It has become increasingly
clear that, apart from the well-established intracellular functions
of tau in microtubule stabilization and axonal transport, intracel-
lular and extracellular tau most likely have important signaling
roles that could contribute to the neurodegenerative process in
AD and related tauopathies. Furthermore, the presence of tau
in synaptic regions of healthy brain suggest that tau may play a
role in the regulation of normal synaptic function. In addition,
recent studies have suggested that misfolding of tau in diseased
brain leads to abnormal conformations of tau that can be taken
up by surrounding neurons. Thus, pathological progression could
involve transmission of tau protein through a potential prion-like,
seeding mechanism resulting in neurodegeneration in susceptible
brain regions. However, insufficient evidence exists yet to reliably
determine whether there is a direct relationship between the
recent identification of a physiological role for extracellular tau
and the impairments in tau function associated with disease.

Key questions still remain open, such as the neuronal selectiv-
ity, the nature of the extracellular tau species involved, or the pre-
cise seeding/templating mechanisms, among many others. More
research is needed to identify disease mechanisms driving release
and propagation of tau pathology and to determine the impact of
extracellular tau on cognitive decline during neurodegeneration.
The observation that misfolded tau can be secreted and taken up
by adjacent neurons calls for the development of novel strategies
to block the propagation of tau pathology in the brain. Despite
the fact that the presence of extensive tau pathology is central
to the disease, tau-based therapeutic strategies have received little
attention until recently (Medina and Avila, 2014). Next few years
will certainly bring new insights into the cellular mechanisms
underlying tau secretion and uptake, likely identifying novel ther-
apeutic approaches intended to interfere early on in the process of
propagation of tau pathology.
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