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To any model of brain function, the variability of neuronal spike firing is a problem that
needs to be taken into account. Whereas the synaptic integration can be described in
terms of the original Hodgkin-Huxley (H-H) formulations of conductance-based electrical
signaling, the transformation of the resulting membrane potential into patterns of spike
output is subjected to stochasticity that may not be captured with standard single neuron
H-H models. The dynamics of the spike output is dependent on the normal background
synaptic noise present in vivo, but the neuronal spike firing variability in vivo is not well
studied. In the present study, we made long-term whole cell patch clamp recordings of
stationary spike firing states across a range of membrane potentials from a variety of
subcortical neurons in the non-anesthetized, decerebrated state in vivo. Based on th
data, we formulated a simple, phenomenological model of the properties of the spike
generation in each neuron that accurately captured the stationary spike firing statistics
across all membrane potentials. The model consists of a parametric relationship between
the mean and standard deviation of the inter-spike intervals, where the parameter is
linearly related to the injected current over the membrane. This enabled it to generate
accurate approximations of spike firing also under inhomogeneous conditions with input
that varies over time. The parameters describing the spike firing statistics for different
neuron types overlapped extensively, suggesting that the spike generation had similar
properties across neurons.
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INTRODUCTION
Synaptic integration, i.e., the process by which a neuron sum-
mates and transforms the information it receives from other neu-
rons, has been extensively studied both in vitro and in vivo and can
be described as variations of the original Hodgkin-Huxley formu-
lations for conductance-based electrical signaling (Stemmler and
Koch, 1999; Goldwyn and Shea-Brown, 2011; Drion et al., 2012).
Hence, the process of synaptic integration, optionally extended
with a cable-theory inspired multi-compartment model of the
neuron (Rall, 1962), and the associated activation of possible
active conductances can therefore be modeled to provide an accu-
rate reflection of the membrane potential at the level of the
soma and axon hillock for a single neuron. However, the pro-
cess by which the time-varying membrane potential is translated
into a train of spikes with the statistical properties that have
been found in vivo, has proven more elusive. In principle, there
are two different views, one that this process is deterministic
and can be calculated with high precision using variations of
the original integrate-and-fire principle, and another one where
the concept of stochastic noise in the spike generation per se
is providing a stochastic contribution to the times of spike ini-
tiation. Support for intrinsic noise can be found in recordings
from neocortical pyramidal cells, where spikes can arise seem-
ingly at random times from a flat membrane potential and where

Hodgkin-Huxley models of different modifications fail to account
for the spike initiation (Naundorf et al., 2006) (see however com-
mentary published by Shu et al., 2006). Many other authors also
agree that the spike generation mechanism per se is subject to
noise (Schneidman et al., 1998; Averbeck et al., 2006; Faisal et al.,
2008; Saarinen et al., 2008; Ozer et al., 2009; Richmond, 2009;
Goldwyn and Shea-Brown, 2011). The stochastic component of
the spike times can however also be the result of synaptic noise
due from chaotic behavior inherent within the network inter-
actions between otherwise deterministic neurons (Van Vreeswijk
and Sompolinsky, 1996). Without a mechanistic explanation for
the intrinsic neuronal noise, or access to the activity and structure
of the local network of neurons, a description of the spike genera-
tion process can only be obtained empirically, by approximations.
In the present paper, we aimed to provide such approximations
based on long-term intracellular recordings from a variety of
neuron types in vivo.

For models aiming to simulate the function of the neuronal
circuitry, approximations of the spike generation need to be based
on in vivo data. This is because the presence of synaptic noise in
vivo changes the conditions for spike generation from the in vitro
setting through the introduction of high-frequency fluctuations
in the membrane potential (Gauck and Jaeger, 2000; Destexhe
et al., 2001; Chance et al., 2002; Fellous et al., 2003; Suter and
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Jaeger, 2004; Destexhe and Contreras, 2006). However, different
types of in vivo preparations will come with different types of
complications for this type of data. For example, the use of anes-
thetics will introduce changes to the membrane responsiveness
of the neurons and induce global patterns of cyclic variations
in the spike firing (Destexhe and Sejnowski, 2003), which will
make it difficult to find periods of statistically stationary spike
generation. In the awake animal, these problems are eliminated
but there could still be variations in global brain activity over
time, as the result of internal brain processing reflecting e.g. emo-
tional state or planned action, which could affect the spike firing
statistics. To circumvent these possible caveats, we use the non-
anesthetized, decerebrate preparation in which in vivo patterns
of synaptic noise are maintained and variations due to changes
in internal states are absent. With the in vivo whole cell recording
technique, we obtain spike time series across a range of membrane
potentials from a variety of subcortical neurons to approximate
and model their spike generation. Surprisingly, even though these
types of neurons are known to vary with respect to their intrinsic
conductances, we found the statistics of their spike generation to
be overlapping.

MATERIALS AND METHODS
RECORDINGS OF SPIKE FIRING
The procedures of all experiments were approved in advance by
the local Swedish Animal Research Ethics Committee (permits
M32-09 and M05-12). Adult cats were prepared as previously
described (Jorntell and Ekerot, 2002, 2006). Briefly, following
an initial anesthesia with propofol (Diprivan ® Zeneca Ltd,
Macclesfield Cheshire, UK), the animals were decerebrated at
the intercollicular level and the anesthesia was discontinued. The
animals were artificially ventilated and the end-expiratory CO2,
blood pressure and rectal temperature were continuously moni-
tored and maintained within physiological limits. Mounting in a
stereotaxic frame, drainage of cerebrospinal fluid, pneumothorax
and clamping the spinal processes of a few cervical and lum-
bar vertebral bodies served to increase the mechanical stability
of the preparation. To verify that the animal was decerebrated,
we made EEG recordings using a silver ball electrode placed on
the surface of the superior parietal cortex. Our EEG recordings
were characterized by a background of periodic 1–4 Hz oscilla-
tory activity, periodically interrupted by large-amplitude 7–14 Hz
spindle oscillations lasting for 0.5 s or more. These forms of
EEG activities are normally associated with deep stages of sleep
(Niedermayer and Lopes Da Silva, 1993). The pattern of EEG
activity and the blood pressure remained stable, also on nox-
ious stimulation, throughout experiments (see also Jorntell and
Ekerot, 2006).

Spinal neurons (six separate animals) and cerebellar neurons
(eight separate animals) were recorded in different experiments.
For spinal recordings, a laminectomy was made to expose spinal
segments C5-T1. For cerebellar recordings, the bony cerebellar
tentorium was removed to expose the caudal part of the ante-
rior lobe of the intermediate cerebellum, in order to access the
forelimb region of the cerebellar C3 zone, where all cerebellar
recordings were made. In both cases, a pool of cotton-in-agar was
built around the recording regions. The dura was removed and

the recording region was covered with paraffin oil to prevent dry-
ing of the tissue. In the case of spinal recordings, we also made
small openings in the pia in order to facilitate penetration of the
patch clamp pipettes. Also for spinal recordings only, the record-
ing region was covered with agarose attached to the bone of the
vertebrae in order to dampen tissue movements.

Patch clamp pipettes were pulled to 4–14 MOhm and con-
tained a potassium-gluconate based solution, as previously
described (Jorntell and Ekerot, 2006). The spinal neurons were
recorded from the lower cervical segments (C6–C8) at depths of
1.8–2.8 mm, corresponding to laminae IV–VII. Since they were
located above the level of the motor nuclei that contains the
alpha-motorneurons, they were labeled spinal interneurons. The
cerebellar cortical neurons were recorded from the superficial
parts of the forelimb region of the C3 zone. Purkinje cells were
identified by the presence of complex spikes. Molecular layer
interneurons (MLints) were recorded from the superficial part of
the cortex, visible from the surface, above the first Purkinje cell
layer. Spiking neurons in the molecular layer were classified as
MLints. Golgi cells were recorded from the granule layer located
below the first Purkinje cell layer from the surface. They were clas-
sified as Golgi cells on basis of their regular spontaneous firing
(Van Dijck et al., 2013).

For recordings of series of interspike intervals, we used a HEKA
EPC 800 patch clamp amplifier set to current clamp. As the patch
clamp pipettes approached a neuron we released positive pressure
and applied gentle suction in order to establish a gigaohm seal
before break-in. For all neurons, seal resistance varied between 0.8
and 5 GOhm. Suction and sometimes current command steps of
one 1 nA were applied to obtain intracellular access. Access resis-
tance was compensated for off-line and was usually between 20
and 80 MOhm. To change the firing frequency of a neuron we
used either steady current injections lasting up to several min-
utes or current step commands lasting 500–4000 ms. For current
step commands, when the neuron’s stationary state (see below)
bridged the time gap between two successive current step com-
mands, the spike firing of the consecutive current step commands
was treated as a single stationary state, omitting the interspike
interval bridging the steps. The signal was converted to a digi-
tal signal using the analog-to-digital converter Power 1401 mkII
from Cambridge Electronic Design (CED, Cambridge, UK). The
neural responses were sampled at 100 KHz and recorded contin-
uously with the software Spike 2 from CED. Spike2 was also used
to identify the spikes and to obtain data of the spike time series.
Power spectrograms of the spike firing frequencies were calculated
using the multitaper method as implemented in the Chronux
toolbox for Matlab (http://chronux.org/).

FINDING AND EVALUATING THE MODEL
All raw spike trains used to construct the models were sepa-
rated into shorter spike trains that were 50 spikes long, with a
few exceptions where the original spike train was shorter than
50 spikes but longer than 40. Only trains that were found to
have ISI distributions that were stationary and log-normally dis-
tributed were used further (see statistics section for details). All
log-normal distributions were constructed as maximum likeli-
hood estimates of the distributions of ISIs using the LOGNFIT
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method in MATLAB (MathWorks). The normalized input of each
stationary region was then estimated by x = log (i.s.d). This value
together with the firing frequency during the state was used to
fit the frequency curve Equation (6b) by iterative least squares
estimation using the MATLAB method NLINFIT. The normal-
ized input was then estimated once again using the inverse of
Equation (6b), x = log

[
exp

(
E−1/cx

)− 1
]− �x. The new esti-

mate was used to evaluate the whether the means and standard
deviation the models provided could describe the ISI distribu-
tion of the region using log-normal, gamma or inverse Gaussian
probability density functions (PDFs). The fraction of regions that
could not be rejected was seen as the model accuracy.

STATISTICS
One reason for using the log-normal distribution over other
commonly used distributions is the possibility to use tests for nor-
mality in order to select which spike-trains should be used to fit
the model. We use the Shapiro-Wilk (SW) test (0.05 significance
level), that have been found to have high statistical power for very
short samples (Shapiro and Wilk, 1965). Long spike-trains can
hence be divided into shorter trains that are used for the model.

Transient events that could affect the statistics of the spike-
trains were avoided by only using regions that were found to
be stationary by the Kwiatkowski, Phillips, Schmidt, and Shin
(KPSS) (p < 0.05) test. Regions that were rejected by the KPSS-
test were not used further.

Where ISIs have to be compared to a specific distribution
(e.g., to evaluate the constructed model), we used the 2-sample
Anderson-Darling (AD) test (Scholz and Stephens, 1987) instead
of the commonly used Kolmogorov-Smirnov (KS) test, since the
KS-test underestimates the test statistics whenever the mean and
variance of the distribution is estimated from the empirical dis-
tribution and it is known to have poor statistical power (Shapiro
et al., 1968; Stephens, 1974). The performance of AD is com-
parable to that of SW when the mean and variance is unknown
(Stephens, 1974).

The local variability (LV) (Shinomoto et al., 2005), the third
and the forth L-moment in the form of the L-skewness and
L-kurtosis was used to compare the performance of the gamma,
lognormal and inverse Gaussian distributions. The asymptotic
approximations of the L-moments have been found to be reliable
with sample sizes of 50 or more (Hosking, 1990). The confidence
intervals of the constructed models were created by drawing a
total of 50,000 spike trains consisting of 50 spikes each, where the
input to the model was varied uniformly over the relevant input
range (X ∈ [0, 9]). Linear regression using the Matlab method
REGRESS was used to validate the constructed model. The coef-
ficient of determination R2 is used as a measure to evaluate the
constructed linear regression. From Equation (6a) the line should
have the form log (i.s.d.) = p1x + p2 where p1 = 1 and p2 = 0.
For a valid set of model parameters, the confidence intervals of
the parameters of the linear regression should envelope these val-
ues. In addition to this a, Durbin-Watson test (p < 0.01) was
used to test whether the residuals of the linear regression were
uncorrelated using the MATLAB method DWTEST. The SW-
test was further used to test whether the residuals were normally
distributed (p < 0.01).

RESULTS
The purpose of the present paper was to characterize and to math-
ematically describe the spike firing statistics of spontaneously
active neurons in the non-anesthetized, decerebrate state. The
first step was therefore to make whole cell recordings primar-
ily from spinal interneurons but also Purkinje cells, molecular
layer interneurons and Golgi cells of the cerebellar cortex in the
decerebrated cat. The spinal interneurons were recorded from
the lower cervical segments (C6-C8) at depths of 1.8–2.8 mm,
corresponding to laminae IV–VII. The cerebellar cortical neu-
rons were recorded from the superficial parts of the forelimb
region of the C3 zone (Jorntell and Ekerot, 2002). In the decer-
ebrate preparation, these neurons are all spontaneously active
at rest.

DATA APPROXIMATIONS
Our first aim was to analyze the distribution of the inter-spike
intervals (ISIs) across the operative range of firing frequencies
that these types of cells have previously been described to dis-
play under behavior (Edgley and Lidierth, 1987, 1988; Prut and
Fetz, 1999; Pasalar et al., 2006; Takei and Seki, 2010, 2013; Badura
et al., 2013). We used constant or episodic current injections to
repeatedly modulate the neuron’s firing frequency across these
different levels, illustrated in Figure 1A for a spinal interneuron.
During current injections we obtained spike firing levels during
which the series of ISIs were stationary (KPSS-test, p < 0.05).
The series of ISIs obtained at each firing level were binned in
histograms (Figures 1B,C) to investigate the shape of the distri-
bution of the intervals, which all had the skewed shape seen in
the figures. Notably, the crossings of specific arbitrary threshold
levels described by the subthreshold spontaneous synaptic activ-
ity had a different interval distribution than that of the spikes
(Figure 1D), a discrepancy which could be explained by direct
observations that the apparent spike threshold varied also at short
time intervals (Figure 1E). In particular the long tail of distribu-
tions of the threshold crossing events in Figure 1D, which was
absent in the ISIs, strongly suggests that the statistics of the spike
generation was determined by other factors in addition to the
synaptic inputs and the absolute value of the membrane poten-
tial. However, as the actual occurrence of a spike would inevitably
affect the dynamics of the membrane potential (for example
by absolute and relative refractoriness) in a way that we could
not completely account for, we did not carry out the analysis
described in Figure 1D in a systematic fashion.

The log-normal, the gamma and the inverse Gaussian distri-
butions are typically used to describe skewed shapes of the type
found for the ISIs. In this paper we focus on the log-normal
distribution since it comes with the advantage that it is tied
to an underlying normal distribution, which makes it possible
to use tests for normality with high statistical power even with
small sample sizes to validate the assumption that the ISI distri-
bution can be described by a log-normal distribution (Shapiro
et al., 1968). This is important since also temporary station-
ary states containing a limited number of spikes can then be
used. Furthermore, the investigated neurons are typically par-
ticipating in movement control of limbs where the phases of
the movements have durations of at most a few hundred of

Frontiers in Cellular Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 199 | 3

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Spanne et al. Spike firing in subcortical neurons in vivo

FIGURE 1 | Whole cell recording at multiple firing levels. (A) Raw
intracellular recording illustrating the spikes of a spinal interneuron recorded
at rest and with two higher firing levels obtained through current injection
(200 pA and 400 pA, respectively). (B) Frequency distribution histogram (5 ms
bin width) of ISIs obtained by injections of 200 pA. The ISIs of all current
injections at this level was pooled to construct the histogram. Also indicated
is the log-normal distribution that provided the best fit for the ISI distribution
at this firing level. (C) As in (B), but for 400 pA injected current. In (B,C), the
p-value is given by the AD test, and indicates whether the null hypothesis
that the ISIs originate from the log-normal distributions can be rejected or
not. Since they are well above any confidence limit the found lognormal
distributions can be said to well describe the ISI distribution. (D) For
comparison, an analysis of the crossings of an arbitrary threshold level in the
spontaneous synaptic activity. Same neuron as in (A–C), but slightly
hyperpolarized to prevent spiking. The inset show a raw intracellular sweep
(2nd order Butterworth high-pass filter with a cutoff frequency of 1 Hz and a

subsequent 2nd order Butterworth low-pass filter with a cutoff frequency of
1000 Hz; ISIs below 10 ms, which was not observed in this neuron (cf. C),
were excluded for clarity) with a sample arbitrary threshold level (dashed line)
and time points at which the membrane potential crossed from subthreshold
to suprathreshold values (dots). The histogram illustrates the inter-event
interval (IEI) distribution of such crossings. Note the much longer “tail” of
membrane potential IEI distribution as compared to the ISI distributions in
(B,C). (E) Actual spike generation could occur at different membrane potential
levels. Two sample raw traces recorded in the same neuron as in (D), but
without hyperpolarizing current injection, illustrate that the apparent spike
(truncated, indicated by asterisks) thresholds (dashed lines, the threshold
was defined as the point in time where the derivative of the membrane
voltage exceeded a uniform threshold value) varied over time. Note the
similarity with the findings of Naundorf et al. (2006) for neocortical neurons in
that the spike initiation of our spinal interneurons also appeared to have a fast
“kinked” onset with variable thresholds.

milliseconds. Consequently, short spike trains can be useful also
in this perspective as the aim of the model is to approximate
the behavior of the neurons during natural circumstances. The
log-normal distribution has previously been used to fit the spon-
taneous activity of neocortical neurons in the unanesthetized cat
(Burns and Webb, 1976) and the spike output of detailed neuron
models (Levine, 1991). As we will show below (Figure 7), the log-
normal distribution provide at least as good approximations of
the spike time distributions as the gamma and inverse Gaussian
distributions.

The shape of the log-normal PDF in Equation (1) is deter-
mined by two variables, μ and σ , which corresponds to the mean

and standard deviation of the distribution’s natural logarithm,
respectively.

f (t; σ,μ) = 1

tσ
√

2π
exp

(
− (ln t − μ)2

2σ 2

)
(1)

The log-normal distribution provided a statistically good fit to
the series of ISIs obtained at each firing level (Figures 1B,C).
We also used the log-normal distribution to describe the spike
firing statistics across different firing levels for single neurons
(Figure 2). For spinal interneurons (spInt, N = 9, membrane
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FIGURE 2 | ISI distributions at different firing levels for different types of

neurons. (A) The spike firing probability at four different firing levels (shown
in ISI histograms with 5 ms bin width) and the maximum likelihood
log-normal distribution for the cell type indicated at the top. Note that the
x-axis is truncated at 200 ms, whereas many interspike intervals at the lowest
firing levels could occur outside this range. N indicates the number of spikes
in each histogram and the p-values above each histogram is given by the
AD-test. A low p-value would mean that the null hypothesis that the ISIs
originate from the log-normal distributions should be rejected, which is not
the case in any of the shown distributions. (B) The fitted log-normal

distributions for each neuron type are shown superimposed to facilitate
comparison. (C) 20 s power spectrograms of the spike firing frequencies
obtained from the same spike train data as the histograms marked with
asterisks in (A) shown side-by-side with the power spectrograms of spike
trains drawn from the point process defined by the corresponding log-normal
distributions. These are shown by example to illustrate that we could not find
any substantial cyclic variations in the overall spike firing frequency and that
the frequency content of the recorded spike trains closely resembled that of
the point process. Note that the large differences between neuron types are
due to that they were recorded at different average firing frequencies.

resistance, Rin, = 29 ± 11 MOhm) a total of 564 stationary states
with log-normal ISI distributions were tested, corresponding to a
mean of 63 ± 54 states per neuron. We also tested Purkinje cells
(PCs, N = 3, Rin = 4.2 ± 1.2 MOhm), from which we obtained
a total of 85 states (28 ± 21 states per neuron), molecular layer
interneurons (MLint, N = 3, Rin = 132, 160, and 177 MOhm)
with a total of 34 states (11 ± 8 states per neuron) and Golgi
cells (Goc, N = 3, Rin = 30, 35, and 270 MOhm) with a total
of 241 states (80 ± 46 states per neuron). Because the mathe-
matical descriptions we apply below required a relatively high
number of stationary states under stable conditions and for
multiple levels of firing, we restricted our initial analysis to
this limited set of neurons. In addition, to provide controls
for the specificity of the model described later in the paper,
we used the spike firing statistics of an additional 45 spinal
interneurons.

The parameters of the log-normal distribution can be trans-
lated into the ordinary mean and standard deviation of the
distribution through Equation (2):

E = exp

(
μ + 1

2
σ 2
)

s.d. = E
√

exp σ 2 − 1 (2)

where E is the mean ISI and s.d. is the standard deviation of
the ISIs. By translating the parameters in this way, it is possi-
ble to relate them to the type of input frequency-current (f-I)
curves that are routinely used to characterize neurons (Mckay and
Turner, 2005; Molineux et al., 2005; Zhong et al., 2010). For this
reason, we will use the inverse of the mean ISI to obtain the mean
frequency E−1 below. We will also use the inverse of the standard
deviation (i.s.d.) of the ISIs in order to keep the same unit for both
measurements.
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MODEL
Our next aim was to design a model describing the relationship
between the input to the neuron and the statistics of its spike
firing. The relationship between the input current and the spike
firing frequency is frequently reported to be linear (Nowak et al.,
2003; Mckay and Turner, 2005; Molineux et al., 2005; Meehan
et al., 2010; Zhong et al., 2010). However, as the firing frequency
of a neuron approaches zero the linearity inevitably disappears,
either by a sharp threshold or by a smoother transition between
zero and non-zero firing, also shown theoretically using leaky
integrate-and-fire (LIF) neuron models (Fourcaud-Trocme et al.,
2003; La Camera et al., 2008). Our results suggest a smoother
transition in this non-linear region (Figure 3A), which is in agree-
ment with other in vivo data (Priebe et al., 2004) and in vitro data
stimulating the neurons with in vivo like inputs (La Camera et al.,
2008), both obtained from neocortical neurons. It is possible that
this property is more pronounced in an in vivo setting such as

FIGURE 3 | Relationship between input and output in the model of

spike generation. (A) Relationship between injected current and the firing
frequency for two spinal interneurons. Note the tendency of a smooth
non-linearity rather than a sharp threshold as the frequency approaches
0 Hz. (B) Relationship between the input and the firing frequency using
different parameters in the model of spike generation described in Equation
(3). The values of parameters a and c are shown in the figure, where the
value of c determines the width of the non-linear region. a = c in the figure
to facilitate comparison between the curves as the slope of the linear
asymptote, as the normalized input increases, equals a/c. The value of
parameter b is set to 5, which means that the threshold is centered over 5,
indicated by the black arrowhead. b has the same value in all curves shown.
Note that both a sharp threshold is attained by having c close to 0, whereas
a smoother transition is obtained with higher values of c.

ours with an intense synaptic background activity as compared
to in vitro since previous simulation work has suggested that the
background level of stochastic synaptic input changes the dynam-
ics of spike firing (Jaeger and Bower, 1999; Gauck and Jaeger,
2000, 2003; Destexhe et al., 2001; Salinas and Sejnowski, 2002;
Fellous et al., 2003; Suter and Jaeger, 2004), especially close to the
threshold (La Camera et al., 2008). A suitable description of the
spike firing statistics should therefore be capable of featuring both
a sharp and a smooth threshold in this region. At the high end it
should be approximately linear, but also have a transition from
the linear region to asymptotically reach 0 as the neuron is suffi-
ciently hyperpolarized (Figure 3B). Here we introduce Equation
(3), which satisfy these requirements. In this equation, the param-
eter c determines the width of the threshold region with c ∼ 0
leading to a sharp threshold and higher values lead to a more
smooth transition (Figure 3B).

E−1 = a ln

[
1 + exp

(
I − b

c

)]
(3)

where I denotes the total input current over the membrane (i.e.,
the sum of synaptic and injected currents), b determines the posi-
tion of the threshold and a the slope of the linear region. Due to
the asymptotic linearity of Equation (3) at high input, it does not
capture the high input saturation of the f-I curves obtained from
LIF models (Rauch et al., 2003). However, none of the neurons
we recorded displayed this behavior within the range of activity
studied. It is possible that this behavior would have appeared if
the neurons had routinely been driven to even higher levels of
activity. However, when tested for a few of our neurons, at these
levels we observed a spike break-down (severe reduction in spike
amplitude, broadening of the spike) before the appearance of high
input saturation.

An interesting feature became evident when we plotted the
i.s.d. against the firing frequency. Rather than being linearly
related, as would be expected from naïve rescaling of the ISI dis-
tribution, this relationship seemed to be best described as an
exponential curve (Figure 4A). It is also clear from the two sam-
ple neurons in Figure 4A that the relationship was not the same
for different neurons. A general exponential relationship between
firing frequency and i.s.d. that could approximate both cases in
Figure 4A is described by Equation (4):

i.s.d. = exp (kI + m) (4)

If the exponential curve appropriately approximates the rela-
tionship between the i.s.d. and input, it allows the model to be
divided into two consecutive parts. The first part translates the
input (e.g., input current) into a normalized dimensionless input
x such that i.s.d. = exp x. Since all models must obey this rela-
tionship, it can be used as a method to validate the constructed
models against the experimental data. By using a logarithmic
scale, the exponential curve is transformed into the linear rela-
tion shown in Figure 4B, which simplifies visual inspection, but
also enables the use of linear regression to validate the constructed
model by testing whether the actual data are distributed along
this line.
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If the normalized input x is used instead of I in Equation (3),
after modifying b and c accordingly, the coefficient of variation
(CV) of the ISI over a range of input can be computed using
Equation (5). Figure 4C illustrates how the CV varies using the
different values of the parameters a and c that were also used in
Figure 3B.

CV = s.d.

E
= a ln

[
1 + exp

(
I − b

c

)]
exp ( − x) (5)

FIGURE 4 | Relationship between firing level and spike firing variability.

(A) Relationship between the firing frequency and the inverse of the
standard deviation of the ISIs for two sample spinal interneurons. Note that
the axes of the firing frequency for the two neurons differ substantially. (B)

Model prediction of the relationship between the normalized input and the
logarithmic value of the inverse of the standard deviation of the ISI
distribution. (C) Predicted coefficient of variation (CV) of the complete
model in Equation (6) where the parameters a and c are varied as in
Figure 3. (C; left) Relationship between the normalized input and the CV.
Note that the CV only reaches a stable value above 0 as the input
approaches −∞ (corresponding to a substantial hyperpolarization) if c = 1.
Otherwise it either diverges as c > 1 or approach 0 as c < 1. (C; middle,
right) For comparison with previous results, the CV in relation to the
average length of the ISIs (middle) (Softky and Koch, 1993) and the CV in
relation to the instantaneous firing frequency (right) (Rauch et al., 2003) is
also included in the figure.

During periods of high excitation, the CV will approach 0, as the
ISIs will be defined by the properties of the neurons refractory
period (Softky and Koch, 1993). The behavior during periods of
low excitation is not as well defined. The parameter c of Equation
(5) determines whether the CV approach 0 (c < 1), diverge (c >

1), or converge toward a fixed value (c = 1). The latter has sup-
port from studies of biophysical integrate-and-fire models (Softky
and Koch, 1993; Rauch et al., 2003) while the other two options
lack support or acceptable interpretations. From this, the param-
eter c should be set to 1 for the description of the firing statistics
to have any meaning as the firing intensity approach 0. The actual
asymptotic value of the CV can be calculated by the formula in
Table 1.

The complete model can be summarized by the three equa-
tions in Equation (6). The first two Equations (6a,b) form a
parametric equation between frequency and i.s.d. with the nor-
malized input x as the parameter. In this way the model separated
into one part that translates input to normalized input that is
determined by the parameters �I and cI , and one part that
describes the relationship between frequency and i.s.d. that is
determined by the parameters �x and cx. The parameters and
some related quantities are described in Table 1.

(a) i.s.d. = exp x (b) E−1 = cx ln
[
1 + exp (x − �x)

]
(c) x = cII − �I (6)

In summary, to find the parameters of the model that best
describes the spike generation of a neuron from experimental
data, one would need to find the mean and s.d. of the ISIs from
several stationary states. These data can then be used to find the
optimal parameters for that neuron in Equation (6).

FIT BETWEEN MODEL AND RECORDED DATA
Figure 5A demonstrates the fit of the spinal interneurons
recorded to the relationship between input and the i.s.d. pre-
dicted by the model. None of the neurons failed the DW-test
(p > 0.01) of the residuals and the linear regressions provided
good fits (R2 = 0.96 ± 0.02; N = 9). In Figure 5B the relation-
ship between input and spike frequency for each recorded spinal

Table 1 | Description of the parameters of Equation (6) and some

related quantities.

Description

Parameter

cI Scaling between input current I and normalized input x

�I Offset between input current I and normalized input x

cx Scaling between the mean and standard deviation

�x Offset between mean and standard deviation, center of
threshold for x

Quantities

cI (�I + �x ) Center of threshold for I

cIcx E−1 ∝ cIcx I when I � cI (�I + �x )

cxe−�x Coefficient of variation as I → −∞
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FIGURE 5 | Predictions of firing frequencies for spinal interneurons. (A)

Relationship between the normalized input and the logarithmic value of the
inverse of the standard deviation of the ISI distribution for the model (line)
and the recorded data of the 9 spinal interneurons tested. Each spinal
interneuron is represented by a set of dots indicated by the same color. The
recorded states are expected to lie upon the line according to Equation (6a).
(B) Relationship between the normalized input and the firing frequency in
the model (line) and the recorded data for the 9 spinal interneurons (dots)
divided into 4 separate panels. The neurons are shown in different panels
as they occupy different ranges of firing frequencies. Note differences in
curvature and steepness of the curves between individual neurons. The
inset displays three sample firing levels for one recorded neuron, as
indicated by the encircled values in the curve.

interneuron together with the fitted model of the spike gener-
ation for each respective neuron are shown. We further tested
the accuracy with which the model could predict the distribu-
tion of ISIs for each stationary state. Using AD-test, we found

that the model could predict the empirical ISI distribution using
the lognormal distribution 97 ± 5% (p > 0.01, N = 564) of the
states.

Figure 6 illustrates the applicability of the model to the
recorded Purkinje cells, molecular layer interneurons and Golgi
cells. As for the spinal interneurons, the predicted relationship
between input and the i.s.d. of the model provided a good fit
also for the Purkinje cells (p > 0.01; DW-test; R2 = 0.94 ± 0.01;
N = 3). The model accuracy, using AD-test was 94 ± 5% (p >

0.01; N = 85 stationary states). The model provided a good fit
also for molecular layer interneurons (p > 0.01; DW-test; R2 =
0.99 ± 0.02; N = 3), with a model accuracy of 96 ± 7% (AD-test;
p > 0.01; N = 34 states).

For the Golgi cells, the F-test of the residuals from the pre-
dicted relationship between input and i.s.d. failed for 2 out
of the 3 neurons (p < 0.01; DW-test; R2 = 0.86/0.82), whereas
it could not be rejected for the remaining neuron (p > 0.01;
DW-test; R2 = 0.97). The model accuracy for the individ-
ual states was still quite high, 91 ± 5% (p > 0.01; AD-test;
N = 241).

Finally, the residuals of all the linear regressions could not be
rejected as normally distributed (p > 0.01, SW-test) and the 95%
confidence intervals of the linear regression parameters all con-
tained the predicted values (p1 = 1 and p2 = 0, see Materials and
Methods).

We also compared the accuracy and the higher order moments
of the lognormal distribution with those obtained using the
gamma and inverse Gaussian distributions. As shown in Figure 7,
the approximations obtained using the latter two did not provide
better predictions of the higher order moments of the empirical
distributions. The accuracy (p > 0.01, AD-test) using the dif-
ferent distributions were also comparable. Using the lognormal
distribution, 95 ± 5% accuracy was obtained, while the gamma
distribution lead to an accuracy of 97 ± 3%, and the inverse
Gaussian distribution to an accuracy of 95 ± 5%.

COMPARISONS ACROSS NEURONS
It has previously been shown that it is possible to distinguish the
type of neuron from its spontaneous firing using the firing rate
and the entropy of the neurons spike train (Van Dijck et al., 2013).
Note that the spontaneous firing in this case refers to the spon-
taneous activity at rest. In Figure 8, the models that were fitted
to the neuron types in this study are compared to each other in
order to investigate whether it is possible to differentiate the neu-
rons types also outside of their resting state when they are driven
to fire at other intensities. The analysis in Figure 8 is limited to the
first two moments of the distributions, due to the short length of
the spike trains, but the results indicate that there is no appar-
ent relationship between the type of neuron and model behavior.
Rather, the differences between neurons of the same type are com-
parable to the differences between neurons of different types. A
consequence of this relationship, and the relationship between the
firing frequency and the standard deviation of the ISIs described
above, is that the spike firing statistics in the different neurons we
explored here are apparently similar (or rather equally dissimilar)
across neuron types when their input is modified so that they have
similar firing rates.
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FIGURE 6 | Predictions of firing frequencies for neurons of the cerebellar

cortex. Similar display as in Figure 5 but for the three different neuron types
recorded in the cerebellar cortex. (A) Relationship between the normalized
input and the inverse of the standard deviation. (B) Relationship between the
normalized input and the mean firing frequency. The two Golgi cells that had
correlated residuals (DW-test, p < 0.05) are marked by asterisks. For the

illustrated raw traces of Purkinje cells, the asterisks indicate complex spikes,
which were not analyzed. The lower panels of each neuron type also contain
three sample intracellular traces at different excitation levels as insets. The
states that were found at each level are encircled and denoted with I, II, and
III. The gray regions in the traces of the Purkinje cell and ML interneuron
indicate the duration of the current pulses used.

MODEL SPECIFICITY
To rule out that the accuracy of the constructed models were not
simply the result of over-fitting of random data or the possibility
that any kind of unrelated ISI data would yield similar results, the
accuracy of the models fitted to single neurons were compared
to models that were fitted to 4, 50, and 100 stationary states ran-
domly selected out of a total of 498 states (only states that could
not be rejected as log-normally distributed, SW-test, p > 0.05)
obtained from 45 different spinal interneurons with spontaneous
activity (>2 Hz).

The proportion of the data points obtained from the ran-
domly selected states that was accurately predicted by the model
was on average 67 ± 13% (4 random states: 76 ± 28%, 50
random states: 67 ± 8%, 100 random states: 67 ± 5%; p <

0.01; AD-test), which was significantly lower than for the single
neuron models (p < 0.01; student’s t-test) for all neuron types.
The distribution of R2 (4 states: R2 = 0.84 ± 0.25; 50 states:
R2 = 0.88 ± 0.06; 100 states: R2 = 0.89 ± 0.02) was, just like the
model fit, significantly different compared to the single neu-
ron models (p < 0.01; student’s t-test), except for the Golgi cell
models.

INPUT NORMALIZATION
One requirement to perform the present analysis was to obtain
long-lasting intracellular recordings under stable conditions
in vivo, for which the whole cell recording technique was our
method of choice. But for this approach there are sources of vari-
ability for the neuronal activity that could not be avoided, and
which could change the relationship between the injected current
and the average firing frequency. These sources are variations in
background synaptic activity and variations in access resistance
between the electrode and the cell. Although access resistance
was compensated for off-line, this cannot be done with 100%
accuracy and the error can vary over time. The variations in the
background activity were outside of our control.

In order to validate the assumed linear relationship between
the input current and the normalized input Equation (5c), the
model was used to predict the normalized input from the exper-
imental data. For each stationary state, both the s.d. and the
frequency of the state were used to predict the normalized
input through the inverse of Equations (6a,b). These predictions
should be linearly related to the actual input current according to
Equation (6c).
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FIGURE 7 | Comparison between different probability density functions

(PDFs) using higher order moments and the local variability (LV). Higher
order moments of the empirical distributions and the local variability of the
spike trains can be employed to validate the use of specific PDFs as
approximations of the empirical distributions as they inform on features that
cannot be seen using only the mean and standard deviation. (A,B) display the
attained 99% confidence bounds of the constructed model using the gamma,

lognormal and inverse Gaussian distribution. (A) Spinal interneuron that
followed the predicted LV of the gamma distribution. (B) Representative
spinal interneuron with no preferred PDF. (C) Summary of all tested neurons
showing the proportion of stationary regions that fall within the confidence
bounds of the respective model. The slight trend in (B) where the gamma
distribution underestimates the L-skewness and L-kurtosis is more evident
here, while there is no difference between the PDFs regarding the LV.

Figure 9 illustrates the relationship between injected current
and the predicted normalized input for four sample neurons
with a high number of stationary and log-normally distributed
states with different current injections. The variability of the
predicted input for each input current level is due to both
the inherent stochasticity of the spike generation, but also the
issues with background synaptic noise and variations in access
resistance. However, overall there was a relatively good corre-
spondence between the amount of injected current and the esti-
mated normalized input, with the variability lying in a similar

range as reported from other in vivo recordings (Nowak et al.,
2003).

INHOMOGENEOUS MODEL
A model of the firing statistics neurons across its potential range
of stationary states can be extended to inhomogeneous situations
with input that is not constant. The least complex model that does
not incorporate transient behavior would use the log-normal
hazard function in Equation (7) to describe the instantaneous
firing rate.
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FIGURE 8 | Comparison between models of the different neuron

types. The figure illustrates that the curves of different neuron types
overlap extensively, such that the difference between two neurons of
the same type is similar to the difference of two neurons of differing
types. (A) Parametric curves between the mean and the standard
deviation of the log-normal distributions of the models. The range of

the curves is limited by the range if the normalized input x, which is
varied between 0 and 9. (B) The same relationship as in (A), but now
as the coefficient of variation (CV) in relation to the average ISI. (C)

The colored triangles indicate the CV of the models as x → −∞ (see
Table 1 for the formula). The numbers indicate whenever there is more
than one neuron model whose asymptotic CV overlap in the figure.

FIGURE 9 | Relationship between the injected current and the estimated

input level. (A) Linear regression of the relationship between the normalized
input x and the injection current I in Equation (6c). The mean of the firing

frequency was used to predict the value of x using the constructed model,
which is compared to the recorded value of I. (B) Same as in (A), but using
the standard deviation of the ISIs instead of the mean as the predictor for x.
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λ(t;μ, σ ) = f (t;μ, σ )

1 − �
(

ln t − μ
σ

) (7)

where λ is the instantaneous firing rate, f is the log-normal PDF
in Equation (1) and � is the cumulative density function of the
standard normal distribution.

Intracellular recordings of the membrane potential as well as
the spike firing during input modulation equivalent to that which
would occur under behavior does to our knowledge not exist
for any regular spinal interneuron in vivo, but does exist for the
spinocerebellar tract cells of the lumbar cord. To demonstrate
the applicability of our model in inhomogeneous situations,
the parameters adapted to one of our spinal interneurons were
used to simulate the firing during slowly modulated input that
is seen during fictive locomotion in DSCT neurons (Fedirchuk
et al., 2013). The recorded membrane potential, averaged across
a number of cycles of locomotion, was used as the input to
the modeled neuron (Fedirchuk et al., 2013). Figure 10 illus-
trates the fit between the output predicted by the model and the
recorded instantaneous firing frequency. The actual firing almost
completely stayed within the 95% confidence bounds, indicating
that under these conditions the inhomogeneous model, generated
from a spinal interneuron in the lower cervical segments, accu-
rately predicts the actual firing behavior of DSCT neurons during
fictive locomotion (with the exception of one data point of the
actual spike firing that fell outside the confidence bounds of the
model prediction, see Figure 10). The initial rise of the experi-
mental response indicates a tendency of overshoot following the
period of inactivity. Note however, that while the cyclic mem-
brane potential modulations used as input and the instantaneous
firing frequency were recorded from the same neuron (Fedirchuk

FIGURE 10 | Comparison of actual spike firing and spike firing

predicted by the inhomogeneous model during fictive locomotion in

spinal neurons. The model took the intracellular membrane potential
modulation of dorsal spinocerebellar tract (DSCT) neurons (Figure 3 of
Fedirchuk et al., 2013) as the driving input and predicted the spike firing or
the neuron using the inhomogenous model fitted to one of our spinal
interneurons. The 95% confidence bounds predicted by the model (dashed
lines) is shown and compared to the actual instantaneous firing frequency
(red line) (Fedirchuk et al., 2013). Just like the experimental data, the two
step cycles in the figure was binned into 30 bins each, where the data to
each bin was computed from 12 simulations. This procedure was repeated
250 times to calculate the confidence bounds of each bin. (inset) Histogram
showing the probability distribution of the ISIs from Fedirchuk et al. (2013)
(solid curve), compared to those obtained through simulation (gray bars).

et al., 2013), they were naturally not from the same step cycles.
Due to this, some discrepancies between the predicted output by
the model and the recorded frequency is expected.

DISCUSSION
We used long-term whole cell patch clamp recordings to char-
acterize the neuronal spike firing statistics for a high number
of stationary states across a wide range of membrane potentials
in vivo. A striking finding was the strong relationship between
the firing frequency and the stochasticity of the spike genera-
tion, which made it possible to predict the neurons’ spike firing
statistics across a continuum of input levels. Surprisingly, the
differences between neurons of different types overlapped the
differences between neurons of the same type. Based on our mea-
surements, we formulated a model that captured the neurons’
spike firing statistics with high accuracy across the operative range
of membrane potentials, and included a simple inhomogeneous
model for time-varying input. In a conductance-based model-
ing of neurons, this model can be used to comparatively easily
solve the problem of how to introduce stochasticity in the spike
generation (Goldwyn and Shea-Brown, 2011; Lim and Goldman,
2013). The advantage of this model is particularly the case where
there is a dissociation between the membrane potential dynamics
and spike initiation (Figures 1D,E; Naundorf et al., 2006). Even
though Hodgkin-Huxley based models implementing synaptic
noise have proven relatively successful in reproducing in vivo-like
spike patterns (Gauck and Jaeger, 2000, 2003; Suter and Jaeger,
2004), this approach requires knowledge about the structure of
the synaptic noise and will not capture spike generation that is
dissociated from this process. Our model incorporates stochas-
ticity both from synaptic noise, without requiring any knowl-
edge about its structure, and from intrinsic, non-deterministic
fluctuations in the spike generation.

The limitations of our findings lie primarily in possible errors
in the estimate of the total actual input. However, the accuracy
of the model predictions argued against that this was a problem
of major importance. Also, the relationship between the firing
frequency and the standard deviation lies beyond these measure-
ment errors as they were based solely on the statistics of the
stationary regions and not the actual input. In theory, one could
have fitted the model to a neuron without artificial modulation
(by current injection) of the total input if it spontaneously shifted
between different stationary states. This is clearly one of the major
advantages with the method we introduce: the statistics of the
spike generation of individual neurons can be approximated from
a limited amount of recorded spikes.

Why did the shapes of the curves describing the input-output
relationship vary between neurons? A speculative answer is that
there are differences in the actual resting membrane potential, the
density of the voltage-sensitive ion channels between neurons and
possibly variations in membrane capacitance. Importantly, these
differences did not seem to depend upon the type of neuron. The
parameters we tested for varied greatly within the same group of
neurons (Figure 8), and the extent of the variability was overlap-
ping between different types of neurons so that it was not possible
to differentiate neuron types on basis of the model parameters.
This was surprising, given that these types of neurons at least to
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some extent are known to vary with respect to the active con-
ductances they express in their membranes (Mckay et al., 2005;
Molineux et al., 2005; Forti et al., 2006; Zhong et al., 2010). One
interpretation is that the spike generating mechanism relies on a
limited set of ion channels (Schneidman et al., 1998; Fourcaud-
Trocme et al., 2003; Naundorf et al., 2006; Saarinen et al., 2008;
Stiefel et al., 2013), which is comparable across neuron types, but
that the role of the bulk of the reactive membrane conductances is
to shape the subthreshold responses of the membrane. In the case
of neurons that have prominent contributions from such intrin-
sic, subthreshold membrane conductances, a modeling approach
would need to implement the effect of these conductances sep-
arately, possibly as an autoregressive filter upon the input to the
model, extending the linear input relationship that is currently
used with temporal dynamics. Additional internal states could
also be added to handle rebounds from e.g., Ca2+ concentration
changes. The reason that our model still worked quite well sug-
gest that the particular types of neurons we recorded from are
not dominated by intrinsic conductances in the inactive in vivo
state without anesthesia. This may also be a partial explanation
for why the Golgi cells displayed the poorest model fit—Golgi
cells are well known to have strong intrinsic conductances (Forti
et al., 2006).

The parameters of our firing statistics characterization and
model are not overtly related to any biophysical properties of
the neuron, but were chosen to give closed form solutions to the
f-I curve and its relationship to the standard deviation that pro-
vided a good enough fit. Other more detailed biophysical models
exist, most prominently the leaky integrate-and-fire (LIF) model
(Capocelli and Ricciardi, 1971). Compared to even more detailed
models, the LIF model provides the advantage of analytical solu-
tions that allows it to be used to approximate experimental ISI
data (Rauch et al., 2003; La Camera et al., 2008). However, the
actual effective values of the biophysical parameters that cor-
responded to the best ISI data fit of the LIF model were not
correlated to measured values of membrane capacitance and time
constant (Rauch et al., 2003; La Camera et al., 2006) and conse-
quently best fits were found using parameters obtained through
optimization to arbitrary values. In comparison, our model also
relies on arbitrary parameters, but since these parameters have a
phenomenological rather than biophysical origin (see Table 1 for
examples) they are readily obtained from neuronal recordings in
contrast to the LIF approach. For the relative simplicity and utility
of the modeling of the spike generation, and to ensure a close link
between the model and recorded neuronal spike firing statistics,
our model hence offers substantial advantages.

Other generative phenomenological models of spike gener-
ation exist. In contrast to our model, they approximate spike
trains with varying firing frequencies with inhomogeneous point
processes where the parameters of the point process is varying
with time and estimated from recorded spike trains. This method
is performed using both Gamma distributions where both the
shape and scale parameter varies with time (Shimokawa and
Shinomoto, 2009) and Poisson processes (e.g., generalized linear
models, Brunel et al., 2014). These models have in common the
need to explicitly model the refractory period if the model should
be able to capture such effects (Stevenson et al., 2008). This is true

also when the escape rate is defined by the gamma distribution
(Shimokawa and Shinomoto, 2009). By contrast, using the log-
normal distribution, the refractory period is implicitly there due
to its logarithmic definition, and by fitting it to a distribution of
ISIs from a stationary state where the refractory period is present
in the empirical distribution, it will naturally also be present in the
fitted distribution. The current model is on the other hand lim-
ited from the lack of inhomogeneous input in the experimental
setup.

Our model of spike generation was based solely on the spike
firing statistics during stationary states. However, by the intro-
duction of an inhomogeneous hazard function or escape rate, as
described in the results, it was possible to also accurately predict
the variation of spike firing across a range of membrane potentials
that the neuron is likely to experience during ongoing behav-
ior. In cases of extremely rapid changes in membrane potentials,
such as can be induced by massive, synchronous activation of a
large number of synapses that is often done artificially in in vivo
recordings of neurons receiving sensory input, it is unlikely that
our model would accurately capture the dynamics of the spike
firing. On the other hand, at least for the relatively slow mod-
ulations of spike firing that spinal interneurons, Purkinje cells,
Golgi cells and molecular layer interneurons display under behav-
ior, such synchronous synaptic activation does not seem to occur
and at least outside this range of activation dynamics our model
is likely to generate accurate predictions. During asynchronous
states (Renart et al., 2010), which may be the primary processing
state of the neocortex, neocortical pyramidal neurons may obey
similar rules of spike generation since also these neurons appear
to work primarily as rate coders (Priebe et al., 2004; London
et al., 2010). The challenge for a corresponding analysis of neo-
cortical neurons lie in finding stationary states in the face of the
up-down states these neurons display in vivo. This work shows
that it is possible to obtain good approximations of any neuron’s
spike generation under rate modulated firing using phenomeno-
logical observations of the spike firing statistics that are obtained
by recording the neurons from a few different stationary states.
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