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Drug biotransformation is a crucial mechanism for facilitating the elimination of chemicals
from the organism and for decreasing their pharmacological activity. Published evidence
suggests that brain drug metabolism may play a role in the development of adverse drug
reactions and in the clinical response to drugs and xenobiotics.The blood–brain barrier (BBB)
has been regarded mainly as a physical barrier for drugs and xenobiotics, and little attention
has been paid to the BBB as a drug-metabolizing barrier.The presence of drug-metabolizing
enzymes in the BBB is likely to have functional implications because local metabolism may
inactivate drugs or may modify the drug’s ability to cross the BBB, thus modifying drug
response and the risk of developing adverse drug reactions. In this perspective paper, we
discuss the expression of relevant xenobiotic metabolizing enzymes in the brain and in the
BBB, and we cover current advances and future directions on the potential role of these
BBB drug-metabolizing enzymes as modifiers of drug response.
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The concept of the blood–brain barrier (BBB) was developed over
a century ago, when Ehrlich observed that dyes administered intra-
venously do not stain the brain. Goldmann refuted the so-called
“binding hypothesis” (Goldmann, 1913) and established that the
central nervous system (CNS) is separated from the bloodstream
by the blood–brain and cerebro-spinal fluid (CSF) barriers. At
present, most of the research related to the BBB has focused on how
selected molecules, drugs, metabolites, and toxic substances are
able to enter and leave the brain (for a recent review, see Pardridge,
2012). In fact, the BBB has been traditionally regarded as a phys-
ical barrier that protects the CNS from non-lipophilic drugs and
xenobiotics. In contrast, the putative role of the BBB as a drug-
metabolizing barrier has received little attention. The presence
of drug-inactivating enzymes in the BBB is likely to affect drug
response, as does the presence of such enzymes in the intestine
and liver (Pereira de Sousa and Bernkop-Schnurch, 2014). Local
metabolism may modify the response and the risk of developing
adverse drug reactions with drugs affecting the CNS, and the pres-
ence of drug-inactivating enzymes in the BBB may constitute an
additional protecting mechanism against drugs and xenobiotics,
which may act regardless of their lipophilicity.

With the obvious quantitative differences in enzyme expression
of drug-inactivating enzymes between the BBB and the functional
unit responsible for pre-systemic metabolism [intestinal enzymes
(Pereira de Sousa and Bernkop-Schnurch, 2014), gut microbiota
(Kang et al., 2013), and first pass in the liver], drug inactivation in
the BBB may constitute a relevant quantitative or qualitative fac-
tor for CNS drugs, if these are metabolized by enzymes expressed
in the BBB. In fact, a relevant problem in the study of drug
response, with regard to drugs affecting the CNS, is related to

large interspecies differences in drug bioavailability and distri-
bution within the CNS, including differences between primates
and humans; these differences, which would not be expected in
a purely physical barrier, are likely to be related to differences in
the BBB function. Regarding CNS drugs, this variability could
be the consequence of variation in the expression patterns and
function of drug-metabolizing enzymes and transporters in the
BBB. Of great interest is the development of in vitro BBB mod-
els using brain vascular endothelial cell cultures which permit the
characterization and quantification of genes and proteins in brain
microvessels from different species (Shawahna et al., 2013). This
methodological advance, together with in vivo studies comparing
drug concentration and metabolic profiles on both sides of the
BBB, will contribute in coming years to greater knowledge of the
metabolic and functional implications of the BBB.

ENZYMES THAT METABOLIZE CNS DRUGS
The BBB expresses a variety of neurotransmitter-metabolizing
enzymes such as monoamine oxidases (MAO), catechol
O-methyl transferase (COMT), cholinesterases, GABA transam-
inase, aminopeptidases, and endopeptidases. Several drug- and
xenobiotic-detoxicating enzymes are found in brain capillaries
(Minn et al., 1991; de Leon, 2003; Granberg et al., 2003; Haseloff
et al., 2006; Ueno, 2009; Wang et al., 2011), thus constituting
an enzymatic mechanism that protects the brain from circu-
lating neurotransmitters and from drugs and toxins. For many
CNS drugs, metabolic predispositions are a crucial mechanism
in determining drug effects. Among the enzymes involved in
drug metabolism, two main enzyme categories (Phase I and
Phase II) exist. The most relevant Phase I enzymes, in terms of
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percentage of drugs that they metabolize, are the cytochrome
P450 (CYP) CYP3A (including CYP3A4 and CYP3A5, which
share several substrates), CYP2D6, CYP2C9 [which share sev-
eral substrates with CYP2C8, particularly non-steroidal anti-
inflammatory drugs (Agundez et al., 2009)], CYP1A1/1A2 and,
to a lesser extent, CYP2C19, CYP2E1, CYP1B1, and other CYP
enzymes (Evans and Relling, 1999). Regarding Phase II enzymes,
the most relevant in terms of percentage of drugs metabolized are
UDP-glucuronyltransferases (UDPs), glutathione S-transferases
(GSTs), sulphotransferases (SULTs), and N-acetyltransferases
(NATs) particularly NAT2 (Evans and Relling, 1999). Drugs
belonging to many pharmacological groups are affected by
polymorphic metabolism mediated by these enzymes, includ-
ing for instance anesthetics, anti-Parkinson’s disease drugs,
antihistamine drugs, antipsychotics, narcotics, or antidepres-
sants; specific recommendations for the use of these drugs
in the context of variability in drug metabolism have been
published (Restrepo et al., 2009; Khokhar and Tyndale, 2011;
Relling and Klein, 2011; Swen et al., 2011; Agundez et al., 2013;
Garcia-Martin et al., 2013).

DRUG-METABOLIZING ENZYMES IN THE BRAIN
Most available information on the expression of drug-
metabolizing enzymes in the CNS corresponds to the whole brain.
The expression of CYP450 in the whole brain was reported by
Nishimura et al. (2003). Dutheil et al. (2009) showed the appar-
ent selective expression in several cerebral regions in both neuronal
and glial cells. The most relevant enzymes were CYP1B1, CYP2D6,
CYP2E1, CYP2J2, CYP2U1, and CYP46A1, with heterogeneous
distribution in different brain areas (Dutheil et al., 2009). Tissue-
specific features are becoming apparent from recent studies. For
instance, the dura-mater is clearly different from the other brain
structures because of its particular pattern expression of CYP450,
with a high level of CYP1B1 and, to a lesser extent CYP1A1,
CYP2U1, CYP3A5, CYP2R1, CYP2E1, CYP2D6, and CYP46A1
(Dutheil et al., 2009). The European Bioinformatics Institute
Expression Atlas1 (available at the website), provides interest-
ing information on the baseline expression of drug-metabolizing
enzymes in the human brain. When comparing the expression
in the brain and in the liver, what is striking is the high relative
expression in the brain of the Phase I enzymes CYP46A1 (which
is virtually absent in the liver and highly expressed in the brain),
CYP1B1 and CYP2U1, which are expressed at twice the level in
the brain as in the liver. CYP2R1 is expressed in a similar extent
in the brain and the liver, and CYP2J2 is expressed in the brain
at about 10% of the level in the liver. CYP2D6 has a marginal
expression in the brain, representing about 2% of the liver levels,
whereas the expression of other CYPs such as CYP1A1, CYP2C8,
CYP2C9, CYP2C19, CYP3A4, CYP3A5, and CYP2E1 seems to
be negligible in the human brain in basal conditions. Regard-
ing Phase II enzymes, the expression atlas indicates that a high
expression of GST enzymes is present in the human brain; specif-
ically, a 10-fold higher expression of GSTM2, an eightfold higher
expression of GSTM3, a fourfold higher expression of GSTP1 and
GST4, a twofold higher expression of COMT, and about half of

1http://www.ebi.ac.uk/gxa/home

the expression levels of SULT1A4, as compared with the liver,
respectively. No significant expression of other relevant drug-
metabolizing enzymes, such as SULT1A1, UGT1A6, UGT2B7,
NAT1, and NAT2 seems to occur in the human brain. Never-
theless, many of the mentioned drug-metabolizing enzymes are
inducible and hence, basal values should be considered as refer-
ence values, but cannot be extrapolated to all individuals and to
all situations.

DRUG-METABOLIZING ENZYMES IN THE BBB
Dauchy et al. (2008) identified CYPs in microvessels and empha-
sized the quantitative importance of CYP1B1 in the BBB.
Shawahna et al. (2011) quantified the expression of the genes
encoding Phase I and Phase II metabolizing enzymes and pro-
teins in brain microvessels from 12 patients suffering from epilepsy
or glioma. CYP1B1 and CYP2U1 transcripts were the main
CYPs detected in brain microvessels whereas no other CYP pro-
teins were detected (Decleves et al., 2011; Shawahna et al., 2011).
Drug-metabolizing enzymes present in microvessels (at a protein
detection level) were CYP1B1, CYP2U1, GSTP1, GSTM2, GSTM3,
GSTM5, and GSTO1. In addition, detectable MRNA correspond-
ing to CYP2D6, CYP2J2, CYP2E1, CYP2R1 were present, as well
as the Phase II enzymes histamine N-methyltransferase (HNMT),
COMT, and thiopurine S-methyltransferase (TPMT; Shawahna
et al., 2013). Conversely, no UGTs, or NAT enzymes were identi-
fied in microvessels (Shawahna et al., 2013), which is consistent
with the virtual absence of expression in the human brain accord-
ing to The European Bioinformatics Institute Expression Atlas1.
According to present knowledge, the metabolic capacity of the
BBB is likely to modify drug response and, in particular, may
be involved in therapeutic failure for drugs that are substrates of
the enzymes present in the BBB. Not only because the drugs may
be chemically inactivated, but also because drug metabolism at
the BBB may modify drug polarity, making the molecules unable
to cross the BBB. Because glial cells form a physical barrier in
the BBB, the presence of drug-metabolizing enzymes in astrocytes
and microglia constitute a line of defense that drugs cannot avoid
when entering the CNS. An exhaustive list of drugs and substrates
of drug-metabolizing enzymes present in the BBB falls beyond the
scope of a perspective article, but some examples are the following:
CYP1B1 metabolizes, among other substrates, amodiaquine, caf-
feine, theophylline, melatonin, and procarbazine (Shimada et al.,
1997, 1999; Li et al., 2000, 2002; Spink et al., 2000; Bournique
and Lemarie, 2002; Patterson and Murray, 2002; Choudhary et al.,
2004; Dubey et al., 2005; Ma et al., 2005; Zhang et al., 2007),
CYP46A1 participates in the metabolism of analgesics such as
dextromethorphan, diclofenac, or phenacetin (Mast et al., 2003);
CYP2D6 participates in the metabolism of several antidepres-
sive agents, antipsychotics, and other CNS drugs (for a recent
review, see Agúndez and García-Martin, 2014). CYP2J2 metab-
olizes ergocalciferol, ebastine, and astemizole (Hashizume et al.,
2002; Matsumoto et al., 2002, 2003; Lee et al., 2005; Zhou et al.,
2005; Aiba et al., 2006). CYP2E1 participates in the metabolism
of anesthetics and ethanol (Zakhari, 2006; Restrepo et al., 2009;
Martinez et al., 2010). CYP2R1 participates in the metabolism of
ergocalciferol and colecalciferol (Schuster, 2011). HNMT metab-
olizes histamine, particularly in the CNS, and HNMT gene
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variations are relatively common and affect the enzyme activ-
ity (Garcia-Martin et al., 2009). GST enzymes in the BBB impair
accumulation and cause therapeutic failure for antiepileptic drugs
(Shang et al., 2008).

CLINICAL IMPLICATIONS AND FUTURE PERSPECTIVES
In contrast to the extensive investigation of drug-metabolizing
enzymes in the human liver carried out in the last three decades,
and compared to the present knowledge of drug transporters
in the BBB, the implications of drug-metabolizing enzymes
in the BBB are poorly understood. These enzymes may be a
major cause of dissociation between the drug concentrations
observed in the CSF and plasma, and may underlie therapeu-
tic failure, even when plasma drug concentrations are opti-
mal. Several issues that require further investigation include the
following:

(1) Identification and quantification of all drug-metabolizing
enzymes in the BBB. So far our knowledge is very limited and
further studies are required to identify more enzymes, to ana-
lyze their expressions in different structures in the BBB, and to
study the interindividual variability in the expression of these
enzymes.

(2) Specific characteristics of the drug-metabolizing enzymes
expressed in the BBB. The first exhaustive gene profiling of
P450 in human brain microvessels was carried out by Dauchy
et al. (2008). According to the 1000 genomes catalog2 (available
at the website), most of these enzymes show several splice vari-
ants. For instance, CYP1B1 has seven transcripts, two of which
encode full-length protein, CYP2U1 has three transcripts, two
of these with protein product, GSTP1 has nine transcripts,
GSTM has fourteen, GSTM3 and GSTM5 have six each, and
GSTO1 has seven. With the exception of CYP2D6, which has
only one known transcript, the enzymes detected in the BBB at
mRNA level also have several transcripts: CYP2J2 has five tran-
scripts (although only one functional), CYP2E1 and CYP2R1
have ten transcripts each. It is crucial to know which tran-
scripts are expressed in the BBB, both under basal conditions
and in CNS or vascular disorders, as well as their characteristics
(substrate specificity, Vmax, or Km).

(3) Mechanisms involved in the regulation and functional effects
of drug-metabolizing enzymes in the BBB: Effects of known
inducers of liver enzymes on BBB drug-metabolizing enzymes,
the effect of gene variations, and factors underlying the inter-
individual variability in enzyme activity.

(4) Effects of known inhibitors of the liver enzymes on the BBB
enzymes. This is a crucial factor that may underlie drug
interactions which cannot be assessed by conventional ther-
apeutic drug monitoring, that is, by determination of drug
concentration in plasma.

In summary, besides acting as a physical barrier, the BBB
constitutes a highly specialized metabolic barrier, and contains
several drug-metabolizing enzymes, many of which have the abil-
ity to inactivate drugs and toxins before they enter the CNS.
According to the specific pattern of enzymes, the BBB metabolic

2http://browser.1000genomes.org/Homo_sapiens/Search/New?db=core

barrier has a different metabolic profile than that of pre-systemic
metabolism, where CYP3A4 and CYP3A5 enzymes play a key role.
These CYP3A enzymes, which show little selectivity since they
are involved in the metabolism of a high percentage of clinically
used drugs (Evans and Relling, 1999), are not present in the BBB
(Shawahna et al., 2011). The metabolic BBB barrier seems to be
selective for specific types of drugs or xenobiotics that are metab-
olized by the enzymes present in the BBB. Nevertheless, much
additional information is necessary to gain more ground in BBB
metabolism and it is expected that in the coming years we will have
new information available for assessing the potential and clinical
implications of local drug metabolism in the BBB, which so far
have received little attention.
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