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INTRODUCTION

The microtubule-associated axonal specification collapsin response mediator protein 2
(CRMP2) is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3) conjugated to
the HIV transactivator of transcription (TAT) protein’s cationic cell penetrating peptide (CPP)
motif protected neurons in the face of toxic levels of Ca?* influx leaked in via N-methyl-
D-aspartate receptor (NMDAR) hyperactivation. Here we tested whether replacing the
hydrophilic TAT motif with alternative cationic (nona-arginine (R9)), hydrophobic (membrane
transport sequence (MTS) of k-fibroblast growth factor) or amphipathic (model amphipathic
peptide (MAP)) CPPs could be superior to the neuroprotection bestowed by TAT-CBDS3. In
giant plasma membrane vesicles (GPMVs) derived from cortical neurons, the peptides
translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely
treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux
of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA)-evoked
Ca?* influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which
correlated with the ability of R9- and TAT-CBDS3, but not MTS-CBDS3, to block NMDAR
interaction with CRMP2. Unrestricted Ca?t influx through NMDARs leading to delayed
calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-
CBD3. When applied acutely for 10 min, R9-CBD3 was more effective than TAT-CBD3
at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term
(>24 h) treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed.
Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-
CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when
compared to TAT-CBDS3. Overall, our results demonstrate that altering CPPs can bestow
differential neuroprotective potential onto the CBD3 cargo.

Keywords: NMDAR, CRMP2, neuroprotection, cell-penetrating peptide, delayed calcium dysregulation,
excitotoxicity

the sequelae leading to excitotoxicity is the excessive activa-

Excitotoxicity is characterized as a pathological process by which
a disproportionate exposure to the neurotransmitter glutamate
leads to an overstimulation of its cognate membrane recep-
tors. This results in a disruption in cell membrane perme-
ability, downstream activation of signaling cascades involved in
loss of nerve cell function, culminating in cell death (Gillessen
et al, 2002; Lau and Tymianski, 2010). An early event in

Abbreviations: AUC, area under the curve; CBD3, Ca?™ channel binding
domain 3; CPPs, cell penetrating peptides; CRMP2, collapsin response medi-
ator protein 2; DCD, delayed Ca?t deregulation; DIV, days in vitro; E19,
embryonic day 19; HIV1, human immunodeficiency virus type 1; MAP,
model amphipathic peptide; MTS, membrane translocating sequence of
Kaposi fibroblast growth factor receptor; NMDARs, N-methyl-D-aspartate
receptors; NR2B, NMDAR subunit 2B; PTD, protein transduction domain;
R9, nona-arginine; TAT, transactivator of transcription domain.

tion of N-methyl-D-aspartate (NMDA)-type glutamate recep-
tors resulting in a massive influx of Ca®", making NMDAR
a much sought after target for prevention of excitotoxic-
ity (Faden et al., 1989; Grotta et al, 1990; Steinberg et al.,
1995). Moreover, NMDAR has a number of sites that have
been exploited pharmacologically, including the ion channel
pore, the glutamate-binding site, the glycine-binding site and
the polyamine interaction site, but since NMDAR activity is
crucial for normal neuronal function, the efforts to develop
NMDAR antagonists have unequivocally failed in clinical trials
due to their toxicity (Ikonomidou et al., 2000; ITkonomidou
and Turski, 2002; Muir, 2006). In this context, targeting the
proteins regulating the NMDAR may offer an advantage in
preventing excitotoxicity with the possibility of minimal side
effects.
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Among the multitude of NMDAR associated proteins
(Al-Hallaq et al., 2007), the microtubule-associated collapsin
response mediator protein 2 (CRMP2), generally known for
its role in growth cone collapse in sensory neurons (Goshima
et al., 1995), has been reported as a possible regulator of
NMDAR activity and localization (Bretin et al., 2006; Al-Hallaq
et al., 2007). Following glutamate excitotoxicity, CRMP2 expres-
sion is decreased and this down-regulation is associated with
increased axonal injury and loss, implicating CRMP2 in neu-
ronal death mechanisms (Xiong et al., 2012). Further evidence
of a putative link between CRMP2 and NMDAR can be sur-
mised from studies on CRMP2 and neurotoxicity that reported
calcium-activated protease calpain-mediated cleavage of CRMP2
occurring in response to sundry neurotoxic insults including
injury, ischemia, and excitotoxic exposure to glutamate (Chung
et al., 2005; Bretin et al., 2006; Jiang et al., 2007; Touma
et al., 2007; Hou et al., 2009; Zhang et al., 2009). CRMP2
is cleaved following glutamate exposure; neurons expressing
the calpain-cleaved form of CRMP2 had reduced NMDAR
responses and decreased neurotoxicity. Conversely, overexpres-
sion of CRMP2 was neurotoxic. This suggested that cleaved
CRMP2 has a dominant negative effect leading to enhanced
neuronal survival (Bretin et al., 2006). Furthermore, NMDAR
surface expression was reportedly decreased when calpain-cleaved
CRMP2 was overexpressed. These findings supported the notion
that calpain-cleaved CRMP2 may be neuroprotective by reduc-
ing NMDAR surface expression and, by inference, that over-
expression of CRMP2 is perhaps neurotoxic by upregulating
NMDAR surface expression. Another study linking CRMP2 to
NMDARs reported a biochemical complex between CRMP2
and NR2A and NR2B subunits of NMDARs (Al-Hallaq et al.,
2007).

Recent studies have highlighted the use of CRMP2 peptide
aptamers for targeting of both ligand- and voltage-gated Ca’*
channels (Brittain et al., 2011a,b, 2012). Importantly, the Ca%t-
channel binding domain 3 (CBD3) peptide of CRMP2 has also
been shown to reduce various pain states (Brittain et al., 2011b;
Wilson et al., 2011, 2012; Piekarz et al., 2012; Ripsch et al., 2012)
as well as enhance neuronal survival following cerebral ischemia
and traumatic brain injury. Mechanistically, it appears that CBD3
is able to enhance neuronal survival through direct inhibition of
NMDARs (Brittain et al., 2011a, 2012). In addition we observed
that application of transactivator of transcription domain (TAT)-
CBD3 led to a dendritic specific reduction of NR2B NMDAR sub-
unit surface expression. These findings suggest that TAT-CBD3
may have a dual mode of action on NMDARs. It is unknown
if these two modes of action converge mechanistically and if
a CBD3 peptide could be developed which inhibits NMDAR
activity without changing surface expression.

In the current study we sought to develop new CBD3 pep-
tides through coupling CBD3 to cell penetrating peptides (CPPs)
with different properties. The rationale of this facile approach
was that attaching a different CPP might generate a CBD3 that
has properties distinct from the previously characterized TAT-
CBD3. It has been generally assumed that the CPP is itself
inert, although evidence to the contrary is beginning to emerge
(Brugnano et al., 2010). For example, it has been reported that

the CPPs themselves can inhibit proteolytic activity (Cameron
et al., 2000; Horn et al., 2000; Fugere et al., 2007; Kloss et al.,
2009), modulate the metabolic profile of cells (Kilk et al., 2009),
alter gene expression (Kuo et al., 2009), and inhibit kinase activity
(Ward et al., 2009). What can be surmised from these findings
is that the biological activity is related to the CPP sequence and
it is imperative to examine a range of CPPs with any cargo to
rule out unintended biological activities. Here, we chose the CPPs
nona-arginine (R9), the model amphipathic peptide (MAP), and
the membrane translocating sequence (MTS) of Kaposi fibroblast
growth factor (k-FGF) receptor as the representatives of dif-
ferent subclasses of CPPs—cationic (R9), primary amphipathic
CPPs (MTS), and secondary amphipathic a-helical CPPs (MAP)
and compared them to TAT, a primary hydrophilic charged
CPP.

We find that CBD3-mediated inhibition of NMDARSs is depen-
dent upon the CPP that it is attached to. Furthermore, we
observed that attaching the MTS CPP to CBD3 generates a pep-
tide that is neuroprotective following prolonged, but not acute,
application.

MATERIALS AND METHODS

ANIMALS

Pathogen-free, pregnant Sprague-Dawley rats (150-200 g) were
purchased from Harlan Laboratories (Madison, WI, USA). The
Institutional Animal Care and Use of the Indiana University
School of medicine and the College of Medicine at the University
of Arizona Committees approved these experiments. All proce-
dures were conducted in accordance with the Guide for Care and
Use of Laboratory Animals published by the National Institutes of
Health and the ethical guidelines of the International Association
for the Study of Pain.

PEPTIDES

All peptides were synthesized by Genscript Inc. (Piscataway, NJ,
USA) or Covalab (Villeurbanne, France) and verified by mass
spectrometry prior to use. The peptide sequences are as follows:
CBD3: ARSRLAELRGVPRGL; MAP: KLALKLALKALKAALKLA;
MTS: AAVALLPAVLLALLAP; TAT: YGRKKRRQRRR and R9:
RRRRRRRRR. Peptide stock concentrations of 20 mM were made
in water and stored at —80°C in single-use aliquots. CBD3 was
conjugated C-terminal to the CPPs. Fluorescein isothiocyanate
(FITC)-labeled CBD3 peptides with the fluorescent label at the
N-terminus were also purchased.

EMBRYONIC CORTICAL NEURON CULTURES

Cortical neuron cultures were prepared from embryonic day
19 (E19) Sprague-Dawley rat pups as previously described for
hippocampal neurons (Brittain et al., 2009). Neurons were grown
for 7-8 days in vitro (DIV) prior to experiments.

FORMATION OF GIANT PLASMA MEMBRANE VESICLES (GPMVs)

Giant plasma membrane vesicles (GPMVs) were obtained as
previously described in Sezgin et al. (2012). Briefly, GPMVs were
generated from cortical neurons incubated at 37°C for 90 min
in a vesiculation buffer containing 10 mM HEPES, 150 mM
NaCl, 2 mM CaCl,, pH 7.4 containing 2 mM N-ethyl maleimide

Frontiers in Cellular Neuroscience

www.frontiersin.org

January 2015 | Volume 8 | Article 471 | 2


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Moutal et al.

CPPs alter neuroprotection by CRMP2 peptides

(NEM). After GPMV formation, the buffer containing vesicles
was recovered and conserved at 4°C for at least 2 h to allow the
vesicles to concentrate at the bottom of the tube. As the GPMVs
were stable for ~48 h (data not shown), they were used the day
after formation at the latest.

PEPTIDE-GPMV INCUBATION AND LABELING

All experiments for microscopic analyses of GPMVs were per-
formed on 35 mm glass bottom dishes pre-coated with BSA (1
mg/mL for 1 h at room temperature). Approximately 100 pL of
GMPVs labeled with 5 M di-4-ANEPPDHQ were incubated for
3 h at room temperature with 10 WM of CBD3 peptide aptamers.
di-4-ANEPPDHQ, a styryl dye that was originally developed to
detect transmembrane potential changes, is considered to be a
good probe for rafts (Jin et al., 2005) and was used to label
GPMVs. di-4-ANEPPDHQ is able to partition into both liquid-
ordered and liquid-disordered phase domains in model mem-
branes, reacts to the environmental difference between the two
phases via conformational changes, thus resulting in different
fluorescence properties (Jin et al., 2005). Here, we studied the
500-550 nm emission of the probe, which accounts largely for the
liquid ordered phase.

FLUORESCENCE MICROSCOPY AND IMAGE ANALYSIS

Fluorescence imaging was performed with an inverted micro-
scope, Nikon Eclipse TE2000-U, using objective Nikon Super
Fluor 20x 0.75 NA and a Photometrics cooled CCD cam-
era CoolSNAPHQ-ES2 (Roper Scientific, Tucson, AZ, USA)
controlled by MetaFluor 6.3 software (Molecular Devices, Down-
ingtown, PA, USA). The excitation light was delivered by a
Lambda-LS system (Sutter Instruments, Novato, CA, USA). The
excitation filters were controlled by a Lambda 10-2 optical filter
change (Sutter Instruments). Twenty images of each condition
were systematically recorded randomly, using a FITC filter (exci-
tation and emission wavelength 488 nm and 500-550 nm, respec-
tively), which accounted for the liquid ordered contribution of
di-4-ANEPPDHQ or the localization of FITC-peptides.

UPTAKE AND EFFLUX OF CBD3 PEPTIDES FROM CORTICAL NEURONS
Cortical neurons were seeded into 96-well plates at 3.5 x 10*
cells per well and cultured until 7 DIV at 37°C and 5% CO,.
20 uM of FITC conjugated CBD3 peptide aptamers were added
on neurons and allowed to penetrate the cells for 10 min.
After four washes with phenol red free Leibovitz medium, the
FITC fluorescence in the cells was measured using a Synergy
2 fluorescent plate reader (Biotek, Winooski, VT, USA) at an
excitation wavelength of 485 nm and emission wavelength of
530 nm. Efflux of the peptides from the cells was assessed by
measuring FITC fluorescence in the media after 0, 10, 30 and
60 min. To correct for any differences in cell plating, at the end
of the experiment cortical neurons were lysed with 20 mM Tris,
pH 7.4, 50 mM NaCl, 1% NP40, 0.5% sodium deoxycholate,
0.1% SDS Protease inhibitor cocktail set IIT (Calbiochem), phos-
phatase inhibitor cocktail set I (Calbiochem), 50 U/ml benzonase
(Merck) and the protein quantity determined with a Pierce
assay.

CO-IMMUNOPRECIPITATION

Rat brains were lysed into the immunoprecipitation buffer
containing 20 mM Tris-HCl pH 7.4, 50 mM NaCl, 2 mM
MgCl,, 1% (vol/vol) NP40, 0.5% (mass/vol) sodium deoxycholate
with Protease/phosphatase inhibitors cocktails (Calbiochem) and
Benzonase (50 U/mL~'), using a dounce homogenizer. The
lysates were clarified by centrifugation at 10000 g, 10 min,
4°C then total protein concentration was determined by BCA
protein assay (Cat# PI23225, Thermo scientific). For the co-
immunoprecipitation, 300 pg of total protein was incubated with
1 pg of CRMP2 antibody (Cat# C2993, Sigma, St. Louis, MO,
USA) of non-specific rabbit IgG, in the presence of 10 uM of
the indicated peptides and incubated overnight at 4°C under
gentle agitation. Protein G magnetic beads (Cat# 10004D, Life
Technologies) pre-equilibrated with the immunoprecipitation
buffer, were added to the mixture and allowed to incubate for
1 h at 4°C to capture the immuno-complexes. The beads were
washed four times with the immunoprecipitation buffer before
re-suspension in Laemmli buffer and boiling at 95°C for 5 min
prior to immunoblotting.

IMMUNOBLOT ANALYSIS

Indicated samples were loaded on 4-12% NuPAGE® gels (Life
Technologies). Proteins were transferred to polyvinylidene diflu-
oride membranes preactivated in methanol and blocked at room
temperature for 1 h with TBST containing 5% non-fat dry milk.
The saturated membranes were incubated separately in TBST
containing 5% BSA with the primary antibodies CRMP2 (Cat#
C2993, Sigma, St. Louis, MO, USA), NR2B (Cat# 610416, BD
biosciences, San Jose, CA, USA) or Kv2.1 (Cat# K89/34, Neu-
roMab, Davis, CA, USA) overnight at 4°C. Following incubation
in horseradish peroxidase conjugated secondary antibodies (Jack-
son immunoresearch), blots were revealed by enhanced lumines-
cence (WBKLS0500, Millipore) before exposure to photographic
film. Films were scanned, and quantified using Un-Scan-It gel
version 6.1 scanning software (Silk Scientific Inc, Orem, UT,
USA).

CALCIUM IMAGING

NMDAR-mediated Ca?* influx was monitored as the ratio of
F340/F380 using the ratiometric Ca?* dye Fura-2 as previously
described with minor modifications (Brittain et al., 2011a). Neu-
rons were loaded with 3 WM Fura-2 AM in extracellular bath
solution (139 mM NaCl, 3 mM KCI, 0.8 mM MgCl,, 1.8 mM
CaCl,, 10 mM NaHEPES, pH 7.4, 5 mM glucose) for 25 min at
37°C, 200 nM tetrodotoxin was also included to prevent action
potentials. A baseline of at least six images (at 0.2 Hz) was
collected prior to stimulation of neurons with 50 uM NMDA/
20 WM glycine in MgCl,-free buffer (to prevent Mg>* block of
NMDARs). After 10 s NMDA/glycine was removed and neurons
were bathed in MgCl,-containing buffer. Only cells that displayed
a greater than 50% increase compared to baseline were used for
subsequent analyses.

For delayed calcium deregulation experiments, neurons pre-
treated for 10 min with 10 wM of the indicated pep-
tides were loaded with 2.6 WM Fura-2FF-AM for 30 min
at 37°C. A baseline was acquired before stimulation with
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25 uM glutamate plus 10 pM glycine. The peptides remained
in the bath solution throughout the experiment. To mini-
mize photobleaching and phototoxicity, the images were taken
every ~10 s during the time-course of the experiment using
the minimal exposure time that provided acceptable image
quality.

GLUTAMATE-INDUCED TOXICITY

E19 neurons (grown in 96 well plates) were stimulated with
200 pM glutamate/20 wM glycine to induce neuronal death
as previously described with modifications (Brittain et al.,
2011a). Neurons were pre-treated with peptides by removing
half of the culture medium and replacing with fresh medium
containing twice the final concentration of peptide. Neurons
were then stimulated by removing half the medium and replacing
with fresh medium containing 400 pM glutamate/40 puM
glycine and 1X peptide concentration. Following a 30 min
stimulation the medium was completely removed and replaced
with half fresh/half conditioned medium. Cell viability was
quantified 24 h later using the 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
cell viability assay (Promega, Madison, WI, USA) as previously
described (Brittain et al., 2011a). Subunit-specific NMDAR
antagonists Peagx (NR2A) and Ifenprodil (NR2B) were purchased
from Sigma.

BIOTINYLATION OF CORTICAL NEURONS

E19 neurons were biotinylated and neuronal lysates were gen-
erated and probed by Western blotting as previously described
(Brittain et al., 2011a).

STATISTICS

Average values with standard errors of the mean are presented.
Samples were considered to be statistically significant if p < 0.05
using a one-way ANOVA with Dunnett’s post hoc for comparisons
with more than three conditions or using Student’s ¢-test for
comparison of three conditions or less.

RESULTS

RATIONALE FOR SELECTION OF CATIONIC AND AMPHIPATHIC CELL
PENETRATING PEPTIDES (CPPs)

We recently reported that CRMP2 knockdown is neuroprotective
(Brittain et al., 2011a) and that the CRMP2 peptide, TAT-CBD3,
is able to prevent neuronal cell death from toxic glutamate expo-
sure via inhibition of NMDAR-mediated Ca?*-influx (Brittain
et al.,, 2011a, 2012). Based on these studies, here we sought to
test if other natural and synthetic CPP motifs fused to CBD3
could be more effective than TAT-CBD3 in reducing glutamate-
mediated toxicity. Three additional CPPs were selected: (i) the
nona-arginine (R9) which has a half-life (¢;,,) of ~2 h (Sarko
et al., 2010) and a greater than 20-fold penetration compared
to TAT (Wender et al., 2000) using macropinocytosis; (ii) the
a-helical MAP with a t;/, of >72 h (Sarko et al., 2010) which
translocates cargo into cells in a non-endocytic fashion using
multiple non-specific, energy-dependent and -independent pro-
cesses (Ochlke et al., 1998); and (iii) the MTS of k-FGF recep-
tor with a t;, of ~48 h (Sarko et al., 2010) which has a

hydrophobic stretch of residues necessary for import into cells
that likely occurs via a non-endocytotic route using an energy-
and temperature-independent translocation process reliant on its
interactions with the membrane (Lin et al., 1995). These were
compared to TAT, which has a t;/; of ~9 h (Sarko et al., 2010) and
is posited to enter into cells via macropinocytosis, energy- and
temperature-independent pathways, as well as endocytic uptake
mechanisms (see review by Torchilin and colleagues (Sawant et al.,
2013).

INTERROGATING MEMBRANE PENETRATION OF PEPTIDES USING
GIANT PLASMA MEMBRANE VESICLES (GPMVs) OF CORTICAL
NEURONS

We began by testing if the natural and synthetic CPPs bestowed
differential penetration to CBD3. To avoid any issues possi-
bly arising from fluorescent labeling of peptides, we resorted
to the use of GPMVs, which are a useful model to study
peptide-lipid dynamics as well as the translocation of PTDs
across the plasma membrane (Saalik et al., 2011; Maniti et al.,
2014). GPMVs represent a natural membrane model sys-
tem with a cytoplasmic lumen devoid of cellular organelles
and the actin cytoskeleton, low intracellular membrane con-
tent, and mimic the protein and lipid composition of the
plasma membrane, having a phospholipid/cholesterol ratio of
~2:1 (Fridriksson et al., 1999; Charras et al., 2005; Bauer
et al., 2009). Following chemically-induced vesiculation with
NEM (Sezgin et al., 2012), cortical neurons released GPMVs.
Isolated GPMVs typically segregate their lipids into a liquid-
ordered phase composed of tightly packed, cholesterol and
sphingolipids, reminiscent of raft-like domains (Fridriksson
et al., 1999); di-4-ANEPPDHQ, a styryl dye that was origi-
nally developed to detect transmembrane potential changes, is
considered to be a good probe for rafts (Jin et al., 2005). di-4-
ANEPPDHQ-labeled GPMVs had a spherical shape and varied
in size from ~3 to 13 pm in diameter. Following incubation
with 5 uM di-4-ANEPPDHQ, the membranes of the major-
ity of the GPMVs revealed an optically homogeneous lipid
phase in untreated (control) and peptide-treated (Figure 1A)
conditions. Incubation with CPP-conjugated CBD3 peptides
resulted in a presumptive loss in the integrity of the mem-
brane resulting in the fragmentation of some GPMVs into
smaller vesicles that accumulated within the larger GPMVs;
between ~34 (for MAP-CBD3) to ~54% (for TAT- or R9-
CBD3) of GPMVs exhibited this phenotype, far greater than
untreated- or MAP-CBD3-treated GPMVs vesiculated from con-
trol cortical cells (Figure 1B). Next, we tested if GPMVs
made from cortical neurons following glutamate-induced tox-
icity had altered membrane penetration/distribution. GPMVs
from Glu/Gly-treated neurons did not differ in their shape or
size from control neurons. The percent of GPMVs with intra-
cellular accumulation of the di-4-ANEPPDHQ dye were 2.1-
to 2.6-fold greater than GMPVS from control untreated cells
(Figure 1B). While the excitotoxic challenge did not alter the
extent of penetration of TAT-, R9-, and MTS-conjugated CBD3
peptides, the percent of GPMVs with intracellular staining fol-
lowing MAP-CBD3 incubation was ~45% greater in vesicles
from cells with excitotoxic challenge than without (Figure 1B).
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FIGURE 1 | Differential intracellular accumulation of CBD3 peptides
conjugated to cationic and amphipathic CPPs in model giant plasma
membrane vesicles (GPMVs) from cortical neurons. GPMVs derived
from cortical neurons were incubated with the fluorescent
membrane-staining dye, di-4-ANEPPDHQ (5 uM), in the absence (control)
or presence of the indicated peptides (10 wM) for 60 min at room
temperature. (A) Representative fluorescence (pseudocolor black and
white) images of di-4-ANEPPDHQ-stained control- or R9-CBD3-treated
GPMVs. Scale bar: 2 wm. (B) Percent of di-4-ANEPPDHQ-stained control- or
peptide-treated GPMVs exhibiting lumenal accumulation. Shown are
vesicles prepared from untreated cortical neurons as well as neurons
challenged for 1 h with 200 wM glutamate + 20 wM glycine (Glu/Gly) prior
to the vesiculation. *p < 0.01 comparing GPMVs from control,
unstimulated cells vs. TAT- or R9-CBD3-treated cortical neurons irrespective
of Glu/Gly challenge. #p < 0.01 comparing GPMVs from control vs.
Glu/Gly-challenged cells treated with MAP-CBDS3. n = 2 separate, individual
experiments from separate cortical culture preparations; the total number
of GPMVs analyzed is 568.

Collectively, these results demonstrate that all CPPs conjugated
to CBD3 have similar penetration potential into model plasma
membranes.

INFLUX AND EFFLUX OF CBD3 PEPTIDES CONJUGATED TO CATIONIC
AND AMPHIPATHIC CPPs

The varying propensities of the CBD3-conjugated peptides to
segregate into lipid domains may contribute to their accumu-
lation into and efflux from cortical neuron membranes. There-
fore, we next quantitatively tested influx and rates of efflux
of the peptides in cortical neurons without or following an
excitotoxic challenge. FITC fluorescence was measured in cor-
tical neurons following incubation with 20 wM fluorescently
labeled CBD3 peptides. To minimize any possible variability
in uptake due to differences in cell plating, we normalized
the fluorescence per well to the amount of protein. The flu-
orescence intensities were not different between control- and
Glu/Gly-treated neurons for all peptides except TAT-CBD3, which
exhibited a significantly lower influx in cells challenged with
glutamate toxicity (Figure 2A). Influx of MTS- and MAP-
CBD3 peptides was less than that of TAT- and R9-CBD3-treated

neurons irrespective of the excitotoxic challenge to the neurons
(Figure 2A).

To address potential leakage of peptides from cortical neu-
rons, the media of the neurons incubated with fluorescently
labeled peptides was sampled immediately and 10, 30, and
60 min after peptide application. The fluorescence intensities
were normalized to the amount of protein per well determined
at the end of the experiment. At 30 and 60 min post peptide
application, the fluorescence intensities recorded for TAT- and
R9-CBD3-treated cells were greater than those for MTS- and
MAP-CBD3-treated cells irrespective of the excitotoxic challenge
(Figures 2B,C). The cumulative efflux, calculated from the area
under the curve (AUC), was ~2.5-fold higher for R9-CBD3- vs.
TAT-CBD3-treated cortical cells exposed to a glutamate challenge
(Figure 2D).

CRMP2-NR2B INTERACTION CAN BE DIFFERENTIALLY BLOCKED BY
CBD3 PEPTIDES CONJUGATED TO CATIONIC AND AMPHIPATHIC CPPs
Having established that the CPP-conjugated CBD3 peptides can
enter cells, we next investigated if these peptides could recapitulate
the previously reported uncoupling of the interaction between
NR2B-NMDAR and CRMP2 (Brittain et al., 2012; Brustovetsky
et al., 2014). Consistent with our previous findings (Brittain
et al., 2012; Brustovetsky et al., 2014), co-immunoprecipitation
experiments revealed an interaction between NR2B and CRMP2
in rat brain lysates (Figure 3A). TAT-CBD3 inhibited the NR2B-
CRMP2 interaction by ~40% (Figures 3A,B; Xiong et al., 2012).
R9- and MAP-CBD3 increased the extent of inhibition of the
interaction with decreases of ~80% and ~60%, respectively,
relative to no peptide control (Figures 3A,B). In contrast, MTS-
CBD3 was ineffective in blocking the NR2B-CRMP?2 interaction
(Figures 3A,B). Although the amount of immunoprecipitated
CRMP2 was slightly increased by both MTS- and MAP-CBD3
peptide treatments, the increases were not significant. These
results demonstrate that, biochemically, use of different CPPs
bestows a varying degree of inhibitory potential to the CBD3
cargo peptide.

R9-CBD3 AND MTS-CBD3 INHIBIT CAZ*-INFLUX VIA NMDARs

TAT-CBD3 reduces NMDAR-mediated Ca?* influx (Brittain
et al., 2011a), which likely explains the mechanism of its neu-
roprotection. Therefore, we first tested whether CBD3 fused
to alternative CPPs could also inhibit NMDARs in a similar
fashion. NMDAR-mediated Ca** influx was monitored using
Fura-2 Ca?" imaging in rat E19 cortical neurons cultured for
DIV 7-8. Reproducible NMDAR-mediated peaks were observed
following stimulation with 50 .M NMDA/20 pM glycine for 10 s
(Figure 4A). Consistent with our previous findings (Brustovetsky
et al., 2014), we observed robust inhibition of NMDAR in cells
treated with 10 wM TAT-CBD3: peak 2 to peak 1 ratio (P2/P1) of
0.36 = 0.02, indicating an ~64% inhibition of the peak NMDA
response (Figures 4B,E). R9-CBD3 showed robust inhibition of
NMDAR-mediated Ca** influx at 3 uM (Figures 4C,E). A 5 min
incubation with 10 pM MTS-CBD3 displayed little inhibition
of NMDARs as the P2/P1 ratio was not significantly different
from control (Figures 4D,E). Slower internalization kinetics of
the MTS CPP may possibly account for the lack of inhibition
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FIGURE 2 | Differential uptake and efflux of CBD3 peptides conjugated
to cationic and amphipathic CPPs in cortical neurons. Cortical neurons
plated onto poly-D-lysine-coated 96-well plates were incubated with
FITC-labeled CBD3 peptides (10 wM) for 10 min at 37°C, washed
extensively with minimal essential media without phenol red, and
fluorescence was measured using a fluorescent plate reader at an
excitation wavelength of 485 nm and emission wavelength of 520 nm.
(A) Mean fluorescence uptake of peptides into cortical neurons, normalized
to the amount of protein per well, was similar between untreated and
Glu/Gly challenged neurons for all peptides except TAT-CBD3, which was
decreased in Glu/Gly challenged neurons compared to untreated neurons
(Continued)

FIGURE 2 | Continued

(*p < 0.01). Mean fluorescence efflux of peptides from untreated (B) or
Glu/Gly-challenged (C) cortical neurons, normalized to the amount of protein
per well, was significantly lower for MTS- and MAP-CBDS3 at 10, 30 and
60 min compared to either TAT- or R9-CBD3 (*p < 0.01). Some error bars
are smaller than the symbols. (D) Area under the curve (AUC) analyses
reflecting cumulative efflux of the peptides in the indicated conditions.

*p < 0.01 comparing AUC for TAT- or R9-CBD-treated control neurons vs.
their respective Glu/Gly-challenged conditions. #p < 0.01 comparing AUC
from stimulated cells with TAT-CBD3 vs. R9-CBD3-treated. n = 2 separate,
individual experiments; the total number of wells analyzed is 8-13 per
condition.

A IP with CRMP2 Ab

1gG Control
No peptide
TAT-CBD3
R9-CBD3

MTS-CBD3
MAP-CBD3

1004

504

Relative NR2B binding
(normalized to no peptide control)

TAT-CBD3

R9-CBD3
MTS-CBD3
MAP-CBD3

FIGURE 3 | Differential inhibition of the CRMP2 interaction with
NR2B-NMDAR by CBD3 peptides conjugated to cationic and
amphipathic CPPs. (A) Lysates from rat brains were immunoprecipitated
(IP) with antibodies against CRMP2 in the presence of 10 uM of the
indicated peptides. The basal level of CRMP2-NR2B interaction was
determined by immunoprecipitating the lysate without peptide and a
non-specific IgG was used as a negative control. The immunoprecipitated
complexes were immunoblotted with antibodies against NR2B (top blot)
and CRMP2 (bottom blot). Representative blots from four separate
experiments are shown. (B) Summary of the relative amount of NR2B
bound to CRMP2 in the presence of the indicated peptides, normalized to
the amount of immunoprecipitated CRMP2 and using the no peptide
condition as a basal reference. Asterisks indicate statistical significance
compared with untreated cells (p < 0.05, Kruskal-Wallis non-parametric test

with a Dunnett's post hoc analysis, n = 4).

observed; therefore, a longer course of application of the peptide
may be necessary. Indeed, incubating the peptide for 10 min after
the first application of NMDA resulted in significant inhibition
of NMDAR-mediated Ca?" influx to almost the same extent as
with a 5 min application of TAT-CBD3 peptide (Figure 4E).
Application of 10 WM MAP-CBD?3 led to a rise in Ca’T, which
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returned to background levels within 5 min (data not shown).
This suggests MAP-CBD3 may be affecting membrane integrity
through an unknown mechanism (but see Section Discussion)
and may in fact be neurotoxic; for these reasons MAP-CBD3 was
not tested further in these studies.

TAT- and R9-CBD3 were evaluated further using three con-
centrations of each (Figure 4E). At 3 WM, R9-CBD3 inhibited
Ca’* influx by ~85% inhibition compared to ~58% inhibition
bestowed by TAT-CBD3 (Figure 4E). These results suggest that
R9-CBD?3 is a more potent inhibitor of NMDAR-mediated Ca?*
influx than TAT-CBD3 while MTS-CBD3 is also able to inhibit
NMDARSs but needs longer to do so.

TAT-, R3-, AND MTS-CBD3 PEPTIDES REDUCE GLUTAMATE-INDUCED
CAZ* DYSREGULATION

We previously demonstrated that TAT-CBD3 significantly atten-
uated glutamate-induced delayed Ca?t deregulation (DCD;
Brittain et al., 2011a); DCD is a phenomenon whereby neurons
accumulate toxic levels of intracellular Ca?* due to the inability
of the mitochondria to buffer the large Ca?* overload following a
prolonged exposure to glutamate (Nicholls, 2004). Neurons were
incubated with vehicle (0.05% DMSO) or 10 wuM CPP-CBD3
peptides for 10 min prior to a challenge with 200 uM glutamate
+ 20 wM glycine (Figure 5). This stimulation led to a sustained
increase in (Ca®*). throughout the time course of the experiment.
Compared to vehicle control, TAT-, R9-, and MTS-CBD?3 peptides
significantly reduced glutamate-induced DCD by ~80%, ~76%,
and ~58%, respectively (Figures 5A,B).

R9-CBD3 IS MORE EFFICACIOUS THAN TAT-CBD3 IN PREVENTING
GLUTAMATE-INDUCED NEURONAL DEATH

As we observed inhibition of NMDAR-mediated Ca*" influx
and glutamate-induced DCD by several of the peptides, we
next asked if this block of intracellular calcium escalation could
potentially prevent glutamate-induce neurotoxicity. Because the
NMDARs in cortical neurons at 7 DIV are primarily composed
of NR2A and NR2B subunits, we first asked which of these
subunits were being targeted in our studies. Furthermore, it
had been previously reported that CRMP2 interacts with both
subunits (Bretin et al., 2006). For these experiments, corti-
cal neurons were pretreated for 10 min prior to stimulation
with Ifenprodil (1 wM) and Peagx (5 wM), specific blockers
of the NR2B and NR2A subunits, respectively (Williams, 1993;
Auberson et al., 2002) and also added throughout the stim-
ulation phase of 200 pM glutamate and 20 wM glycine for
30 min. At 7 DIV it was found that Ifenprodil, but not Peagx,
was able to completely prevent Glu/Gly-induced neuronal cell
death (Figure 6A). This finding suggests that NR2B is com-
pletely responsible for glutamate toxicity at this stage of culture,
which is consistent with previous findings (Hardingham et al.,
2002; Zhou and Baudry, 2006; Liu et al., 2007; Stanika et al.,
2009). Next, neurons were incubated with CBD3 peptides con-
jugated with the four CPPs for 10 min prior to and through-
out stimulation with Glu/Gly (Figure 6B). Cells were then fed
with fresh conditioned media and grown for 24 h before cell
viability was determined by a chromogenic cell viability assay.
Consistent with previous findings (Brittain et al., 2011a), we

observed an ~40% decrease in cell viability following glutamate
challenge (Figure 6B). Incubation with TAT- or R9-CBD3 was
completely neuroprotective as cell viability was not statistically
different from control, unstimulated cells. Incubation with MTS-
CBD3 had no effect on cell viability (0.49 £ 0.04, n = 16)
while incubation with MAP-CBD3 appeared to be neurotoxic: cell
viability 0.38 & 0.01 (n = 32) compared to control 0.57 £ 0.06
(n=22).

The neuroprotective efficacy of R9-CBD3 and TAT-CBD3 were
determined by performing concentration-response curves using
a range of concentrations for each peptide (Figure 6C). The
concentration-response curves were fitted with variable Hill slope
to generate an ICs for each peptide. The extrapolated ICs values
for inhibition of glutamate-mediated toxicity were 564 nM and
3.2 uM for R9- and TAT-CBD3, respectively (Figure 6C). As
neither MAP- nor MTS-CBD3 was neuroprotective, we did not
test any additional concentrations for them.

Overall, these results are consistent with our earlier Ca**-
imaging experiments and demonstrate that TAT- and R9-CBD3
(i) reduce NMDAR-mediated Ca’*-influx; (ii) glutamate-
induced DCD; and (iii) are neuroprotective. In contrast,
MTS-CBD3 inhibits only glutamate-induced DCD while MAP-
CBD3 is likely toxic as it induces an unchecked calcium influx
in the absence or presence of an excitotoxic challenge (data not
shown).

LONG-TERM APPLICATION OF MTS-CBD3 REDUCES GLUTAMATE
TOXICITY

Although neuroprotection was not conferred by an acute (10 min)
exposure to MTS-CBD3, consistent with MTS-CBD3’s lack of
inhibition of NMDAR-mediated Ca?* influx, we postulated
that due to its relatively long half-life, prolonged exposure to
MTS-CBD3 may be effective in reducing glutamate-mediated
neurotoxicity. We therefore treated neurons with 10 pM TAT-,
MAP-, or MTS-CBD3 (R9-CBD3 was not tested due to its rather
short t1/; of 2 h) for 48 h prior to challenging them with an
excitotoxic stimulus as described for Figure 6. Cell viability was
normalized to unstimulated neurons treated for 48 h with the
indicated peptides. In these experiments, MTS-, but not TAT-,
CBD3 bestowed neuroprotection (Figure 7A). This suggests that
MTS-CBD3 may have properties distinct from TAT-CBD3 or may
remain active longer. Additional support for this is provided by
data demonstrating that a 10 min incubation with 10 uM MTS-
CBD3 was able to reduce, by ~75% compared to control, NMDA-
mediated Ca?* influx (see Figure 4E). MAP-CBD3-treated
neurons did not survive the course of the experiment (viability
less than <0.1 compared to untreated neurons; data not shown).

SURFACE EXPRESSION OF NR2B IS NOT AFFECTED BY LONG TERM TAT-
OR MTS-CBD3 TREATMENT

A potential mechanism for the observed neuroprotection by
MTS-CBD3 may be via reduction of active NMDARs. Although
as it appears that MTS-CBD3 does not acutely alter NMDAR-
mediated Ca?* influx it is still possible that chronic application of
MTS-CBD3 may reduce surface expression of NMDARs. In order
to test this hypothesis, neurons were treated as before with TAT- or
MTS-CBD3 for 48 h and then surface NMDAR was quantified by
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FIGURE 4 | TAT- and R9-CBD3, but not MTS-CBD3, inhibit 10 uM R9-CBD3, or 10 wM MTS-CBD3 during the 5 min in the interim
NMDA-mediated Ca?*-influx. (A) (Ca?*), was monitored in E18-19 DIV between the 1st and 2nd NMDA applications. A 10 min incubation between
7 cortical neurons using the Ca?*-sensitive dye Fura-2 following application of ~ the two NMDA pulses was also tested for MTS-CBD3. (E) Bar graph
50 uM NMDA + 100 uM glycine. Following application of NMDA, neurons summarizing the ratios of the 2nd NMDA application to the 1st for the various
were treated with vehicle (0.05% DMSO) for 10 min and then re-challenged treatment conditions. *p < 0.05 compared to vehicle treated neurons
with NMDA, before a final application ~5 min following the first one. (B-D) In (Kruskal-Wallis non-parametric test with a Dunnett's post hoc analysis). Each
addition to vehicle, neurons were also treated with either 10 wnM TAT-CBD3, value is from 2-4 experiments and at least 40 individual cells.

cell surface biotinylation. Cell lysates (total) and biotin enriched
samples (surface) were then immunoblotted for the NMDAR
subunit NR2B (Figure 7B, top blots) and the unrelated surface
membrane protein, the voltage-gated potassium channel Kv2.1
(Figure 7B, bottom blots). Surface expression of NR2B was nor-
malized to total NR2B for each sample and then normalized to
the average for control neurons (Figure 7C). We observed no
difference in NR2B levels between neurons treated with either
CBD3 peptide for 48 h and control neurons. Another surface
protein, Kv2.1 was also tested and exhibited no changes following
peptide (Figure 7D). This suggests that chronic MTS-CBD3 treat-
ment reduces glutamate toxicity without altering NMDAR surface
expression.

INCREASED INTRACELLULAR RETENTION OF MTS-CBD3
Another possibility that may account for the neuroprotection
afforded by MTS-CBD3 may be differential influx and efflux

propensities compared to TAT-CBD3. We tested this possibility by
examining influx and efflux of fluorescent versions of TAT- and
MTS-CBD3 peptides following a long-term application. Cortical
neurons were incubated with 10 pM fluorescently labeled CBD3
peptides and the FITC fluorescence was determined. To reduce
possible variability in uptake due to differences in cell plating,
we normalized the fluorescence per well to the amount of
protein. The fluorescence intensities were not different among
between control- and Glu/Gly-treated neurons for TAT-CBD3,
whereas the influx of MTS-CBD3 peptide was ~33% higher in
cells challenged with Glu/Gly compared to control and ~65%
higher than Glu/Gly-challenged cells incubated with TAT-CBD3
neurons (Figure 7E). We also sampled the media of these neurons
to determine the extent of efflux of the fluorescently labeled
peptides. As before, the fluorescence intensities were normalized
to the amount of protein per well determined at the end of
the experiment. At 1, 2 and 3 h post peptide application, the
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fluorescence intensities recorded for TAT- were lower than that for
MTS-CBD3-treated cells irrespective of the excitotoxic challenge
(Figures 7E,G). The cumulative efflux, calculated from the AUC
analyses, was ~24% lower for MTS-CBD3-treated cortical cells
exposed to a glutamate challenge compared to unchallenged cells,
whereas TAT-CBD3-treated neurons had indistinguishable levels
of efflux in control and challenged conditions (Figure 7H).

DISCUSSION

We previously identified CRMP2 as a novel target in NMDAR-
mediated excitotoxicity (Brittain et al., 2011a, 2012). Targeting
the function of CRMP2 with a 15 amino acid, cell penetrant
peptide derived from the Ca?t CBD3 of CRMP2, demonstrated
neuroprotection both in vitro (glutamate induced excitotoxic-
ity) as well as in vivo (middle cerebral artery occlusion and
traumatic brain injury) (Brittain et al.,, 2011a, 2012). Further-
more, we demonstrated that coupling CBD3 to the hydrophilic
charged TAT motif allowed the TAT-CBD3 peptide to enhance
neuronal survival via direct inhibition of NMDARs (Brittain
et al.,, 2011a). The goal of the present study was two-fold: to
determine if coupling CBD3 to alternative cationic, hydrophobic,

-8 7 ) 5 4
X-CBD3 (log M)

FIGURE 6 | R9-CBD3 is more potent than TAT-CBD3 in preventing
glutamate-induced neuronal death. (A) Cortical neurons were grown in
culture for 7 DIV before being stimulated for 30 min with 200 wM glutamate
and 20 wM glycine. Neurons were pre-incubated with either Ifenprodil or
Peagx for 10 min prior to stimulation and throughout the exposure to the
excitotoxic insult. Values are the average of 32 wells from two separate
experiments. Asterisk indicates significant difference compared to no
stimulation control (*p < 0.05, one-way ANOVA with Dunnet’s post hoc
test). (B) Cell viability of E18-19 DIV 7 cortical neurons was determined
using a chromogenic cell viability assay. Neurons were incubated with
peptides for 10 min prior to stimulation with 200 wM glutamate and 20 M
glycine for 30 min. Viability was then measured 24 h later, with all values
normalized to no stimulation control (n = 32). (C) Concentration response
viability curves for R9- and TAT-CBD3-treated neurons; values for R9-CBD3
are those shown in (A). The ICso of TAT- and R9-CBD3 was determined by
fitting the curve to a four-parameter logarithmic function. Values are average
of 32 wells from two separate experiments, asterisk indicates significant
difference compared to stimulation in the absence of peptide. One-way
ANOVA with post hoc Dunnett’s test indicated significant differences
compared to control or peptide-treated groups; *p < 0.05.

or amphipathic CPPs would result in (i) greater efficacy; and
(ii) extended neuroprotection, compared to TAT-CBD3. Here,
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FIGURE 7 | Long-term application of MTS-CBD3 reduces
glutamate-induced neuronal death likely due to increased intracellular
retention of the peptide. (A) Cortical neurons were treated with 10 uM of
TAT- or MTS-CBDS3 for 48 h prior to excitotoxic stimulation. Cell viability of
peptide treated neurons was then measured 24 h following stimulation.
Values for cell viability are normalized to unstimulated neurons treated with
the same peptide. *p < 0.05 compared to vehicle treated neurons
(Kruskal-Wallis non-parametric test with a Dunnett’s post hoc analysis). (B)
Cortical neurons were treated with CBD3 peptides as in Figure 6 prior to
labeling all surface exposed proteins using cell surface biotinylation.
Representative immunoblots showing total and surface expressed NR2B
along with the membrane bound Kv2.1. Average surface values from two
separate neuron cultures with n = 13-15 for each condition. Values represent
surface proteins divided by total proteins with all values normalized to the
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average for control neurons. Surface expression of NR2B (C) or Kv2.1 (D) is
not affected by long term TAT- or MTS-CBD3 treatment. Cortical neurons
plated onto poly-D-lysine-coated 96-well plates were incubated with
FITC-labeled CBD3 peptides (20 wM) for 24 h min at 37°C, washed
extensively with minimal essential media without phenol red, and
fluorescence was measured 24 h later using a fluorescent plate reader at an
excitation wavelength of 485 nm and emission wavelength of 520 nm. (E)
Mean fluorescence uptake of peptides into cortical neurons, normalized to
the amount of protein per well, was similar between untreated and Glu/Gly
challenged neurons for TAT-CBD3 but higher in Glu/Gly challenged neurons
compare to control neurons (*p < 0.01). Mean fluorescence efflux of
peptides (chronic treatment) from untreated (F) or Glu/Gly-challenged (G)
cortical neurons, normalized to the amount of protein per well, was
(Continued)
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FIGURE 7 | Continued

significantly lower for TAT-CBD3 at 120 and 180 min compared to
MTS-CBD3 (*p < 0.05). Additionally, the efflux at 1 h was also lower in the
TAT-CBD3 vs. MTS-CD3-treated Glu/Gly-challenged neurons (*p < 0.05).
Some error bars are smaller than the symbols. (H) AUC analyses reflecting
cumulative efflux of the peptides in the indicated conditions. *p < 0.01
comparing AUC of total efflux for MTS-CBD3-treated control neurons vs.
the Glu/Gly-challenged conditions. n = 2 separate, individual experiments;
the total number of wells analyzed is 8-13 per condition.

we report both greater efficacy and longer neuroprotection with
CBD3 grafted to natural CPPs oligoarginine or the membrane
translocating signal peptide sequence from the k-FGF receptor.
Subunit diversity of NMDARs has been of keen interest in the field
of excitotoxicity because the subunit composition of NMDARs
appears to alter the extent of glutamate toxicity (Mizuta et al.,
1998; Zhou and Baudry, 2006; Liu et al., 2007). Here, for the
first time, we demonstrate that CBD3 peptides target only the
NR2B isoform as ifenprodil, the NR2B selective drug, completely
blocks glutamate toxicity in our cultures. In addition, our find-
ings support the idea that tailoring of CPPs to the cargo may
offer distinct advantages linked to the mechanism of action of
the chosen CPP. A careful biochemical and functional exami-
nation of the CPP-cargo combination in in vitro experiments
is warranted prior to selecting the best CPP-cargo pair for
utility as promising signaling tools or therapeutic strategies in
vivo.

CRMP2, EMERGING ROLES IN NMDAR-MEDIATED EXCITOTOXICITY

Accumulating evidence suggests an important contribution of
CRMP2 in glutamate-induced neurotoxicity. Lentiviral-mediated
knockdown of CRMP2 reduced neuronal death following excito-
toxicity (Brittain et al., 2011a) while increasing CRMP2 expres-
sion in axons made them resistant to toxic glutamate exposure
(Hou et al., 2009). NMDAR activation leads to both proteolytic
cleavage of CRMP2 by the calcium-activated protease calpain and
phosphorylation of CRMP-2 at Thr-555 by Ca?*/calmodulin-
dependent protein kinase II (CaMKIL; Bretin et al., 2006; Hou
et al., 2009). Of further interest, it appears that phosphorylation
of CRMP2 may protect it from being cleaved. This presents a
potentially complex pathway where CaMKII activation and sub-
sequent phosphorylation prevents concomitant calpain cleavage
of CRMP2. CaMKII-mediated phosphorylation of CRMP2 is
predicted to cause a reduction in axon growth potential through
a reduced affinity of CRMP2 for tubulin and Numb (Arimura
et al., 2005). Perhaps more intriguing is that it was observed in
this study that overexpression of CRMP2 prevented glutamate
induced alteration of neuritic processes, while a T555A mutant
had no effect (Hou et al., 2009). While this suggests that Thr-
555 phosphorylation site is not an important determinant in
neuroprotection, it is at present unknown, what effect, if any
cleavage of CRMP2 may have on neuronal survival. Alternatively,
it has been shown that a calpain-cleaved version of CRMP-2
is neuroprotective when overexpressed in neurons, possibly via
downregulating NMDAR responses (Bretin et al., 2006). This
finding is difficult to interpret, however, because expression of

a similarly truncated CRMP2 leads to a reduction in neuritic
process growth, which can likely affect many pathways respon-
sible for glutamate toxicity (Rogemond et al., 2008). It is more
likely that expression of this truncated form of CRMP2 acts as
a dominant negative. This could occur either through seques-
tering native CRMP2 (through tetramerization) or competing
with native CRMP2 for endogenous protein interactions required
for neuritic outgrowth (e.g., tubulin and actin). Therefore, the
neuroprotection observed following knockdown of CRMP2 is
entirely consistent with the neuroprotection conferred by the
calpain-cleaved form of CRMP2, in that loss of CRMP2 func-
tion observed with the latter construct is neuroprotective (Bretin
et al., 2006). It is then perhaps no surprise that over-expression
of full length CRMP2 enhances neurotoxicity (Bretin et al.,
2006).

TAT-CBD3, A NEUROPROTECTIVE PEPTIDE

A short fragment of CRMP2 (CBD3) coupled to the charged
CPP motif TAT, was neuroprotective (Brittain et al., 2011a).
The modus operandi of TAT-CBD3 involved: (i) attenuation
of Ca*-influx through NMDARSs; (ii) reduction of calpain-
mediated cleavage of CRMP2; and (iii) induction of internal-
ization of dendritic NMDARs resulting in sparing of neurons
following an excitotoxic insult (Brittain et al., 2011a). A similar
TAT-conjugated CRMP2 peptide overlapping somewhat with the
CBD3 region of CRMP2 (i.e., TAT-CRMP2, amino acids 492—
506 vs. CBD3, amino acids 484—499) also demonstrated efficacy
in reducing infarct volume associated with a cerebral ischemic
injury (Yin et al., 2013). Here, we extended the mechanism of
action of TAT-CBD3 by providing evidence of direct inhibition
of the interaction between the NR2B-NMDAR and CRMP2.
Additionally, we demonstrated that TAT-CBD3, while effective
in preventing glutamate-induced cell death when applied for
an acute period (10 min prior to the onset of the glutamate
challenge) is ineffective when applied for longer (~48 h prior
to the onset of the glutamate challenge); the lack of effect likely
stems from the relatively short half-life (~9 h) of TAT (Sarko
et al., 2010) coupled with the lack of intracellular retention as
its amount of efflux was doubled under excitotoxic conditions
(Figures 7E,H).

R9-CBD3, AN ACUTELY ACTING NEUROPROTECTIVE PEPTIDE

Arginine rich CPPs, and R9 in particular, have been reported
to display excellent cell penetrating abilities (Wender et al,
2000). This CPP wuses a combination of macropinocytosis,
clathrin-mediated endocytosis and caveolae-dependent endocy-
tosis for uptake into cells (Duchardt et al., 2007). Of the CPPs
tested in this study, R9 had the shortest half-life (Sarko et al.,
2010). Attaching R9 to CBD3 yielded a peptide that was more
effective than TAT-CBD3 in reducing NMDAR-mediate Ca*-
influx, likely due to an enhanced inhibition of the NR2B-
NMDAR and CRMP?2 interaction when compared to TAT-CBD3.
R9-CBD3, like TAT-CBD3, was neuroprotective; however, R9-
CBD3 was ~6-fold more potent than TAT-CBD3. Inhibition of
glutamate-trigged DCD was also inhibited by R9-CBD3 imply-
ing a neuroprotective mechanism similar to that of TAT-CBD3
(Figure 8).
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FIGURE 8 | Summary of the biochemical and functional effects of
CBD3 peptides conjugated to cationic, hydrophobic, and
amphipathic CPPs in neuroprotection. (1) Following obligatory
binding of glutamate and glycine to their cognate sites on the
extracellular face of the NMDAR, an influx of Nat and Ca?* ions ensue.
Hyperactivation of NMDARSs, such as that seen in injury, leads to a
substantial influx of Ca?* ions that leading to the over-activation of
several deleterious enzymes and signaling pathways that harm neurons
or lead to cell death (neurotoxicity). We previously demonstrated that
TAT-CBD3, a CRMP2 derived peptide, mitigates Ca2*-influx through
NMDARs and consequently is neuroprotective (Brittain et al., 2011a). (2)
With acute application, CBD3 conjugated to other cationic (R9 or MTS)
or amphipathic (MAP) cell penetrating peptide (CPP) motifs differentially
enters neurons with more R9-CBD3 than TAT-CBDS3 exiting the
membrane under conditions when the neurons are faced with a
glutamate challenge. (3, 4) Both TAT- and R9-CBDS3 blunt the interaction
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between CRMP2 and the NR2B-NMDR as well as cause inhibition of
NMDA-mediated Ca?*-influx, with R9-CBD3 being more potent than
TAT-CBD3 in both events. (5) Following exposure (~1 h) to a glutamate
challenge, the neurons swell with Ca?*, likely due to a failure in the
ability of mitochondria to buffer Ca2*, leading to the phenomenon of
delayed Ca?* deregulation (DCD) which precedes the necrotic death of
neurons; TAT-, R9-, and MTS-CBD3 prevent this calcium rise by blunting
DCD likely leading to preservation of neuronal viability. (6) The peptides,
applied for a longer period (>24 h), exhibit different behaviors vs.
short-term applications with a greater net accumulation of MTS-CBD3
compared to TAT-CBD3. (7) Where long-term TAT-CBD3 treatment is
ineffective in protecting neurons from glutamate-induced neurotoxicity
and cell death, MTS-CBD3 preserves neuronal viability while also
inhibiting DCD. Collectively, these findings suggest that tailoring CBD3
peptides with alternative CPPs, such as MTS, results in extended
neuroprotection beyond that of TAT-CBD3.

MTS-CBD3, A LONG-ACTING NEUROPROTECTIVE PEPTIDE WITH A
NOVEL MECHANISM OF ACTION

Membrane translocating peptides (MTS) are largely hydrophobic
and typically originate from secretory proteins that translocate
through cellular membranes. The translocating potential of the
MTS CPP seems to be predicated on its overall hydrophobic
composition. Appending the 16-residue sequence from the sig-
nal peptide of the Kaposi fibroblast growth factor (k-FGF) to
CBD3 bestowed upon the MTS-CBD3 peptide an ability to be
neuroprotective for neurons pre-treated with MTS-CBD3 for 48 h
prior to excitotoxic stimulation. This salient finding distinguishes
this version of the CBD3 peptide from R9- and TAT-CBD3,
which are neuroprotective only acutely. While the long-term
neuroprotection may be explained by the long half-life (~48 h)
(Sarko et al., 2010) of MTS, additional differences may also
contribute. The mechanism of how MTS-CBD3 achieves long-
term neuroprotection also seems to differ from the other CBD3-
CPP combinations tested here in that the MTS-CBD3 peptide

does not affect the interaction between the NR2B-NMDAR and
CRMP2, nor does it affect surface trafficking of NMDARs. A
more likely explanation for the longer neuroprotection is an
increased retention of the MTS-CBD3 peptide, compared to
TAT-CBD3, following conditions of glutamate challenge. While
the MTS-CBD3 peptide did not abrogate the NR2B-NMDAR
and CRMP2 interaction, it did prevent NMDAR-mediated Ca%t-
influx as well as blocked glutamate-induced DCD (Figure 8),
suggesting the possible involvement of other protein(s). While
not investigated in the present study, we recently reported that
TAT-CBD3 inhibited increases in cytosolic Ca’* mediated by
the plasmalemmal Nat/Ca?t exchanger (NCX) operating in
both the forward and reverse modes (Brustovetsky et al., 2014).
Whether MTS-CBD3 affects NCX similarly is currently unknown.
The translocation of MTS is believed to occur directly through
the lipid bilayer. Both membrane fluidity and lateral mobil-
ity of membrane proteins influence the translocation process
and the a-helical conformation formed by the MTS sequence
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facilitates membrane interactions. CBD3 has been modeled as
an o-helix (Piekarz et al., 2012). The combined MTS-CBD3
peptide, if it adopts an a-helical conformation, may remain
tethered to the membrane thus accounting for the increased
retention and perhaps also be relatively spared from proteases
that may otherwise degrade and inactivate the peptide; the latter
may explain the long term neuroprotective effects as well. The
lack of inhibition of the NR2B-NMDAR and CRMP2 inter-
action by MTS-CBD3 may possibly be due to an insufficient
amount of CBD3 available for interfering with this complex in
the cytosol. That MTS-CBD3 did not inhibit the NR2B-NMDAR
and CRMP2 complex may explain the seemingly incongruous
results of inhibition of NMDA-mediated Ca’* influx follow-
ing a 10 min application between NMDA pulses (Figure 4E)
without a commensurate neuroprotection in the short-term (10
min) application (Figure 6B). In other words, it is plausible
that due to its likely association with the membrane, MTS-
CBD3 may be in proximity of NMDARs and thus be able to
block Ca** influx but without a long incubation (>24 h), an
insufficient amount gets into the cells to be able to block cell
death.

TOXIC CONSEQUENCES OF MAP-CBD3

It was previously demonstrated that the localization pattern of
the amphipathic peptide, MAP, is largely nuclear in contrast
to the predominantly cytosolic targeting of the cationic CPPs
oligoarginine and TAT (Zaro et al., 2009). The authors also
noted high accumulation of MAP within the nuclei and nuclear
membrane as well as in intracellular vesicles at the periphery
of the nucleus (Zaro et al., 2009). Notably, a truncated form
of CRMP2 missing its 69 carboxyl terminal residues is also
localized to the nucleus; the nuclear targeting of CRMP2 is
provided by a nuclear localization signal within residues Arg
471 and Lys 472 in its primary sequence (Rogemond et al,
2008). Overexpression of this truncated form of CRMP2 in cor-
tical neurons improves their resistance to NMDA cytotoxicity
(Bretin et al., 2006). It is plausible that MAP-CBD3, by virtue
of its intrinsic nuclear targeting, interferes with this CRMP2-
mediated resistance in the face of excitotoxicity. In support of
this assertion are findings which demonstrate that, in HeLa cells,
the truncated CRMP2 form hastens apoptotic nuclei and cell
death (Tahimic et al., 2006). The rapid (within 2 min) increase in
Ca** influx observed in our experiments following treatment of
cortical neurons with MAP-CBD?3 (data not shown), coupled with
possible interference of CRMP2 nuclear targeting, may account
for the complete failure of MAP-CBD3 in neuroprotection. It
has also been reported that some primary amphipathic CPPs
are toxic to cells even at low concentrations (Madani et al.,
2011).

CONCLUSIONS

The data presented here support the idea that the neuropro-
tective function of CBD3 may be temporally segregated into
acute (with R9 or TAT) or chronic (with MTS) modalities. The
novel CBD3-CPP combinations reported here, namely R9-CBD3
and MTS-CBD3, may serve as useful tools in dissecting early
vs. late biochemical events, respectively, in NMDAR-mediated

signaling leading to excitotoxicity and cell death (Figure 8).
Importantly, the data also underscore the importance for any
strategy involving the use of CPPs to deliver bioactive cargo
of first testing a diverse set of CPPs prior to their translation
in vivo.
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