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Brain function relies on accurate information transfer at chemical synapses. At the
presynaptic active zone (AZ) a variety of specialized proteins are assembled to
complex architectures, which set the basis for speed, precision and plasticity of
synaptic transmission. Calcium channels are pivotal for the initiation of excitation-
secretion coupling and, correspondingly, capture a central position at the AZ.
Combining quantitative functional studies with modeling approaches has provided
predictions of channel properties, numbers and even positions on the nanometer scale.
However, elucidating the nanoscopic organization of the surrounding protein network
requires direct ultrastructural access. Without this information, knowledge of molecular
synaptic structure-function relationships remains incomplete. Recently, super-resolution
microscopy (SRM) techniques have begun to enter the neurosciences. These approaches
combine high spatial resolution with the molecular specificity of fluorescence microscopy.
Here, we discuss how SRM can be used to obtain information on the organization of AZ
proteins.
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INTRODUCTION
At chemical synapses, neurotransmitter release takes place at
presynaptic active zones (AZs). Morphologically, AZs can be
identified via their electron-dense cytomatrix—an intricate
network of specialized proteins precisely organized to execute
and modulate exocytosis (Zhai and Bellen, 2004; Jahn and
Fasshauer, 2012; Südhof, 2012). Structure and function of AZs
display varying degrees of diversity between different neuron
types, between synapses of the same neuron innervating different
follower cells and even between individual synapses formed by the
same partner cells (Rozov et al., 2001; Atwood and Karunanithi,
2002; Zhai and Bellen, 2004; Peled and Isacoff, 2011; Ehmann
et al., 2014; Paul et al., submitted). Moreover, the functional
properties and the molecular composition of AZs are dynamic
and can be modified in an activity-dependent manner (e.g.,
Wojtowicz et al., 1994; Castillo et al., 2002; Matz et al., 2010;
Weyhersmüller et al., 2011). Moving from correlation to causality
to clarify how different molecular architectures of AZs give rise to
specific physiological properties remains a major challenge.

As an AZ contains a multitude of densely packed proteins in a
small sub-cellular compartment (around 200–400 nm diameter
at a central synapse; Siksou et al., 2007) diffraction-limited
light microscopy delivers only very coarse structural information.
Hence, morphological investigations of the fine structure and the
molecular organization of AZs have mainly been restricted to
electron microscopy (EM). Recently, the development of super-
resolution microscopy (SRM) techniques has provided means to
bypass the diffraction barrier of ∼300 nm in lateral dimensions

(Abbe, 1873) and to bridge the gap between conventional light
microscopy and EM (for detailed recent overviews, see Hell,
2009; Patterson et al., 2010; Schermelleh et al., 2010; Galbraith
and Galbraith, 2011; Sauer, 2013). These emerging technologies
offer promising new options for studying nanoscopic sub-cellular
structures.

Recent work has reviewed the molecular composition of
AZs (Owald and Sigrist, 2009; Jahn and Fasshauer, 2012;
Südhof, 2012). This perspective will focus on excitation-secretion
coupling, i.e., the transduction of an electrical signal into Calcium
(Ca2+)-dependent neurotransmitter release (Schneggenburger
and Neher, 2005; Wojcik and Brose, 2007). We will summarize
current information on functional determinants of the AZ
and explore how the search for structural correlates can be
supported by SRM to improve our mechanistic understanding of
neurotransmission.

MICROSCOPY
Fluorescence microscopy is the method of choice for visualizing
biomolecules in fixed and living cells as it enables their selective
and specific detection with a high signal-to-background ratio
(Lichtman and Conchello, 2005). However, while light micro-
scopy is ideally suited to investigate macroscopic arrangements,
it fails to uncover organizational principles at the molecular scale
due to its limited spatial resolution.

EM provides substantially increased resolution, though its
application is restricted to lifeless, fixed and embedded biological
samples. EM studies have been instrumental in recognizing the
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large morphological diversity of AZs (Zhai and Bellen, 2004) and
in identifying repetitive structural elements within individual,
chemically fixed AZs (Pfenninger et al., 1972; Phillips et al., 2001).
Moreover, alternative tissue preparation and fixation techniques
have enabled analyses of filamentous AZ structures and their
associated synaptic vesicles in various organisms (Landis et al.,
1988; Siksou et al., 2007; Jiao et al., 2010; Wichmann and Sigrist,
2010; Fernández-Busnadiego et al., 2013). The resolving power
of EM is exemplified by a classical tomographic study at the
frog neuromuscular junction (NMJ). The results revealed an
intricate fine structure of the AZ, which establishes a regular
and precisely organized arrangement of synaptic vesicles relative
to Ca2+ channels at release sites (Harlow et al., 2001). As more
substructural details are uncovered (Szule et al., 2012), knowledge
of the underlying protein species becomes increasingly desirable.
Immunogold labeling provides a means to locate specific proteins
in electron micrographs with nanometer resolution and has been
used to examine the topology of AZs (e.g., Limbach et al., 2011).
However, specific labeling with antibody-coupled gold particles
is inefficient and a compromise must be made between optimal
tissue preservation and structural resolution. Consequently, the
ideal microscope should combine the minimal invasiveness and
efficient specific labeling possibilities of optical microscopy with
the high spatial resolution of EM. Technologies that merge these
features, at least to a certain extent, are collectively termed
SRM. These include structured illumination microscopy (SIM),
stimulated emission depletion (STED) and single-molecule
based localization microscopy methods, such as photo-activated
localization microscopy (PALM) and direct stochastic optical
reconstruction microscopy (dSTORM). The techniques can be
subdivided based on their principle of bypassing the diffraction
barrier: deterministic approaches, such as STED, use a phase mask
to define the coordinates of fluorescence emission predefined
in space by the zero-node, whereas PALM and dSTORM use
stochastic activation of individual fluorophores and precise
position determination (localization).

SIM relies on patterned illumination of the specimen with
a high spatial frequency in various orientations providing
a lateral resolution of approximately 100 nm (Heintzmann
and Cremer, 1999; Gustafsson, 2000). Fortunately, SIM
does not depend on any specific fluorophore properties,
such as high photostability or particular transitions between
orthogonal states, and can therefore be generally applied. A
further modification of SIM, known as SSIM (saturated-SIM)
exhibits higher spatial resolution but requires photostable
samples (Gustafsson, 2005). As SIM enables multicolor
3D-imaging with standard fluorescent dyes, it has attracted
considerable interest among biologists (Maglione and Sigrist,
2013).

In STED microscopy, the lateral resolution is improved by
decreasing the size of the excitation point-spread-function (PSF)
by stimulated emission of fluorophores at the rim of the PSF
(Hell and Wichmann, 1994). Since the resolution enhancement
in STED microscopy scales with the intensity of the depletion
beam (Hell, 2007), only very photostable fluorophores allow
spatial resolutions in the 30–50 nm range (Hell, 2007; Meyer
et al., 2008). Nevertheless, STED has also been used for live-cell

super-resolution imaging albeit at lower resolution (Nägerl et al.,
2008; Tønnesen et al., 2014).

Single-molecule based localization microscopy techniques
such as PALM, STORM and dSTORM rely on stochastic
photoactivation, photoconversion, or photoswitching of
fluorophores, such that only a small subset emits photons
at any given time. By fitting a 2D Gaussian function to the
PSF of individual, spatially isolated emitters, their positions
can be precisely localized and used to reconstruct a super-
resolved image, as long as all fluorophores determining the
structure of interest have been detected and localized at
least once during acquisition (Betzig et al., 2006; Hess et al.,
2006; Rust et al., 2006; Heilemann et al., 2008). Localization
microscopy methods differ in their use of fluorescent probes:
PALM is conducted with genetically expressed photoactivatable
fluorescent proteins (Betzig et al., 2006; Hess et al., 2006),
STORM requires photoswitchable dye pairs (Rust et al., 2006)
and dSTORM takes advantage of the reversible photoswitching
of standard organic fluorophores in thiol-containing aqueous
buffer (Heilemann et al., 2008; van de Linde et al., 2011).
Since localization microscopy exhibits explicit single-molecule
sensitivity, all approaches can deliver quantitative information
on molecular distributions and even have the potential to
report absolute numbers of proteins present in sub-cellular
compartments (Sauer, 2013). These features provide insight
into biological systems at a molecular level and can yield direct
experimental feedback for modeling the complexity of biological
interactions.

FUNCTIONAL PARAMETERS OF THE AZ
Derived from the quantal hypothesis (Del Castillo and Katz,
1954) it is understood that synaptic strength, i.e., the amplitude
of an excitatory postsynaptic current (EPSC), can be described
by the product of three basic parameters: N, the number of
fusion competent synaptic vesicles also termed readily-releasable
vesicles (RRVs), p, their probability of exocytosis and q, usually
taken to reflect postsynaptic sensitivity (Equation 1). This
conceptual framework plays an important role in explaining
synaptic function and plasticity (Zucker and Regehr, 2002), and
identifies N and p as major functional determinants of the
presynapse.

EPSC = Npq (1)

The parameter N can be estimated by electrophysiological means,
such as high-frequency electrical stimulation or fluctuation
analysis of synaptic responses (Clements and Silver, 2000).
Results obtained by either approach must, however, be interpreted
carefully, as additional factors complicate the analysis (Sakaba
et al., 2002; Hallermann et al., 2010a). For example, asynchronous
release, the kinetics of vesicle pool refilling (Hosoi et al., 2007) and
postsynaptic contributions, such as receptor desensitization and
saturation (Scheuss et al., 2002), can influence approximations
of N. Hypertonic sucrose stimulation can be used as another
technique to approximate N (Fatt and Katz, 1952; Rosenmund
and Stevens, 1996). However, being independent of Ca2+-
triggered fusion, it remains uncertain whether hypertonically
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released vesicles are generally also readily released under
physiological conditions (Moulder and Mennerick, 2005).

Alternatively, N can be defined as the number of release sites,
in which case p denotes the probability that a vesicle will fuse at a
given release site (Schneggenburger et al., 2002). Nerve terminals
vary greatly in size and correspondingly contain between one
(e.g., at certain cortical synapses; Xu-Friedman et al., 2001) and
many hundreds of AZs (e.g., at the Calyx of Held; Sätzler et al.,
2002). It is therefore helpful to view the AZ as a fundamental
unit of presynaptic function (Alabi and Tsien, 2012). That said,
morphology and function of AZs are highly heterogeneous (Zhai
and Bellen, 2004), also varying within one and the same neuron
(Atwood and Karunanithi, 2002; Peled and Isacoff, 2011; Ehmann
et al., 2014). Correspondingly, functional estimates of p at central
mammalian synapses have reported both AZs operating with
uniquantal release and AZs capable of multivesicular release
(Tong and Jahr, 1994; Auger et al., 1998; Silver et al., 2003). To
date, this next level of AZ organization has been difficult to study
as specific molecular markers or structural correlates of release
sites remain uncertain.

Functional estimates of p can be obtained with several methods
that provide relative or absolute values. These include electro-
physiology-based approaches such as paired-pulse stimulation or
fluctuation analysis (Clements and Silver, 2000; Sakaba et al.,
2002; Zucker and Regehr, 2002) and dynamic optical readouts
of exocytosis or postsynaptic activation (Branco and Staras,
2009; Zhang et al., 2009; Peled and Isacoff, 2011; Marvin et al.,
2013). Since p is highly Ca2+-dependent, its value for a given
synaptic vesicle will be strongly influenced by the vesicle’s position
relative to voltage-gated Ca2+ channels at the AZ (Neher, 1998;
Eggermann et al., 2012).

Ca2+ channels are essential components of the macro-
molecular exocytosis machinery. Their opening elicits Ca2+

influx, which serves as the fusion trigger for nearby vesicles.
Early computational and functional studies introduced the
concept of “microdomains” to describe transient, local regions
of high Ca2+ concentration (Chad and Eckert, 1984; Llinás
et al., 1992). Such microdomains possess complex spatial
distributions of Ca2+ elevation, which are controlled by Ca2+

diffusion, Ca2+ buffering and the geometric arrangement of
Ca2+ channels in the AZ membrane (Neher, 1998). Due to
their major functional significance for synaptic transmission,
detailed understanding of Ca2+ signals and the arrangement
of synaptic vesicles relative to local domains is important.
Using electrophysiology, modeling, Ca2+ imaging and Ca2+

uncaging, considerable quantitative information on excitation-
secretion coupling has been obtained at the Calyx of Held,
a large glutamatergic synapse in the mammalian auditory
brainstem (Bollmann et al., 2000; Schneggenburger and Neher,
2005; Sun et al., 2007). At calyceal terminals, electrophysiology
has even delivered direct functional readouts (Stanley, 1993)
and estimates of AZ Ca2+ channel numbers (Sheng et al.,
2012). Application of synthetic Ca2+ chelators with different
binding rates [BAPTA (1,2-bis(2-aminophenoxy)ethane-
N,N,N’,N’-tetraacetic acid) and EGTA (ethylene glycol-bis(2-
aminoethylether)-N,N,N’,N’-tetraacetic acid)] can differentiate
between very tight (“nanodomain”, <100 nm) and larger

distance (“microdomain”, >100 nm) coupling regimes of
synaptic vesicles and Ca2+ channels (Eggermann et al., 2012).
By combining data from such investigations, the vesicle-Ca2+

channel topography has now been modeled at several mammalian
central AZs (Meinrenken et al., 2002; Schmidt et al., 2013; Vyleta
and Jonas, 2014). While it would be desirable to study the
ultrastructural organization underlying coupling modes directly,
information on the exact arrangement of Ca2+ channels derived
from EM is sparse (Feeney et al., 1998; Holderith et al., 2012;
Indriati et al., 2013). Conventional light microscopy, in turn,
cannot measure the physical distance between channels and
vesicles or resolve whether the Ca2+ signal is shaped by a
single channel (Augustine et al., 1991; Stanley, 1993) or the
superposition of multiple channels (Borst and Sakmann,
1996).

There appears to be no general map of synaptic vesicle
and Ca2+ channel arrangements at the AZ. In fact, vesicle-
channel coupling may differ significantly at AZs belonging to
the same neuron (Rozov et al., 2001) and at single presynaptic
terminals over time (Fedchyshyn and Wang, 2005; Erazo-Fischer
et al., 2007; Wong et al., 2013). Before a synaptic vesicle
becomes fusion competent, the release machinery must build
up a primed state (Wojcik and Brose, 2007). In addition to
such “molecular priming”, evidence also suggests that “positional
priming”, i.e., moving primed vesicles closer to Ca2+ channels,
can contribute to a heterogeneous p of RRVs (Neher and
Sakaba, 2008). However, information on spatial relationships
of AZ molecules in these distinct states has not yet been
collected. Importantly, proteins which influence AZ function
and plasticity by tightening vesicle-Ca2+ channel coupling
have been identified in fly and mouse (Kittel et al., 2006;
Yang et al., 2010). Investigating the organization of such key
components relative to other AZ constituents should help to
improve our mechanistic understanding of AZ structure-function
relationships.

SRM OF THE AZ
Quantitative information on functional determinants of the
AZ has mainly been derived from large, electrophysiologically
accessible presynaptic terminals, such as the Calyx of Held
(Forsythe, 1994; Meinrenken et al., 2002; Neher and Sakaba,
2008). While sophisticated electrophysiology has extended direct
studies of transmitter release to smaller terminals (see e.g.,
Hallermann et al., 2003; Rancz et al., 2007; Bucurenciu et al.,
2008), there remains an obvious demand for correlative structural
information.

Here, SRM techniques can be expected to make a significant
contribution. Several SRM studies, mostly conducted in cell
culture, have provided indirect information on AZ function
by analyzing the vesicle cycle. In one of its first biological
applications, STED microscopy showed that the vesicular Ca2+

sensor Synaptotagmin remains clustered in isolated patches
following exocytosis in cultured neurons (Willig et al., 2006).
Subsequent work introduced live cell STED imaging to visualize
synaptic vesicle movement between and within presynaptic
boutons (Westphal et al., 2008), while multicolor imaging has
been used to differentiate molecularly-defined synaptic vesicle
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FIGURE 1 | Imaging Drosophila neuromuscular AZs. Gradual increases
in spatial resolution show (A) a Drosophila larval preparation imaged with
epifluorescence microscopy (phalloidin staining); (B) a confocal image of
the glutamatergic neuromuscular junction (left panel), a single bouton
(upper panel) and an individual synapse (lower panel) stained against the
AZ protein Brp (magenta) and the postsynaptic glutamate receptor
subunit GluRIID (cyan; arrowheads indicate enlarged regions);
(C) dSTORM images of AZs stained against Brp (C-terminal epitope,

magenta) and Ca2+ channels (nanobody recognizing a GFP-tagged
α1-subunit, CacGFP; Kawasaki et al., 2004) viewed en face (optical axis
perpendicular to AZ membrane, upper panel) and from the side (optical
axis parallel to AZ membrane, lower panel; cf. D); (D) an electron
micrograph of the AZ cytomatrix and opposed pre- and postsynaptic
membranes. Electron micrograph kindly provided by C. Wichmann and
S.J. Sigrist. Scale bars: (A) 1 mm; (B) 10µm (NMJ), 1µm (bouton),
500 nm (synapse); (C,D) 200 nm.

pools at calyceal synapses in rat brain tissue (Kempf et al.,
2013). Focussing on Syntaxin as a component of the vesicle
fusion machinery, two independently conducted investigations
using STED and dSTORM provided detailed information on
its arrangement in clusters at the plasma membrane of PC12
cells (Sieber et al., 2007; Bar-On et al., 2012). Moreover,
3-D applications of STORM and PALM have been utilized
to investigate vesicle endocytosis by Clathrin nanostructures
in cultured cell lines (Jones et al., 2011; Sochacki et al.,
2012).

Analysis of the AZ nanoarchitecture in tissue was first carried
out with SRM by using STED at the Drosophila NMJ. Beginning
with the identification of Bruchpilot (Brp) as a major component
of the AZ cytomatrix (Kittel et al., 2006; Wagh et al., 2006),
subsequent work described the polarized, elongated orientation
of this large filamentous protein and resolved the organization of
further AZ components, such as Ca2+ channels, Syd-1, Liprin-α
and RIM binding protein (RBP) relative to the Brp hub (Fouquet
et al., 2009; Owald et al., 2010; Liu et al., 2011). This has
generated an increasingly detailed picture of the protein scaffold
at Drosophila AZs (Maglione and Sigrist, 2013), which is currently
being extended by photobleaching microscopy techniques (PiMP,
photo-bleaching microscopy with nonlinear processing; Khuong
et al., 2013) and SRM via dSTORM (Figure 1; Ehmann et al.,
2014, Paul et al., submitted). In a separate effort, STORM was
used to measure the axial positions of the AZ-specific proteins
RIM1, Piccolo and Bassoon at synapses in mouse brain tissue
(Dani et al., 2010). It is of obvious interest to compare such AZ
topographies from different synapses, to identify conserved and
specialized principles of organization and to test whether these
are causally linked to functional diversity.

Extending beyond descriptive ultrastructural studies,
microscopy can contribute to identifying structural correlates
of synaptic function (Wojtowicz et al., 1994). Considering

their fundamental impact on neurotransmission there has thus
been a long standing motivation to resolve the nanoscopic
organization of Ca2+ channels at the AZ. However, to date little
direct information has been collected on their ultrastructural
distribution (Haydon et al., 1994; Feeney et al., 1998; Holderith
et al., 2012; Indriati et al., 2013). Notably, a recent study at
hippocampal neurons elegantly combined Ca2+ imaging with
EM to estimate the number of Ca2+ channels contributing to
one microdomain and to identify a close correlation between
the number of docked vesicles, AZ area and p (Holderith
et al., 2012). Combining STED with molecular manipulations
and electrophysiology has identified functional roles of the
AZ proteins Brp and RBP in the recruitment and spatial
arrangement of Ca2+ channels to promote p at the Drosophila
AZ (Kittel et al., 2006; Hallermann et al., 2010b; Liu et al.,
2011). Moreover, dynamic reorganizations of Brp accompany
rapid AZ strengthening and increase the number of release sites
during homeostatic synaptic plasticity (Weyhersmüller et al.,
2011). Similarly, studies at mammalian hair cell synapses have
demonstrated a role of the AZ protein Bassoon, functionally
related to Brp (Hallermann and Silver, 2013), in shaping Ca2+

channel arrangement and establishing release sites (Frank et al.,
2010).

Despite the high spatial resolution provided by SRM, estimates
of protein abundance are mainly obtained from fluorescence
intensity measurements and therefore deliver only relative values.
However, quantitative information on endogenous protein copies,
in addition to their spatial organization, is required for a
comprehensive mechanistic understanding of AZ structure-
function relationships. While stepwise photobleaching can be
used to count low protein numbers (Ulbrich and Isacoff,
2007) the densely packed protein assembly at the AZ requires
alternative methods. Several recent reports have addressed this
issue.
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Wilhelm et al. combined quantitative biochemistry with
EM and STED to estimate average protein copies and to
localize these to specific sub-cellular regions of biochemically
isolated presynaptic terminals (Wilhelm et al., 2014). This
approach has delivered a wealth of quantitative information on
presynaptic proteins. However, it does not connect structural
features with functional properties at the single synapse
level.

Since localization microscopy is an explicit single-molecule
imaging technique, it can be used to obtain quantitative
information on both the spatial distribution and the copy
number of labeled proteins in situ, as long as antibody binding
features (e.g., in dSTORM) or fluorescent protein expression
and folding properties (as e.g., in PALM) are taken into
account. By engaging dSTORM, this principle was recently
utilized to study the nanoscopic arrangement of endogenous
Brp proteins at AZs in tissue (Ehmann et al., 2014). The results
provided an estimate of the number of Brp copies per AZ and
were correlated with electrophysiological features to offer an
interpretation of how the protein’s organization is linked to AZ
function.

These current developments open up new perspectives for
clarifying how functional properties are encoded in the protein
architecture of AZs. Logical next steps could include searching
for molecular determinants of vesicle release sites and quantitative
ultrastructural studies of Ca2+ channel-vesicle topographies.

OUTLOOK
Despite a gradually emerging comprehensive protein catalog,
we still lack basic information describing how the nanoscopic
organization of proteins at the AZ gives rise to neurotransmission.
Arguably, this is due to the diffraction-limited resolution of
conventional light microscopy, which has hindered access to the
spatial nanodomain in a physiologically relevant experimental
setting.

Several SRM techniques now exist that have the capacity
to localize proteins on the nanometer scale and to resolve
components of macromolecular assemblies in their native
environment. In this context, we believe that localization
microscopy is of particular value, as it can be used to
provide direct access to molecular coordinates and to count
endogenous protein epitopes (Specht et al., 2013; Andreska et al.,
2014; Ehmann et al., 2014). We expect that combining such
quantitative information on protein organization with results
from electrophysiology will contribute to a better understanding
of the molecular mechanisms controlling AZ function. In
addition, other correlative approaches, such as pairing SRM
with biochemistry (Wilhelm et al., 2014), EM (Watanabe et al.,
2011; Löschberger et al., 2014) and array tomography (Nanguneri
et al., 2012) hold great promise for uncovering multiprotein
architectures.

Harnessing the full potential of SRM will require expanding
the repertoire of robust test samples and introducing optimized
analytical tools (Bar-On et al., 2012). Likewise, small fluorescent
probes with both efficient and specific binding properties will
have to be developed to allow for simultaneous visualization
of multiple targets in their native settings (Sauer, 2013). As

already common practice in EM, users of SRM have to accept
that fluorophores, labeling protocols and sample preparations
need to be optimized for each new target molecule under
investigation.

Dynamic, live-cell SRM remains challenging. As a rule of
thumb, spatial resolution always comes at the cost of temporal
resolution. Therefore, imaging complex structures, such as the
cytoskeleton of a whole cell, requires several minutes acquisition
time at a lateral resolution of about 20 nm. This clearly limits
the obtainable dynamic information. In contrast, modified SIM
can easily resolve the movement of microtubules in entire living
cells, albeit at lower spatial resolution (Chen et al., 2014). Hence,
future efforts will have to optimize the trade-off between imaging
area, temporal information and spatial resolution in order to
monitor dynamic protein re-arrangements at the AZ directly.
In principle, fluorescent protein-based SRM techniques offer
the possibility of in vivo imaging in fully intact organisms.
However, the feasibility of such applications must take into
account light scattering and aberration in biological tissue,
less amenable photophysical properties of fluorescent proteins
compared with organic fluorophores and possible physiological
alterations induced by recombinant protein expression (Sauer,
2013).

Despite its capacity to resolve multiprotein structures, so far
relatively few studies have engaged SRM to study synaptic AZs.
We anticipate that this situation will change as SRM techniques
become increasingly available and affordable (Holm et al., 2014).
Progress in efficient and stoichiometric labeling of endogenous
proteins, together with the development of sample preparations
that accurately preserve the molecular details of interest, will
further advance SRM to shed light on the AZ.
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(2010). Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles
to add release sites and promote refilling. Neuron 68, 724–738. doi: 10.1016/j.
neuron.2010.10.027

Galbraith, C. G., and Galbraith, J. A. (2011). Super-resolution microscopy at a
glance. J. Cell Sci. 124, 1607–1611. doi: 10.1242/jcs.080085

Gustafsson, M. G. L. (2000). Surpassing the lateral resolution limit by a factor of
two using structured illumination microscopy. J. Microsc. 198, 82–87. doi: 10.
1046/j.1365-2818.2000.00710.x

Gustafsson, M. G. L. (2005). Nonlinear structured-illumination microscopy: wide-
field fluorescence imaging with theoretically unlimited resolution. Proc. Natl.
Acad. Sci. U S A 102, 13081–13086. doi: 10.1073/pnas.0406877102

Hallermann, S., Heckmann, M., and Kittel, R. J. (2010a). Mechanisms of short-term
plasticity at neuromuscular active zones of Drosophila. HFSP J. 4, 72–84. doi: 10.
2976/1.3338710

Hallermann, S., Kittel, R. J., Wichmann, C., Weyhersmüller, A., Fouquet, W.,
Mertel, S., et al. (2010b). Naked dense bodies provoke depression. J. Neurosci.
30, 14340–14345. doi: 10.1523/JNEUROSCI.2495-10.2010

Hallermann, S., Pawlu, C., Jonas, P., and Heckmann, M. (2003). A large pool of
releasable vesicles in a cortical glutamatergic synapse. Proc. Natl. Acad. Sci. U S
A 100, 8975–8980. doi: 10.1073/pnas.1432836100

Hallermann, S., and Silver, R. A. (2013). Sustaining rapid vesicular release at active
zones: potential roles for vesicle tethering. Trends Neurosci. 36, 185–194. doi: 10.
1016/j.tins.2012.10.001

Harlow, M. L., Ress, D., Stoschek, A., Marshall, R. M., and McMahan, U. J. (2001).
The architecture of active zone material at the frog’s neuromuscular junction.
Nature 409, 479–484. doi: 10.1038/35054000

Haydon, P. G., Henderson, E., and Stanley, E. F. (1994). Localization of individual
calcium channels at the release face of a presynaptic nerve terminal. Neuron 13,
1275–1280. doi: 10.1016/0896-6273(94)90414-6

Heilemann, M., van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B.,
Mukherjee, A., et al. (2008). Subdiffraction-resolution fluorescence imaging
with conventional fluorescent probes. Angew. Chem. Int. Ed Engl. 47, 6172–6176.
doi: 10.1002/anie.200802376

Heintzmann, R., and Cremer, C. G. (1999). Laterally modulated excitation
microscopy: improvement of resolution by using a diffraction grating. Proc.
SPIE 3568, 185–196. doi: 10.1117/12.336833

Hell, S. W. (2007). Far-field optical nanoscopy. Science 316, 1153–1158. doi: 10.
1126/science.1137395

Hell, S. W. (2009). Microscopy and its focal switch. Nat. Methods 6, 24–32. doi: 10.
1038/nmeth.1291

Hell, S. W., and Wichmann, J. (1994). Breaking the diffraction resolution limit by
stimulated emission: stimulated-emission-depletion fluorescence microscopy.
Opt. Lett. 19, 780–782. doi: 10.1364/ol.19.000780

Hess, S. T., Girirajan, T. P. K., and Mason, M. D. (2006). Ultra-high resolution
imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91,
4258–4272. doi: 10.1529/biophysj.106.091116

Holderith, N., Lorincz, A., Katona, G., Rózsa, B., Kulik, A., Watanabe, M., et al.
(2012). Release probability of hippocampal glutamatergic terminals scales
with the size of the active zone. Nat. Neurosci. 15, 988–997. doi: 10.1038/
nn.3137

Holm, T., Klein, T., Löschberger, A., Klamp, T., Wiebusch, G., van de Linde, S., et al.
(2014). A blueprint for cost-efficient localization microscopy. Chemphyschem
15, 651–654. doi: 10.1002/cphc.201300739

Hosoi, N., Sakaba, T., and Neher, E. (2007). Quantitative analysis of calcium-
dependent vesicle recruitment and its functional role at the calyx of
held synapse. J. Neurosci. 27, 14286–14298. doi: 10.1523/jneurosci.4122-07.
2007

Indriati, D. W., Kamasawa, N., Matsui, K., Meredith, A. L., Watanabe, M., and
Shigemoto, R. (2013). Quantitative localization of Cav2.1 (P/Q-type) voltage-
dependent calcium channels in Purkinje cells: somatodendritic gradient and
distinct somatic coclustering with calcium-activated potassium channels. J.
Neurosci. 33, 3668–3678. doi: 10.1523/JNEUROSCI.2921-12.2013

Jahn, R., and Fasshauer, D. (2012). Molecular machines governing exocytosis of
synaptic vesicles. Nature 490, 201–207. doi: 10.1038/nature11320

Jiao, W., Masich, S., Franzén, O., and Shupliakov, O. (2010). Two pools of
vesicles associated with the presynaptic cytosolic projection in Drosophila
neuromuscular junctions. J. Struct. Biol. 172, 389–394. doi: 10.1016/j.jsb.2010.
07.007

Jones, S. A., Shim, S.-H., He, J., and Zhuang, X. (2011). Fast, three-dimensional
super-resolution imaging of live cells. Nat. Methods 8, 499–508. doi: 10.
1038/nmeth.1605

Frontiers in Cellular Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 7 | 6

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Ehmann et al. Nanoscopy of the active zone

Kawasaki, F., Zou, B., Xu, X., and Ordway, R. W. (2004). Active zone localization of
presynaptic calcium channels encoded by the cacophony locus of Drosophila. J.
Neurosci. 24, 282–285. doi: 10.1523/jneurosci.3553-03.2004

Kempf, C., Staudt, T., Bingen, P., Horstmann, H., Engelhardt, J., Hell, S. W., et al.
(2013). Tissue multicolor STED nanoscopy of presynaptic proteins in the calyx
of held. PLoS One 8:e62893. doi: 10.1371/journal.pone.0062893

Khuong, T. M., Habets, R. L. P., Kuenen, S., Witkowska, A., Kasprowicz, J., Swerts,
J., et al. (2013). Synaptic PI(3,4,5)P3 is required for Syntaxin1A clustering and
neurotransmitter release. Neuron 77, 1097–1108. doi: 10.1016/j.neuron.2013.
01.025

Kittel, R. J., Wichmann, C., Rasse, T. M., Fouquet, W., Schmidt, M., Schmid, A.,
et al. (2006). Bruchpilot promotes active zone assembly, Ca2+ channel clustering
and vesicle release. Science 312, 1051–1054. doi: 10.1126/science.1126308

Landis, D. M., Hall, A. K., Weinstein, L. A., and Reese, T. S. (1988). The organization
of cytoplasm at the presynaptic active zone of a central nervous system synapse.
Neuron 1, 201–209. doi: 10.1016/0896-6273(88)90140-7

Lichtman, J. W., and Conchello, J.-A. (2005). Fluorescence microscopy. Nat.
Methods 2, 910–919. doi: 10.1038/nmeth817

Limbach, C., Laue, M. M., Wang, X., Hu, B., Thiede, N., Hultqvist, G., et al. (2011).
Molecular in situ topology of Aczonin/Piccolo and associated proteins at the
mammalian neurotransmitter release site. Proc. Natl. Acad. Sci. U S A 108, E392–
E401. doi: 10.1073/pnas.1101707108

Liu, K. S. Y., Siebert, M., Mertel, S., Knoche, E., Wegener, S., Wichmann, C., et al.
(2011). RIM-binding protein, a central part of the active zone, is essential for
neurotransmitter release. Science 334, 1565–1569. doi: 10.1126/science.1212991

Llinás, R., Sugimori, M., and Silver, R. B. (1992). Microdomains of high
calcium concentration in a presynaptic terminal. Science 256, 677–679. doi: 10.
1126/science.1350109

Löschberger, A., Franke, C., Krohne, G., van de Linde, S., and Sauer, M.
(2014). Correlative super-resolution fluorescence and electron microscopy of
the nuclear pore complex with molecular resolution. J. Cell Sci. 127, 4351–4355.
doi: 10.1242/jcs.156620

Maglione, M., and Sigrist, S. J. (2013). Seeing the forest tree by tree: super-
resolution light microscopy meets the neurosciences. Nat. Neurosci. 16, 790–797.
doi: 10.1038/nn.3403

Marvin, J. S., Borghuis, B. G., Tian, L., Cichon, J., Harnett, M. T., Akerboom,
J., et al. (2013). An optimized fluorescent probe for visualizing glutamate
neurotransmission. Nat. Methods 10, 162–170. doi: 10.1038/nmeth.2333

Matz, J., Gilyan, A., Kolar, A., McCarvill, T., and Krueger, S. R. (2010).
Rapid structural alterations of the active zone lead to sustained changes in
neurotransmitter release. Proc. Natl. Acad. Sci. U S A 107, 8836–8841. doi: 10.
1073/pnas.0906087107

Meinrenken, C. J., Borst, J. G. G., and Sakmann, B. (2002). Calcium secretion
coupling at calyx of held governed by nonuniform channel-vesicle topography.
J. Neurosci. 22, 1648–1667.

Meyer, L., Wildanger, D., Medda, R., Punge, A., Rizzoli, S. O., Donnert, G., et al.
(2008). Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4,
1095–1100. doi: 10.1002/smll.200800055

Moulder, K. L., and Mennerick, S. (2005). Reluctant vesicles contribute to the total
readily releasable pool in glutamatergic hippocampal neurons. J. Neurosci. 25,
3842–3850. doi: 10.1523/jneurosci.5231-04.2005

Nägerl, U. V., Willig, K. I., Hein, B., Hell, S. W., and Bonhoeffer, T. (2008). Live-cell
imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. U S A
105, 18982–18987. doi: 10.1073/pnas.0810028105

Nanguneri, S., Flottmann, B., Horstmann, H., Heilemann, M., and Kuner, T.
(2012). Three-dimensional, tomographic super-resolution fluorescence imaging
of serially sectioned thick samples. PLoS One 7:e38098. doi: 10.1371/journal.
pone.0038098

Neher, E. (1998). Vesicle pools and Ca2+ microdomains: new tools for
understanding their roles in neurotransmitter release. Neuron 20, 389–399.
doi: 10.1016/s0896-6273(00)80983-6

Neher, E., and Sakaba, T. (2008). Multiple roles of calcium ions in the regulation
of neurotransmitter release. Neuron 59, 861–872. doi: 10.1016/j.neuron.2008.
08.019

Owald, D., Fouquet, W., Schmidt, M., Wichmann, C., Mertel, S., Depner, H.,
et al. (2010). A Syd-1 homologue regulates pre- and postsynaptic maturation
in Drosophila. J. Cell Biol. 188, 565–579. doi: 10.1083/jcb.200908055

Owald, D., and Sigrist, S. J. (2009). Assembling the presynaptic active zone. Curr.
Opin. Neurobiol. 19, 311–318. doi: 10.1016/j.conb.2009.03.003

Patterson, G., Davidson, M., Manley, S., and Lippincott-Schwartz, J. (2010).
Superresolution imaging using single-molecule localization. Annu.
Rev. Phys. Chem. 61, 345–367. doi: 10.1146/annurev.physchem.012809.
103444

Peled, E. S., and Isacoff, E. Y. (2011). Optical quantal analysis of synaptic
transmission in wild-type and rab3-mutant Drosophila motor axons. Nat.
Neurosci. 14, 519–526. doi: 10.1038/nn.2767

Pfenninger, K., Akert, K., Moor, H., and Sandri, C. (1972). The fine structure
of freeze-fractured presynaptic membranes. J. Neurocytol. 1, 129–149. doi: 10.
1007/bf01099180

Phillips, G. R., Huang, J. K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W.,
et al. (2001). The presynaptic particle web: ultrastructure, composition,
dissolution and reconstitution. Neuron 32, 63–77. doi: 10.1016/S0896-6273(01)
00450-0

Rancz, E. A., Ishikawa, T., Duguid, I., Chadderton, P., Mahon, S., and Häusser,
M. (2007). High-fidelity transmission of sensory information by single
cerebellar mossy fibre boutons. Nature 450, 1245–1248. doi: 10.1038/nature
05995

Rosenmund, C., and Stevens, C. F. (1996). Definition of the readily releasable pool
of vesicles at hippocampal synapses. Neuron 16, 1197–1207. doi: 10.1016/s0896-
6273(00)80146-4

Rozov, A., Burnashev, N., Sakmann, B., and Neher, E. (2001). Transmitter release
modulation by intracellular Ca2+ buffers in facilitating and depressing nerve
terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target
cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807–
826. doi: 10.1111/j.1469-7793.2001.0807h.x

Rust, M. J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by
stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–
795. doi: 10.1038/nmeth929

Sakaba, T., Schneggenburger, R., and Neher, E. (2002). Estimation of quantal
parameters at the calyx of held synapse. Neurosci. Res. 44, 343–356. doi: 10.
1016/s0168-0102(02)00174-8

Sätzler, K., Söhl, L. F., Bollmann, J. H., Borst, J. G. G., Frotscher, M., Sakmann,
B., et al. (2002). Three-dimensional reconstruction of a calyx of held and its
postsynaptic principal neuron in the medial nucleus of the trapezoid body. J.
Neurosci. 22, 10567–10579.

Sauer, M. (2013). Localization microscopy coming of age: from concepts to
biological impact. J. Cell Sci. 126, 3505–3513. doi: 10.1242/jcs.123612

Schermelleh, L., Heintzmann, R., and Leonhardt, H. (2010). A guide to super-
resolution fluorescence microscopy. J. Cell Biol. 190, 165–175. doi: 10.1083/jcb.
201002018

Scheuss, V., Schneggenburger, R., and Neher, E. (2002). Separation of presynaptic
and postsynaptic contributions to depression by covariance analysis of
successive EPSCs at the calyx of held synapse. J. Neurosci. 22, 728–739.

Schmidt, H., Brachtendorf, S., Arendt, O., Hallermann, S., Ishiyama, S., Bornschein,
G., et al. (2013). Nanodomain coupling at an excitatory cortical synapse. Curr.
Biol. 23, 244–249. doi: 10.1016/j.cub.2012.12.007

Schneggenburger, R., and Neher, E. (2005). Presynaptic calcium and control of
vesicle fusion. Curr. Opin. Neurobiol. 15, 266–274. doi: 10.1016/j.conb.2005.05.
006

Schneggenburger, R., Sakaba, T., and Neher, E. (2002). Vesicle pools and short-term
synaptic depression: lessons from a large synapse. Trends Neurosci. 25, 206–212.
doi: 10.1016/s0166-2236(02)02139-2

Sheng, J., He, L., Zheng, H., Xue, L., Luo, F., Shin, W., et al. (2012). Calcium-channel
number critically influences synaptic strength and plasticity at the active zone.
Nat. Neurosci. 15, 998–1006. doi: 10.1038/nn.3129

Sieber, J. J., Willig, K. I., Kutzner, C., Gerding-Reimers, C., Harke, B., Donnert, G.,
et al. (2007). Anatomy and dynamics of a supramolecular membrane protein
cluster. Science 317, 1072–1076. doi: 10.1126/science.1141727

Siksou, L., Rostaing, P., Lechaire, J.-P., Boudier, T., Ohtsuka, T., Fejtová, A., et al.
(2007). Three-dimensional architecture of presynaptic terminal cytomatrix. J.
Neurosci. 27, 6868–6877. doi: 10.1523/jneurosci.1773-07.2007

Silver, R. A., Lubke, J., Sakmann, B., and Feldmeyer, D. (2003). High-probability
uniquantal transmission at excitatory synapses in barrel cortex. Science 302,
1981–1984. doi: 10.1126/science.1087160

Sochacki, K. A., Larson, B. T., Sengupta, D. C., Daniels, M. P., Shtengel, G.,
Hess, H. F., et al. (2012). Imaging the post-fusion release and capture of
a vesicle membrane protein. Nat. Commun. 3:1154. doi: 10.1038/ncomms
2158

Frontiers in Cellular Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 7 | 7

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Ehmann et al. Nanoscopy of the active zone

Specht, C. G., Izeddin, I., Rodriguez, P. C., El Beheiry, M., Rostaing, P., Darzacq,
X., et al. (2013). Quantitative nanoscopy of inhibitory synapses: counting
gephyrin molecules and receptor binding sites. Neuron 79, 308–321. doi: 10.
1016/j.neuron.2013.05.013

Stanley, E. F. (1993). Single calcium channels and acetylcholine release at
a presynaptic nerve terminal. Neuron 11, 1007–1011. doi: 10.1016/0896-
6273(93)90214-c

Südhof, T. C. (2012). The presynaptic active zone. Neuron 75, 11–25. doi: 10.1016/j.
neuron.2012.06.012

Sun, J., Pang, Z. P., Qin, D., Fahim, A. T., Adachi, R., and Südhof, T. C. (2007).
A dual-Ca2+-sensor model for neurotransmitter release in a central synapse.
Nature 450, 676–682. doi: 10.1038/nature06308

Szule, J. A., Harlow, M. L., Jung, J. H., De-Miguel, F. F., Marshall, R. M., and
McMahan, U. J. (2012). Regulation of synaptic vesicle docking by different
classes of macromolecules in active zone material. PLoS One 7:e33333. doi: 10.
1371/journal.pone.0033333

Tong, G., and Jahr, C. E. (1994). Multivesicular release from excitatory synapses
of cultered hippocampal neurons. Neuron 12, 51–59. doi: 10.1016/0896-
6273(94)90151-1

Tønnesen, J., Katona, G., Rózsa, B., and Nägerl, U. V. (2014). Spine neck plasticity
regulates compartmentalization of synapses. Nat. Neurosci. 17, 678–685. doi: 10.
1038/nn.3682

Ulbrich, M. H., and Isacoff, E. Y. (2007). Subunit counting in membrane-bound
proteins. Nat. Methods 4, 319–321. doi: 10.1038/nmeth1024

van de Linde, S., Löschberger, A., Klein, T., Heidbreder, M., Wolter, S., Heilemann,
M., et al. (2011). Direct stochastic optical reconstruction microscopy with
standard fluorescent probes. Nat. Protoc. 6, 991–1009. doi: 10.1038/nprot.
2011.336

Vyleta, N. P., and Jonas, P. (2014). Loose coupling between Ca2+ channels and
release sensors at a plastic hippocampal synapse. Science 343, 665–670. doi: 10.
1126/science.1244811

Wagh, D. A., Rasse, T. M., Asan, E., Hofbauer, A., Schwenkert, I., Dürrbeck, H.,
et al. (2006). Bruchpilot, a protein with homology to ELKS/CAST, is required for
structural integrity and function of synaptic active zones in Drosophila. Neuron
49, 833–844. doi: 10.1016/j.neuron.2006.02.008

Watanabe, S., Punge, A., Hollopeter, G., Willig, K. I., Hobson, R. J., Davis, M. W.,
et al. (2011). Protein localization in electron micrographs using fluorescence
nanoscopy. Nat. Methods 8, 80–84. doi: 10.1038/nmeth.1537

Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R.,
and Hell, S. W. (2008). Video-rate far-field optical nanoscopy dissects
synaptic vesicle movement. Science 320, 246–249. doi: 10.1126/science.11
54228

Weyhersmüller, A., Hallermann, S., Wagner, N., and Eilers, J. (2011). Rapid active
zone remodeling during synaptic plasticity. J. Neurosci. 31, 6041–6052. doi: 10.
1523/JNEUROSCI.6698-10.2011

Wichmann, C., and Sigrist, S. J. (2010). The active zone T-bar–a plasticity module?
J. Neurogenet. 24, 133–145. doi: 10.3109/01677063.2010.489626

Wilhelm, B. G., Mandad, S., Truckenbrodt, S., Kröhnert, K., Schäfer, C., Rammner,
B., et al. (2014). Composition of isolated synaptic boutons reveals the amounts
of vesicle trafficking proteins. Science 344, 1023–1028. doi: 10.1126/science.
1252884

Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R., and Hell, S. W. (2006). STED
microscopy reveals that synaptotagmin remains clustered after synaptic vesicle
exocytosis. Nature 440, 935–939. doi: 10.1038/nature04592

Wojcik, S. M., and Brose, N. (2007). Regulation of membrane fusion in synaptic
excitation-secretion coupling: speed and accuracy matter. Neuron 55, 11–24.
doi: 10.1016/j.neuron.2007.06.013

Wojtowicz, J. M., Marin, L., and Atwood, H. L. (1994). Activity-induced changes
in synaptic release sites at the crayfish neuromuscular junction. J. Neurosci. 14,
3688–3703.

Wong, A. B., Jing, Z., Rutherford, M. A., Frank, T., Strenzke, N., and Moser, T.
(2013). Concurrent maturation of inner hair cell synaptic Ca2+ influx and
auditory nerve spontaneous activity around hearing onset in mice. J. Neurosci.
33, 10661–10666. doi: 10.1523/JNEUROSCI.1215-13.2013

Xu-Friedman, M. A., Harris, K. M., and Regehr, W. G. (2001). Three-dimensional
comparison of ultrastructural characteristics at depressing and facilitating
synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6672.

Yang, X., Kaeser-Woo, Y. J., Pang, Z. P., Xu, W., and Südhof, T. C. (2010). Complexin
clamps asynchronous release by blocking a secondary Ca2+ sensor via its
accessory α helix. Neuron 68, 907–920. doi: 10.1016/j.neuron.2010.11.001

Zhai, R. G., and Bellen, H. J. (2004). The architecture of the active zone in
the presynaptic nerve terminal. Physiology (Bethesda) 19, 262–270. doi: 10.
1152/physiol.00014.2004

Zhang, Q., Li, Y., and Tsien, R. (2009). The dynamic control of kiss-and-run
and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453.
doi: 10.1126/science.1167373

Zucker, R. S., and Regehr, W. G. (2002). Short-term synaptic plasticity. Annu. Rev.
Physiol. 64, 355–405. doi: 10.1146/annurev.physiol.64.092501.114547

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 30 September 2014; accepted: 07 January 2015; published online: 30 January
2015.
Citation: Ehmann N, Sauer M and Kittel RJ (2015) Super-resolution microscopy of the
synaptic active zone. Front. Cell. Neurosci. 9:7. doi: 10.3389/fncel.2015.00007
This article was submitted to the journal Frontiers in Cellular Neuroscience.
Copyright © 2015 Ehmann, Sauer and Kittel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution and reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 7 | 8

http://dx.doi.org/10.3389/fncel.2015.00007
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

	Super-resolution microscopy of the synaptic active zone
	Introduction
	Microscopy
	Functional parameters of the AZ
	SRM of the AZ
	Outlook
	Acknowledgments
	References


