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Inflammation is the key host-defense response to infection and injury, yet also a
major contributor to a diverse range of diseases, both peripheral and central in origin.
Brain injury as a result of stroke or trauma is a leading cause of death and disability
worldwide, yet there are no effective treatments, resulting in enormous social and
economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation
as an important factor in stroke, both in determining outcome and as a contributor
to risk. A number of inflammatory mediators have been proposed as key targets
for intervention to reduce the burden of stroke, several reaching clinical trial, but as
yet yielding no success. Many factors could explain these failures, including the lack
of robust preclinical evidence and poorly designed clinical trials, in addition to the
complex nature of the clinical condition. Lack of consideration in preclinical studies of
associated co-morbidities prevalent in the clinical stroke population is now seen as an
important omission in previous work. These co-morbidities (atherosclerosis, hypertension,
diabetes, infection) have a strong inflammatory component, supporting the need for
greater understanding of how inflammation contributes to acute brain injury. Interleukin
(IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the
endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important
mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number
of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in
brain injury remain unclear, though increasing evidence indicates the cerebrovasculature
as a key target. Recent literature supporting this and other aspects of how IL-1 and
systemic inflammation in general contribute to acute brain injury are discussed in this
review.
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INTRODUCTION
Approximately 15 million people worldwide have a stroke every
year, from which one third die and another third are permanently
disabled (Corbyn, 2014). Ischemic stroke accounts for 80%
of all strokes with the remaining 20% being composed of
intracerebral hemorrhage (ICH) and subarachnoid hemorrhage
(SAH). Traumatic brain injury (TBI) also falls under the category
of acute central nervous system (CNS) injury and its pattern
of injury evolves in a similar way to ischemic and hemorrhagic
stroke. Currently there is only one drug option available to
ischemic stroke patients, the thrombolytic agent recombinant
tissue plasminogen activator (tPA), which disperses the clot
in the occluded vessel. The primary limitation of tPA is that
only 5–13% of the stroke population are eligible for treatment
as intravenous (i.v) administration must occur within a 4.5 h
time frame of stroke onset for the benefits of the drug to
outweigh the risks of hemorrhage (Hacke and Lichy, 2008).
Therefore, research over the last two decades has focused on
neuroprotective strategies with approximately 1000 compounds
being tested preclinically and almost 200 progressing to clinical
trials (O’Collins et al., 2006; Minnerup et al., 2012), with no
success. Despite these attempts to identify successful stroke

treatments, the only pharmacological therapies currently in use
are anti-platelet treatments for the general population (Chen
et al., 2000) and thrombolysis for the select few (Wardlaw et al.,
2012). Similarly, SAH and ICH treatment options are limited
to a narrow therapeutic window (Xu et al., 2014; Zhou et al.,
2014) thus necessitating an urgent need for new treatment options
applicable to a wider spectrum of patients and at extended time
points.

In response to these translational failures guidelines were
introduced in an attempt to ensure that complete and
comprehensive neuroprotection studies were performed before
any agent made it to clinical trial i.e., The STAIR criteria
(Stroke Therapy Academic Industry Roundtable (STAIR), 1999;
Fisher et al., 2009; Albers et al., 2011). Alongside suggestions
for improvements to experimental design and conduct, it was
also recognized by the STAIR committee that advanced age
and prevalent co-morbidities must also be considered and
incorporated when modeling ischemic stroke as they increase
stroke susceptibility and lead to poorer outcomes (Sieber et al.,
2014; Wang et al., 2014). In particular, the contribution of
co-morbidities to inflammation prior to and post-stroke is of key
importance when determining outcomes after acute CNS injury.
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INFLAMMATION AND BRAIN INJURY
Inflammation plays a key detrimental and reparative role in
CNS injury and it is widely accepted that inflammatory events
prior to and following an insult can have far reaching effects
on susceptibility and patient outcome and recovery (VanGilder
et al., 2014). Inflammation is an evolutionary-conserved defense
strategy of the immune system that can be mounted in
response to injury or infection. Acute inflammation is a rapid
response to tissue injury and/or pathogens and is traditionally
considered a beneficial mechanism to limit damage and evoke
tissue repair and resolution of injury (Cuartero et al., 2013).
Chronic inflammation conversely is generally associated with
dysregulation of the immune system and often manifests itself
as systemic inflammatory disease (Elkind, 2010). Ultimately,
prolonged or unregulated inflammation, either chronic or acute,
is detrimental to health and is particularly damaging if it occurs
in close temporal proximity to a CNS insult. Following acute
brain injury (e.g., stroke, TBI) a local and systemic inflammatory
response is mounted which triggers inflammatory signaling
cascades, increases in expression of transcriptional regulators and
infiltration and activation of immune cells (Lian et al., 2012; Chu
et al., 2014). This inflammatory response evolves over a number
of days to amplify the ischemic lesion, but also to initiate tissue
repair in the late post-ischemic phase (Iadecola and Anrather,
2011).

THE ROLE OF CYTOKINES IN STROKE
As part of the inflammatory response to brain injury, chemokines
and cytokines are secreted from immune cells to trigger a local
pro- or anti-inflammatory response on surrounding target cells
(Luheshi et al., 2009). Following a CNS insult, multiple cytokines
are generated to cause, exacerbate, mediate and/or inhibit cellular
injury and repair (Allan et al., 2005). The site of cytokine action
is varied and cytokines can be expressed by or act upon glia,
neurons, cerebrovascular endothelium and circulating immune
cells (Allan and Rothwell, 2001). Under normal basal conditions
cytokines are expressed at very low levels which are often difficult
to quantify (Hopkins and Rothwell, 1995; Vitkovic et al., 2000).
However, following CNS injury they are one of the first mediators
relayed to the site of injury (Allan and Rothwell, 2003). The whole
range of cytokine families (interleukins (IL), interferons (IFN),
tumor necrosis factors (TNF), colony stimulating factors, growth
factors and chemokines) have been implicated as contributors to
pre-existing risk factors for stroke as well as following reperfusion
(Fouda et al., 2013; Zhang et al., 2014). More specifically IL-1,
IL-6, IL-10, IL-17, IL-23, TNFα, transforming growth factor β

(TGFβ) and IFNγ are seen to increase after stroke (Lakhan et al.,
2009), IL-17, IL-23 and IFNγ being associated with exacerbation
of stroke in mice (Yilmaz et al., 2006; Shichita et al., 2009),
whereas IL-10 and TGFβ are protective (Spera et al., 1998; Zhu
et al., 2002). Release of these cytokines generates an inflammatory
cascade, resulting in the synthesis of various downstream
mediators, including prostaglandin (PG)-E2, IL-6, nitric oxide
(NO), IL-10 and neurotrophins (Pinteaux et al., 2002). IL-1, as
the first member of the IL family described, is considered the
prototypical inflammatory cytokine. This, together with extensive
literature reporting actions of IL-1 in cerebral ischemia, means

that this review will focus predominantly on IL-1. Discussion of
other inflammatory mediators in stroke can be found in several
recent articles—see (Doll et al., 2014) and (Lambertsen et al.,
2012).

INTERLEUKIN-1 AND ACUTE BRAIN DAMAGE
IL-1 is a key pro-inflammatory mediator with potent endogenous
pyrogenic properties. IL-1 has been implicated in many
pathological conditions, both in the periphery (e.g., sepsis,
arthritis and autoimmune dysfunction), and centrally (e.g.,
TBI, SAH, ICH and cerebral ischemia). The two main
IL-1 ligands are IL-1α and IL-1β, which show high sequence
homology despite being products of different genes (Andrews
et al., 1991; Figure 1). A third ligand, discovered in 1984,
is a naturally occurring competitive antagonist, IL-1 receptor
antagonist (IL-1Ra; Dinarello, 1994). This is highly selective and
blocks all known actions of IL-1, with no known independent
actions (Dinarello, 2011). IL-1 family members are constitutively
expressed at low levels in the healthy brain and when released at
modest concentrations locally, are not directly neurotoxic in vitro
or in vivo (Lawrence et al., 1998; Rothwell and Luheshi, 2000),
but play important roles in normal physiological processes such
as development, sleep and synaptic plasticity as well as synaptic
pruning and memory formation/consolidation during adulthood
(del Rey et al., 2013).

Detrimental effects of IL-1 become evident when CNS injury
occurs and there are raised levels of the cytokine. Acute neuronal
injuries, such as stroke or TBI, cause a rapid up-regulation of
IL-1β, IL-1Ra, IL-1 receptor (IL-1R) I, and IL-1RII expression
in rats (Liu et al., 1993; Wang et al., 1997). Expression of
IL-1α protein is also seen after cerebral ischemia, as early as
4 h post-reperfusion in microglial cells (Chen et al., 2007;
Luheshi et al., 2011). Exogenous administration of recombinant
IL-1β, either centrally or systemically, alongside experimental
stroke in rodents leads to an exacerbation of ischemic damage
(Yamasaki et al., 1995; Stroemer and Rothwell, 1998; McColl
et al., 2007). Conversely, disruption of IL-1α and β activity in
IL-1α/β knockout (KO) mice resulted in markedly reduced (70%)
infarct volumes following experimental stroke (Boutin et al.,
2001). Preclinical ICH and SAH studies also report increases in
mRNA and protein expression of IL-1 following hemorrhagic
injury (Wasserman et al., 2007; Greenhalgh et al., 2012), while
clinical studies show that IL-1β promoter polymorphisms are
associated with an increased risk of ICH in brain arteriovenous
malformation patients (Kim et al., 2009). IL-1Ra has been shown
to be safe in small Phase II trials in ischemic stroke (Emsley et al.,
2005) and SAH, also resulting in a reduction in inflammatory
markers in the circulation and cerebrospinal fluid (Singh et al.,
2014). Ongoing clinical studies in larger patient cohorts will
confirm the potential of IL-1Ra to move to Phase III efficacy
trials.

PRE-EXISTING SYSTEMIC INFLAMMATION AND STROKE
INCIDENCE
Harmful effects of IL-1 are not limited to post-stroke
inflammation. Accumulating evidence from the clinical and
experimental setting suggests that pre-existing inflammation
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FIGURE 1 | IL-1 signaling pathways. In response to a stimulus such as
lipopolysaccharide (LPS) transcription of the gene encoding IL-1β is initiated.
IL-1β is made as an inactive precursor protein and caspase-1 cleaves this
pro-IL-1β to make the active IL-1β. A variety of factors can promote or
inhibit the release of active IL-1β. Once released, IL-1β binds to IL-1RI
alongside IL-1 receptor accessory protein (IL-1RAcP) and signal

transduction is triggered, including co-localization of myeloid differentiation
primary response protein 88 (MyD88), IL-1 receptor associated kinase
(IRAK-1) and IRAK-2, recruitment of TNF receptor associated factor 6
(TRAF-6) and activation of nuclear factor kappa B (NFκB) from complex with
IκB. Conversely IL-1 receptor type II (IL-1RII) does not induce signal
transduction.

and elevated levels of IL-1 can also affect patient susceptibility
and severity of CNS injury (McColl et al., 2009; Denes et al.,
2010). The overwhelming majority of patients presenting with
ischemic or hemorrhagic stroke have one or more risk factors
including obesity, hypertension, atherosclerosis, diabetes and
infection, which account for 60–80% of stroke risk in the
general population (Hankey, 2006; Emsley and Hopkins, 2008).
Alongside an increase in susceptibility to stroke, these risk factors
also correlate to poorer outcomes both experimentally (Deng
et al., 2014; Kim et al., 2014) and clinically (Oppenheimer
et al., 1985; Razinia et al., 2007). Evidence indicates that a
common element links all of these co-morbidities—namely a
raised inflammatory status (Kwan et al., 2013). This pre-existing
inflammation can present either chronically or as an acute
event such as infection. The importance of these risk factors is
highlighted by a study which showed that stroke incidence fell
by 29% from 1999 to 2008 and 56 day mortality was reduced
from 21% to 12% in 2008 due to better primary management
of cardiovascular risk factors with lipid lowering and anti-
hypertensive drugs (Lee et al., 2011). It is therefore essential
to incorporate these conventional risk factors into preclinical

models and to account for their potential actions when treating
stroke patients.

Advancing age is the single most important non-modifiable
risk factor for stroke with half of all ischemic events occurring in
those aged over 75 (Roger et al., 2011). Tight control is usually
exerted over the immune system; however, with advanced age
this control is lost and there is an increase in serum levels of
inflammatory cytokines (Jenny et al., 2002) which increases the
vulnerability of the aged brain to stroke. In experimental models
of stroke in aged, hypertensive and diabetic animals, an increase in
mortality, neurological deficits and infarct volumes are observed
(Rewell et al., 2010).

The metabolic syndrome which comprises obesity,
dyslipidemia and diabetes is also a risk factor for stroke that
has, with societal lifestyle changes, become increasingly prevalent
in recent years (Mottillo et al., 2010). Obesity alone is an
independent risk factor for stroke and a positive correlation
has been observed in multiple ethnic populations and in both
sexes, regardless of whether adiposity is measured by body
mass index, waist circumference or waist to height proportion
(Suk et al., 2003; Yatsuya et al., 2010; Bodenant et al., 2011).
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A raised systemic inflammatory profile is a characteristic feature
of obesity, evidenced by the raised levels of c-reactive protein
(CRP) and IL-6 (Visser et al., 1999; Yudkin et al., 1999).
Furthermore, increasing circulating levels of IL-6 and CRP may
lead to progressively higher risk of ischemic events (Rost et al.,
2001; Miwa et al., 2013). Diabetic patients similarly have higher
rates of mortality, more disabling strokes and exhibit impaired
recovery following stroke in retrospective and prospective studies
when compared to non-diabetic stroke patients (Pulsinelli et al.,
1983; Oppenheimer et al., 1985; Woo et al., 1990).

Hypertension is another key modifiable stroke risk factor, with
elevated blood pressure (BP) making up 30–40% of all ischemic
stroke risk (Lawes et al., 2004). Presence of high BP prior to
ischemia also resulted in worse outcome at 10 days and 6 months
post-stroke when measured independently of baseline risk factors
(Abboud et al., 2006). In experimental models, the harmful
effects of obesity, diabetes and hypertension post-stroke have been
clearly demonstrated, causing increased ischemic damage, greater
disruption of blood brain barrier (BBB) integrity, increased
occurrence of hemorrhagic transformation, greater neurological
deficits and increased mortality (McColl et al., 2010; Li et al.,
2013a,b). This exacerbation in acute injury due to the presence
of a pre-existing inflammatory disease has also been seen in a
model of ICH in the presence of experimental diabetes. Presence
of hyperglycemia increased hematoma expansion and therefore
resulted in worse outcome (Liu et al., 2011).

Atherosclerosis is one of the primary contributors to
stroke risk due to the rupture and detachment of vascular
plaques which can result in thromboembolism (Ohira et al.,
2006). Inflammation plays a central role in the initiation and
destabilization of atherosclerotic plaques. Unstable plaques have
been shown to contain elevated levels of infiltrating leukocytes
that express proteolytic enzymes and thrombogenic substances
that contribute to the disruption of previously stable plaques
(Ross, 1999; Patel et al., 2008; Packard et al., 2009). Experimental
studies have utilized anti-inflammatory strategies (e.g., IL-1
neutralization, TNFα antagonism) to show that dampening of the
inflammatory response hinders atherosclerotic lesion progression
(Braunersreuther et al., 2008; McKellar et al., 2009; Bhaskar et al.,
2011).

Infection is another critical risk factor for stroke, with
epidemiological studies highlighting an association between
bacterial or viral infection and ischemic stroke (Grau et al.,
2010). In a study of approximately 19,000 patients from the UK
general practice research database, the risk of first time stroke
was highest 3 days after diagnosis of infection (Smeeth et al.,
2004; Clayton et al., 2008). Further support for a link between
infection and stroke is provided by research showing increased
deaths attributable to cardiovascular disorders and stroke during
respiratory infection epidemics (Eickhoff et al., 1961). Urinary
and respiratory tract infections are most commonly associated
with increased stroke risk, with Streptococcus pneumoniae and
influenza both having firm associations (Grau et al., 1995).
An increased incidence of hemorrhagic stroke has also been
noted following upper respiratory infection due to the increased
likelihood of formation and rupture of cerebral aneurisms,
leading to SAH (Kunze et al., 2000). Furthermore, in a study

examining incidence of infection in ICH patients, those that had
infection had significantly larger hemorrhages, poorer National
Institutes of Health Stroke Scale scores, raised levels of CRP
and were more likely to experience intraventricular hemorrhage
extension (Diedler et al., 2009). A causal relationship between
stroke and infection is supported by overlap of pathways that
are common to both, including inflammation and thrombosis.
Platelet activation and aggregation is increased in venous blood
samples from patients presenting with stroke and pre-existing
infection vs. their non-infectious counterparts thus hinting at a
potential common detrimental mechanisms (Zeller et al., 2005).
Preclinical data on the relationship between stroke risk and
infection are surprisingly sparse with only a small number of
studies exploring the effects of infection on stroke outcome. One
study showed that human influenza A infected mice had larger
infarcts and greater disruption in BBB integrity in comparison
to non-infected mice (Muhammad et al., 2011). Additionally,
research within our own group has shown that chronic infection
with the parasitic Trichuris muris model of gut infection prior to
ischemic stroke in mice exhibited either a Th1 or Th2 polarized
immune response. Mice with a Th1 response showed greater
neurological deficits and exacerbation of ischemic brain injury
(Dénes et al., 2010).

Common stroke risk factors often co-exist as they can
converge on shared pathways (e.g., the inflammatory cascade)
and therefore patients who have more than one of these risk
factors are at a much greater risk of a severe ischemic event, as
pre-existing co-morbidities may act synergistically to exacerbate
damage (Howells et al., 2010). Since many of the systemic
inflammatory conditions mentioned as risk factors for stroke can
be improved by inhibition of IL-1, this suggests a key role for this
pro-inflammatory cytokine in altering stroke susceptibility and
severity.

IL-1 AND PRE-EXISTING INFLAMMATION
Clinically, elevated IL-1 levels are fundamental to many auto-
inflammatory diseases which, as a result, may be improved by
IL-1 neutralization (e.g., gout, osteoarthritis and post-myocardial
infarction heart failure) (Dinarello, 2011). Growing evidence
however, implicates this cytokine in known vascular risk factors
for stroke (i.e., atherosclerosis, obesity, diabetes, infection and
hypertension), and suggest it is crucial to disease progression in
many experimental models of vascular disease (Murray et al.,
2013).

IL-1: A VASCULAR RISK FACTOR
In atherosclerosis and obesity, NOD-like receptor protein
(NLRP)-3 inflammasome (the inflammasome that controls
caspase-1 activity and thus IL-1β processing to its mature form)
was a key driving factor in progression of the diseases (Duewell
et al., 2010; Vandanmagsar et al., 2011). These results are
supported by research in a strain of atherosclerotic-susceptible
mice (fed a high-fat diet) crossed with IL-1R1 KO mice. These
mice, despite being predisposed to develop atherosclerosis, had
a reduced plaque burden and lowered BP due to the ablation
of the IL-1R1 and selective loss of IL-1 signaling (Chamberlain
et al., 2009). A further study examining the inflammatory
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state of hypertensive rats following a stroke observed elevated
levels of IL-1 which correlated to increased ischemic damage
(Liu et al., 1993). In genetic association studies, IL-1 or IL-1Ra
gene polymorphisms are associated with increased susceptibility
to stroke, atherosclerosis and ICH in humans (Seripa et al., 2003;
Um et al., 2003; Worrall et al., 2003; Dziedzic et al., 2005; Rezaii
et al., 2009). Further genetic studies assessing the influence of IL-
1 genotype status on the risk of cardiovascular disease show that
patients with a predisposition to express higher levels of IL-1 were
at a significantly higher risk of having coronary artery disease
(CAD) due to excess oxidized phospholipids and lipoproteins.
This enhanced risk of CAD was not observed in IL-1(-) genotypes
(Tsimikas et al., 2014).

IL-1 AND EXAGGERATED BRAIN INJURY
In addition to increasing susceptibility to ischemic stroke, high
levels of pre-existing IL-1, exacerbates post-stroke damage.
Peripherally-administered lipopolysaccharide (LPS; which
produces a robust IL-1 response) has been used to induce
systemic inflammation in mice and administration prior to
experimental middle cerebral artery occlusion results in a 150%
increase in infarct volume when compared to vehicle-treated
animals. To further confirm the importance of IL-1 in this
model, animals treated with LPS and IL-1Ra had infarct volumes
reduced by 60% compared to animals treated with LPS alone
(McColl et al., 2007). Pre-existing IL-1 administration also
exacerbates acute TBI injury by increasing volume of contusion
injury, hippocampal neuronal death and enhancing perivascular
neutrophil accumulation (Utagawa et al., 2008). Another example
of the damaging effects of acute systemic IL-1 prior to ischemia
is seen in models of infection. In mice and rats infected with
Streptococcus pneumoniae, a robust IL-1 response was induced
leading to larger infarct volumes, increased BBB disruption and
functional deficits post-stroke. These effects were abrogated by
delayed IL-1Ra administration (Dénes et al., 2014). Alongside
preclinical evidence, clinical evidence also seems to hint that
the presence of a pre-existing, inflammatory infection prior to
stroke can impair outcome at later time points, as evidenced by
neurological scores (Paganini-Hill et al., 2003; Grau et al., 2010).

The research outlined above indicates that systemic IL-
1, whether it pre-existing or post-injury, plays a crucial role
in mediating excess acute brain injury, though mechanisms
involved remain unclear. As such we propose below a number
of mechanisms through which IL-1 may mediate its detrimental
actions in acute brain injury.

INFLAMMATION AND THE CEREBROVASCULATURE
During the acute phase of ischemic stroke, inflammation
initiates a robust response from many cell types including glial
and brain endothelial cells. Considering the vascular nature
of stroke and that many of the risk factors that predispose
patients to an ischemic insult are characterized by vascular
inflammation, it is possible that the brain endothelium is a
point of convergence for mechanisms of inflammatory-associated
damage. The cerebrovasculature has a number of crucial roles
in both physiological and pathological conditions, including
regulation of vascular tone (Palomares and Cipolla, 2014).

In situations where routes of flow are occluded or cerebral
blood flow (CBF) is inadequate as in the case of ischemic and
hemorrhagic stroke, intrinsic safeguards, both structural and
functional in nature, are in place to maintain and stabilize CBF
(Palomares and Cipolla, 2014).

STRUCTURAL ABNORMALITIES ASSOCIATED WITH VASCULAR
INFLAMMATION
Under pathological conditions risk factors for stroke have
profound effects on cerebrovasculature structure with structural
anomalies often being associated with chronic systemic
inflammatory diseases (Arsava et al., 2014). In atherosclerosis,
plaque formation reduces the internal diameter of vessels and
increases the likelihood of thrombus formation and ischemic
attack (Bogiatzi et al., 2014). In patients with hypertension,
vascular remodeling and hypertrophy is a characteristic feature
of the disease and contributes to increased wall thickness,
reduced lumen diameter and reduced vascular responsiveness
to stimuli (Pabbidi et al., 2013). Furthermore, in a small
retrospective study of patients with chronic hyperglycemia,
cerebral microvascular remodeling and perfusion deficits
were observed in these patients through perfusion computer
tomography (Hou et al., 2013). Further studies have also
observed vascular asymmetry and a reduction in the number of
branches in obese Zucker rats vs. lean Zucker and Wistar rats
(Lapi et al., 2013).

FUNCTIONAL ABNORMALITIES ASSOCIATED WITH VASCULAR
INFLAMMATION
In addition to changes in the structural architecture of the
cerebrovasculature in the presence of systemic inflammation,
functional deficits are also apparent. Experimentally, mice fed a
high-fat diet for 8 weeks had impaired cerebrovascular function
and neurovascular coupling leading to an increase in infarct
volume and neurological deficits (Li et al., 2013c). In diabetic
rats, CBF responses to sciatic nerve or whisker stimulation were
depressed in both type I and type II diabetes (Jackman and
Iadecola, 2015) The influence of inflammatory co-morbidities
on ischemic penumbra has also been measured in stroke-prone
spontaneously hypertensive rats (SHRSP) vs. Wistar Kyoto rats.
Results from magnetic resonance imaging (MRI) showed that
within 1 h of stroke, SHRSP had significantly more ischemic
damage and a smaller penumbra than their normotensive
counterparts (McCabe et al., 2009). The expanding perfusion
deficit in SHRSP predicts more tissue at risk of infarction,
which correlates to poorer clinical outcome. These results have
important implications for management of stroke patients with
pre-existing hypertension and suggest that ischemic damage
could progress at a faster rate in the presence of a disease with
an activated inflammatory cascade. It is likely that the vascular
risk factors commonly associated with stroke cause cerebral
vascular dysfunction (either structural and/or functional), which
manifests as inadequate perfusion in brain areas at risk of
infarction (the ischemic penumbra). In the clinical setting,
perfusion deficits have also been observed in Alzheimer’s (Tosun
et al., 2009; Austin et al., 2011) and Parkinson’s (Takahashi et al.,
2010) disease patients and there is a positive correlation between
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disease progression and larger CBF deficits. Furthermore, cerebral
hypoperfusion has been seen in both relapsing-remitting multiple
sclerosis (MS) and primary MS (Adhya et al., 2006). Upregulation
of vasoactive mediators have also been implicated in postmortem
MS brain tissue and hypoperfusion has been observed in
MS patients as measured by MRI (D’Haeseleer et al., 2013).
Inflammation may therefore contribute to hypoperfusion in
both acute and chronic pathologies in preclinical and clinical
scenarios.

EFFECTS OF ACUTE IL-1 ON CEREBRAL BLOOD FLOW
The cerebrovascular endothelium is highly responsive to pro-
inflammatory stimuli and a primary location of IL-1RI, so it
is possible that IL-1 could mediate changes in CBF observed
in pathological disease states. Studies in rats have shown that
prolonged intracerebroventricular (i.c.v) administration of IL-
1 significantly reduced CBF (Maher et al., 2003). During early
reperfusion in a rodent model of ischemic stroke a marked
reduction in CBF was also observed in animals receiving an
intraperitoneal (i.p) injection of IL-1. This same effect was not
seen in control stroke animals who did not receive IL-1 (Parry-
Jones et al., 2008). Whether effects on CBF reported with i.c.v
injection of IL-1 (Maher et al., 2003) are as a result of systemic
inflammatory changes is not known, since this was not assessed
in the study. However, leakage of substances injected into the
cerebral ventricles to the systemic circulation is known so it
may be a possibility, especially given that IL-1 was administered
over a 2- or 4-week period. A reduction in CBF in the cerebral
microcirculation can impinge upon successful reperfusion thus
leading to an accelerated collapse of the penumbra and expansion
of infarct core. It is therefore possible, that the detrimental role
of IL-1 on CBF in the early stages following acute stroke may
account for the ability of IL-1 to exacerbate cerebral ischemia
(Parry-Jones et al., 2008). In further studies examining this
mechanism of IL-1 induced hypoperfusion, acute administration
of IL-1 prior to ischemia resulted in a significant perfusion
deficit and larger infarct volumes as measured by diffusion-
weighted and perfusion-weighted MRI. It was revealed that
raised levels of the vasoconstrictor endothelin-1 were present
within tissue experiencing hypoperfusion and blockade of the
endothelin receptor type A (ETrA) restored CBF and improved
infarct volume and functional outcomes. Overall, this indicated
acute systemic inflammation interacted with the vasculature to
induce changes in CBF which ultimately had a detrimental effect
during acute reperfusion (Murray et al., 2014). This hypothesis
is further supported by translational studies demonstrating that
patients with a history of recent acute infection in the week
leading up to their stroke exhibited vascular dysfunction (Pleiner
et al., 2004; Bryant et al., 2005). From a peripheral vascular
perspective, infection can also transiently impair endothelium-
dependent relaxation as observed in children with acute infections
(generally upper respiratory tract). Brachial artery flow mediated
dilation was measured in a cohort of 600 children suffering
from acute infection or recovering from acute infection.
Lower brachial artery flow was seen compared to uninfected
controls (Charakida et al., 2005). Whilst not examined in the
aforementioned human association studies, links between upper

respiratory tract infection and high levels of IL-1 have been
previously observed. In a study by Dénes et al. the presence
of Streptococcus pneumoniae infection in mice and rats prior
to ischemia significantly exacerbated infarct volume. Delayed
administration of IL-1Ra however abolished the infection-
induced deficits in functional outcomes and brain injury and
vascular activation thus highlighting the detrimental effects of IL-
1 on the cerebrovasculature prior to ischemia (Dénes et al., 2014).

CHRONIC IL-1 AND CEREBRAL BLOOD FLOW
Similar mechanisms of inflammation induced vasoconstriction
have also been noted in a chronic inflammatory model, the
obese Zucker rat in which pressure-induced vasoconstriction
was examined. It was observed that these animals exhibited
increased myogenic activation and a robust vasoconstrictive
response vs. their lean counterparts. This phenomenon was
abolished by removal of the endothelium, thus suggesting
the endothelium was targeted by systemic inflammation and
regulated arterial constriction (Butcher et al., 2013). Furthermore,
depletion of macrophages in a hypertensive model improved
perfusion however, peripheral arteries did not respond in a similar
fashion, suggesting chronic inflammation has brain-specific
effects which may not be mirrored in other vascular beds (Pires
et al., 2013). Studies have shown that endothelium-dependent
relaxation was impaired in type II diabetes in rats and could be
restored using ETrA antagonism, thus reinforcing the concept
that inflammation-induced vasoconstriction following ischemic
stroke may feature in chronic systemic inflammatory conditions
(Harris et al., 2008). Changes in the diameter of the cerebral
vasculature have also been observed in cases of SAH, stroke,
epilepsy and migraine through propagating waves of neuronal
depolarization, otherwise known as spreading depolarization
(SD; Lauritzen et al., 2011). Inflammatory mediators have also
been associated with waves of SD (Urbach et al., 2006), thus
reinforcing the hypothesis that inflammation may have a crucial
role in determining vessel contractility and tissue perfusion.
However, future studies are needed to directly examine the role
of chronic inflammation on CBF following stroke and brain
injury and to what degree the pro-inflammatory cytokine IL-1
might play in altering vasomotor tone in chronically inflamed
cerebrovasculature.

INFLAMMATION AND HYPOPERFUSION: A MECHANICAL ELEMENT?
Following CNS injury, a breach in endothelial integrity has
multiple downstream consequences ranging from alterations
in endothelial reactivity, vascular tone, pro-coagulant state
and inflammatory phenotype (Taka et al., 2002; Clark et al.,
2012). The cerebral endothelium is a primary target for
neuroinflammatory stimuli due to its capacity to alter vascular
tone through chemical and mechanical mechanisms. As discussed
above the pro-inflammatory cytokine IL-1 can directly induce
expression of vasoactive mediators (e.g., ET-1) which can alter
vascular tone through actions on vascular smooth muscle
(Moncada and Higgs, 2006; Anfossi et al., 2010). However, the
cerebrovasculature can also obstruct CBF following CNS injury
by mechanical means.
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The role of leukocyte-platelet interactions on CBF
Physical blockade within the cerebrovasculature can be mediated
by the interaction between neutrophils and brain endothelial cells.
Inflammation can induce an upregulation of adhesion molecules
(P-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular
cell adhesion molecule-1) and chemokines (IL-8, monocyte
chemoattractant protein-1, macrophage inflammatory protein-1)
in endothelial cells. Within hours of ischemic injury, circulating
neutrophils can either transmigrate between endothelial cells
from the blood to the injured tissue or remain adherent to
the luminal surface of blood vessels as seen in murine and
human post-stroke tissue samples (Enzmann et al., 2013).
Neutrophils can release pro-inflammatory mediators which elicit
secondary injury to the salvageable ischemic penumbra (Jin
et al., 2010; Figure 2). Physically, the presence of neutrophils in
the microvasculature of the brain under conditions of ischemia
and altered perfusion can result in an exaggerated neutrophil
accumulation and obstruction in CBF, referred to as the “no
re-flow” phenomenon (del Zoppo et al., 1991). In a similar
fashion to neutrophils, circulating platelets can also exacerbate
ischemic stroke mechanically by impeding CBF. The “no re-
flow phenomenon” suggests that the post-stroke complication
of hypoperfusion can be attributed to platelet and neutrophil
accumulation in microvessels alongside fibrin deposition and
obstructive leukocytes (del Zoppo et al., 1991). This accumulation
can be reversed in mice receiving anti-glycoprotein (GP) Ib
treatment (i.e., to prevent the interaction between platelets
and the brain endothelium) thus showing an improvement in
post-stroke ischemic CBF (Pham et al., 2011). Furthermore, in
transient models of ischemia, anti-leukocyte interventions result
in neuroprotection. Using laser-scanning confocal microscopy
and laser-Doppler perfusion imaging, neutrophils adhering to
the endothelium have been shown to contribute to perfusion
deficits following the restoration of CBF (Belayev et al., 2002).
Furthermore, treatment with albumin was shown to reverse
the adherence and perfusion deficits within the post-capillary
microcirculation during the post-ischemic reperfusion period.
This mechanical obstruction of CBF by accumulation of platelets
and/or neutrophils has also been seen in models of SAH in both
dogs and humans (Asano and Sano, 1977; Dóczi, 1985).

In addition to their mechanical effects platelets also have
detrimental chemical actions, including the ability to expel their
granular contents and to synthesize immune related proteins
such as IL-1 (Afshar-Kharghan and Thiagarajan, 2006). Indirectly,
platelets can induce an inflammatory response in other cells (e.g.,
endothelium, microglia) by releasing IL-1 (Hawrylowicz et al.,
1991). The important role of activated platelets has been seen
in recent research showing that immediately following injury
neutrophils recruited to sites of injury can extend a domain
to scan for locally activated platelets. Only when productive
interactions between platelets and neutrophil projections occur
do neutrophils initiate intravascular migration or generate NETs
to propel inflammatory responses (Sreeramkumar et al., 2014).
This suggests neutrophils and platelets work co-operatively
to exacerbate inflammation. In vivo, platelets represent a
source of IL-1α and it has been proposed that activation of
cerebral endothelium via platelet-dependent IL-1 is a crucial

step in triggering neutrophil migration to the parenchyma
(Thornton et al., 2010). Experimentally, neutralizing platelet
GP surface receptors (Le Behot et al., 2014) or use of
small molecule inhibitors of GpIIb/IIIa (Lapchak et al., 2002)
can improve CBF and functional outcome following ischemic
stroke. However, care must be taken when targeting particular
GP interactions as some have more potent antithrombotic
effects than others (Grüner et al., 2005). Heightened systemic
inflammation can also exaggerate platelet adhesion, aggregation
and the coagulation cascade (Cao et al., 2009; Granger et al.,
2010) which again highlights the pivotal role that inflammatory
cascades play in multiple stroke etiologies. Platelet hyperactivity
and dysregulation is common to diabetes (Ferroni et al.,
2004), hypercholesteremia (Haramaki et al., 2007), hypertension
(Gkaliagkousi et al., 2009) and atherosclerosis (Ruggeri, 2003).
Thus, platelet and leukocyte interactions are a hallmark of acute
and chronic inflammatory diseases and in combination with an
ischemic injury may have synergistic detrimental effects.

Another important regulator of CBF are pericytes. Pericytes
are contractile cells located on capillaries and have an important
role in controlling CBF. In one study exploring the role of
pericytes, rat brain slices were exposed to conditions mimicking
ischemia, resulting in persistent vasoconstriction and pericyte
death (Hall et al., 2014). This pericyte death caused a “rigor
mortis” and prolonged vasoconstriction due to adenosine
triphosphate (ATP) deprivation that restricts myosin and actin
separation and subsequent relaxation. Pericyte dilation and
contractility is controlled by various vasoactive mediators and
pericytes have the capacity to respond readily to these mediators
as they are derived from the smooth muscle cell lineage (Nehls and
Drenckhahn, 1993; Pieper et al., 2014). Mechanical obstruction of
CBF can also occur due to compression of vessels by progressively
edematous neighboring astrocytes (Ito et al., 2011).

Whilst protection of vulnerable new neurons is an important
strategy in treating brain injury, stroke is, etiologically, a vascular
disorder. It is therefore important to consider the implications
of systemic inflammation on the cerebrovasculature and the
downstream consequences on CBF.

REPAIR AND RECOVERY POST-STROKE: THE ROLE OF NEUROGENESIS
Aside from modest advancements in neurorehabillitation
therapies for stroke survivors there is an absence of effective
treatment options beyond the 4.5 h time window that promote
any significant recovery. Yet, the brain does command certain
endogenous repair processes that are employed following CNS
injury to limit cell death and promote neural repair, though this
is insufficient to have any major effect in the majority of patients.

A possible driver of functional recovery is post-stroke
neurogenesis. Neurogenesis is the generation of new neurons
that integrate into pre-existing networks. Contrary to the
historical hypothesis that neurons could only form during the
developmental periods in early life and were refractory to
replication, it is now well established that new neurons are
continuously being created in the adult brain. This discovery was
aided drastically by the advent of new techniques to track the
birth and migration of new neurons (Nowakowski et al., 1989;
Paez-Gonzalez et al., 2014). New neurons originate from neural
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FIGURE 2 | Post-stroke inflammation. Mechanisms of post-stroke
inflammation occur via a number of pathways as outlined and include
a variety of resident immune cells including microglia, astrocytes,
neutrophils, platelets and the cerebral endothelium. These cells

release mediators that propagate the inflammatory cascade including
reactive oxygen species (ROS), nitric oxide (NO), damage-associated
molecular patterns (DAMPs), metalloproteinases (MMPs), ICAM and
IL-1.

progenitor cells (NPCs), defined as cells that have the capacity for
self-renewal and that can produce multiple distinct cell types (e.g.,
neurons, astrocytes, oligodendrocytes). Adult neurogenesis is
normally restricted to two neurogenic regions: the subventricular
zone (SVZ; Reynolds and Weiss, 1992) and subgranular zone
(SGZ; Gage et al., 1995) which anatomically house NPCs and

functionally control their development. Stroke is a robust trigger
of neurogenesis by stimulating NPCs of the SVZ to divide
and migrate to the peri-infarct area (Arvidsson et al., 2002;
Thored et al., 2006). Treatments that either increase the levels
of proliferating NPCs or enhance their survival and migration
to the peri-infarct brain lesion would contribute to improved
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functional recovery and tissue survival after stroke (Nih et al.,
2012). However, although ischemic stroke promotes neurogenesis
in neurogenic regions and migration of NPCs to sites of injury;
most newly generated neurons fail to survive. It is proposed
that inflammation associated with ischemic stroke and the pre-
existing inflammatory co-morbidities or age may contribute to
the high levels of apoptotic death of stroke-generated neuroblasts
in preclinical models of ischemia (Seki and Arai, 1995; Kuhn et al.,
1996; Kokaia et al., 2006).

INFLAMMATION AND NEUROGENESIS
Mechanisms through which inflammation impairs neurogenesis
are poorly understood, due to the range of cells and signaling
pathways that can be activated in response to an inflammatory
stimulus. Adult neurogenesis is compromised in environments of
the brain with mitochondrial dysfunction (Kirby et al., 2009),
raised reactive oxygen species (ROS; Zhang et al., 2012), brain
irradiation (Monje et al., 2003) and most interestingly, in the
presence of activated microglia (Ekdahl et al., 2003; Monje and
Palmer, 2003). The connection between reduced neurogenesis
and an upregulation in the number and activity of microglia
has been observed in response to systemic LPS and results in a
240% increase in the density of detrimental microglial cells in the
dentate gyrus (DG), a structure which is essential for learning
and memory formation and consolidation. Detrimental actions
of microglia on neurogenesis involve production of ROS and
NO (Gebicke-Haerter et al., 2001; Moreno-López et al., 2004).
Ablation of microglial function using indomethacin (Hoehn et al.,
2005) or minocycline (Liu et al., 2007) improves numbers of
NPCs after stroke. However, complete inactivation of microglia
may not always have positive effects. It has been hypothesized that
microglia may be responsive to interactions with CNS-specific
T-cells and thus promote NPC proliferation and neuronal survival
(Ziv et al., 2006; Schwartz et al., 2009).

Angiogenesis is another important route of tissue repair
post-stroke as blocking angiogenesis reduces the localization of
immature neurons to peri-infarct tissue (Ohab and Carmichael,
2008). Inflammatory mediators, in particular IL-1 have been
implicated in augmenting angiogenic processes. In a study
by Pham et al. (2012) IL-1β stimulated oligodendrocytes to
produce MMP-9 in the conditioned media. This conditioned
media was placed on endothelial cell cultures resulting in a
significant increase in endothelial tube formation. This process
was mirrored in vivo whereby neutralization of IL-1β in a white
mater injury model reduced oligodendrocyte MMP-9 expression
and thus angiogenesis (Pham et al., 2012). This improvement
in angiogenesis post-stroke following IL-1β treatment has also
been seen in endothelial progenitor cell (EPC) cultures. Treatment
of EPC cultures with the conditioned media from primary
rat cortical astrocytes promoted EPC mediated neurovascular
remodeling during the post-stroke period (Hayakawa et al.,
2012).

ANTI-INFLAMMATORY STRATEGIES TO IMPROVE POST-STROKE
NEUROGENESIS
Current drugs e.g., minocycline, that manipulate microglial
function often are broad spectrum and unspecific and influence

multiple inflammatory pathways essential for the repair phase
of stroke recovery. Since neurogenesis may occur for up to a
year following stroke, chronic administration of a drug that
can inhibit repair may not be ideal. It is therefore important
to consider more specific targets of inflammation rather than
broad-spectrum drugs to promote neurogenesis after stroke. As
indicated earlier IL-1 is implicated in learning and memory and
there are numerous studies showing that stress, which involves
an elevated inflammatory profile (Banasr et al., 2007) and high
levels of IL-1, causes hippocampal dysfunction and a reduction in
neurogenesis (Ben Menachem-Zidon et al., 2008; Mathieu et al.,
2010). Preclinical data shows that IL-1 exerts anti-neurogeneic
properties in chronic stress through up-regulation of NFκB,
activator protein (AP)-1 and signal transducer and activator of
transcription (STAT)-1 (Pugazhenthi et al., 2013). The actions
of IL-1 on neurogenesis have been examined in vitro in
primary adult hippocampal progenitor cells which possess IL-1RI
(Koo and Duman, 2008) and embryonic cortical NPCs (Ajmone-
Cat et al., 2010). When the adult hippocampal progenitor cells
were treated with IL-1β, there was a reduction in the number of
proliferating progenitor cells. Furthermore, this anti-neurogenic
effect was found to be mediated by activation of the NFκB
signaling pathway, and could be blocked by IL-1Ra (Koo and
Duman, 2008). IL-1 also activates the endothelium to produce
trophic factors such as vascular endothelial growth factor (VEGF)
and insulin-like growth factor (IGF)-1, which are needed for
neurogenesis (Anderson et al., 2002; Cao et al., 2004) and is
also important in the reparative angiogenic process (Coxon et al.,
2002; Voronov et al., 2003; Carmi et al., 2009). However, effects
of IL-1 on neurogenesis following acute cerebral ischemia in
vivo have yet to be elucidated but the potential use of IL-1Ra
to improve neurogenesis is an attractive possibility. However, it
must be considered that such anti-inflammatory treatments e.g.,
IL-1Ra, for stroke must be administered within a time frame that
does not interfere with the repair process, otherwise there may be
detrimental effects (Girard et al., 2014).

POTENTIAL TREATMENT STRATEGIES TARGETING THE IL-1 SYSTEM
Evidence discussed above and in many other articles highlights
the IL-1 system as an attractive therapeutic target in the search
for treatments for acute CNS injury. Therapeutic interventions
include direct targeting of IL-1, antagonism of the IL-1 receptor,
use of neutralizing antibodies and inflammasome inhibitors
(Figure 3). Despite these alternatives, IL-1Ra remains the most
widely researched inhibitor of IL-1 actions due to its high
specificity and safety. Anakinra, the recombinant form of human
IL-1Ra, has a half-life of 4–6 h and is well-tolerated in the
patient population, as evidenced by significant research in the
rheumatoid arthritis field in which it is a mainstream drug
treatment (Mertens and Singh, 2009). Within preclinical stroke
studies, the neuroprotective effects of IL-1Ra have been seen
in a variety of species e.g., mice, rats and gerbils (Ohtsuki
et al., 1996; McColl et al., 2007; Pradillo et al., 2012) and in
differing models of ischemia e.g., focal, global, transient and
global (Rothwell, 2003). IL-1Ra maintains its neuroprotective
effects through a number of routes of administration e.g.,
i.c.v, i.v and subcutaneously (s.c) (Greenhalgh et al., 2010).
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FIGURE 3 | Interleukin-1 inhibitors that are in current clinical use.
Anakinra is a recombinant form of human IL-1Ra that directly
competes with IL-1 for binding to the IL-1 type I receptor, therefore
blocking the biological activity of IL-1. Canakinumab is a human

monoclonal antibody that selectively targets IL-1β. Rilonacept is a
human dimeric fusion protein that interrupts IL-1 signaling by
incorporating components of the IL-1 receptor, thus trapping and
sequestering circulating IL-1.

Finally, and perhaps most importantly, IL-1Ra can still inhibit
ischemic injury at delayed time points up to 3–4.5 h
(Mulcahy et al., 2003) and in co-morbid strains. In a
meta-analysis analyzing the effects of IL-1Ra in preclinical
models of stroke, IL-1Ra treatment elicited an overall 38%
reduction in infarct volume across 17 published studies (Banwell
et al., 2009; Parry-Jones et al., 2010). In the clinical arena,
results from a randomized, double-blind, placebo-controlled
trial of IL-1Ra in acute stroke showed that patients receiving
IL-1Ra had lower peripheral white blood cell counts, neutrophil
counts, CRP and IL-6 levels. Furthermore, by 3 months, these
patients showed some evidence of improved recovery compared
to placebo-controlled counterparts, though it is important
to realize the study was not powered for such an outcome
(Emsley et al., 2005). Further larger scale trials of IL-1Ra
in both SAH (ISRCTN25048895) and acute ischemic stroke
(ISRCTN74236229) are ongoing. The clinical trial examining the
effects of IL-1Ra on inflammatory mediators in SAH has just
recruited the final patient and results are expected early in 2015.
It is a multi-center, single-blind open label randomized control
trial incorporating 140 patients. IL-1Ra was administered twice
daily by s.c administration for 21 days in patients presenting
within 72 h with aneurismal SAH. Blood samples were taken
during this time period to analyze IL-6 and CRP alongside the
Glasgow outcome scale. The clinical trial examining the effects
of IL-1Ra in ischemic stroke started recruiting in Spring 2014
with participants receiving twice daily, s.c injection of IL-1Ra or
placebo. The first injection of IL-1Ra is being given within 6 h of
stroke onset with 5 more doses at 12 h intervals for 3 days.

In a clinical trial exploring the role of IL-1β in type II
diabetes disease progression, in which patients received
IL-1Ra (s.c) once daily for 13 weeks, an improvement in
insulin production and glycemic control was observed, along
with a reduction in the inflammatory biomarkers, CRP and
IL-6 (Larsen et al., 2007). More promising still, in the 39 week
follow up study, patients receiving IL-1Ra used 66% less insulin

to return to baseline glycemic control levels (Larsen et al., 2009).
In a phase II randomized control trial in patients with severe
TBI (s.c) administration of IL-1Ra has been shown to be safe,
penetrate the brain and to alter the neuroinflammatory response
(Helmy et al., 2014).

Clinically, abrogation of IL-1β has also been explored
(Yamasaki et al., 1995). Canakinumab is a human monoclonal
antibody that selectively targets IL-1β and it has a half-life of
21–28 days (Chakraborty et al., 2012). The use of canakinumab
in humans has already been approved for treating arthritis
and tested in cryopyrin-associated periodic syndrome (CAPS;
Church and McDermott, 2010; Kuemmerle-Deschner et al., 2011;
Chakraborty et al., 2013). With this clinical success has come
a barrage of research using this anti-IL-1β antibody with much
interest in its use in neonatal onset inflammation disease (Sibley
et al., 2014), type II diabetes (Howard et al., 2014) and stroke
(Ridker et al., 2011). Direct targeting of IL-1 has also been
achieved using rilonacept, a human dimeric fusion protein that
interferes with IL-1 signaling due to the presence of extracellular
components of IL-1RI and IL-1RaP which bind with high affinity
to circulating IL-1. This “IL-1 trap” has a half-life of 67 h and has
been shown to be safe and effective in CAPS (Goldbach-Mansky
et al., 2008; Hoffman et al., 2008). It has been shown that directly
targeting IL-1 is a clinically approved strategy for treating auto-
immune and autoinflammatory diseases. However further pre-
clinical and clinical research is needed if these inhibitors are to
be used as therapeutic agents in treating stroke or acute brain
injury. Another important consideration when targeting IL-1 is
the relative contribution of IL-1α vs. IL-1β. IL-1Ra and rilonacept
block the actions of both α and β however canakinumab only
targets IL-1β. Historically, IL-1β was considered the primary
ligand mediating an exaggerated response to ischemic injury
however recent research indicates IL-1α also plays a crucial role in
post-stroke pathogenesis and that it may proceed IL-1β expression
(Luheshi et al., 2011). In conclusion, it is essential to consider the
relative contribution of IL-1α and β to the disease in question, and
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to identify the time frame in which the anti-inflammatory strategy
may be of most benefit.

One of the disadvantages of using IL-1Ra is that BBB
penetration is poor due to the large size (kDa) of the macromolar
protein. An alternative could be the use of a novel, synthetic
peptide called Llantide. This protein is derived from the N-
terminal domain of IL-1Ra and therefore mediates its protective
effects by binding to IL-1RI and therefore inhibiting NFκB
activation and secretion of TNFα from macrophages. The
use of this novel peptide in response to an inflammatory
challenge e.g., LPS, reduces symptoms of sickness behavior and
reduced social depression commonly associated with systemic
LPS administration alongside improving plasma levels of IL-10
(Klementiev et al., 2014). Small molecule inhibitors of caspase-
1 are protective in experimental models of acute CNS injury
(Ross et al., 2007; Suzuki et al., 2009), while neutralization of
components of the NLRP1 inflammasome is beneficial in rodent
models of ischemic stroke (Fann et al., 2013). Furthermore,
ablation of components of the NLRP3 inflammasome are
associated with reduced leukocyte infiltration, reduced edema
and improvements in neurological function following ICH in
mice (Ma et al., 2014). However inhibition of caspase 1 or the
inflammasome has yet to be evaluated clinically in stroke.

CONCLUDING REMARKS
A wealth of evidence now exists to show that inflammation
is a critical component in cerebral ischemia, by increasing
risk and contributing to worse outcome. Conversely, late stage
inflammatory processes post-stroke may contribute to brain
repair. IL-1 is the first described inflammatory cytokine and has
numerous actions that contribute to both injury and repair. Block
of IL-1 actions has been demonstrated to be effective in a wide
range of clinical conditions, and there is strong experimental
evidence to support its role as a key mediator of acute neuronal
injury. Ongoing clinical trials in stroke and SAH using IL-1Ra
to block the effects of IL-1 will provide further evidence on the
potential of IL-1 as a target. Ultimately though this will only be
confirmed following successful large Phase III clinical trials of IL-
1Ra or alternative inhibitors of IL-1 actions.
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