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Spinocerebellar Ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease
characterized by late onset, slowly progressive, mostly pure cerebellar ataxia. It is one of
three allelic disorders associated to CACNA1A gene, coding for the Alpha1 A subunit of
P/Q type calcium channel Cav2.1 expressed in the brain, particularly in the cerebellum.
The other two disorders are Episodic Ataxia type 2 (EA2), and Familial Hemiplegic
Migraine type 1 (FHM1). These disorders show distinct phenotypes that often overlap
but have different pathogenic mechanisms. EA2 and FHM1 are due to mutations causing,
respectively, a loss and a gain of channel function. SCA6, instead, is associated with
short expansions of a polyglutamine stretch located in the cytoplasmic C-terminal tail
of the protein. This domain has a relevant role in channel regulation, as well as in
transcription regulation of other neuronal genes; thus the SCA6 CAG repeat expansion
results in complex pathogenic molecular mechanisms reflecting the complex Cav2.1
C-terminus activity. We will provide a short review for an update on the SCA6 molecular
mechanism.

Keywords: CACNA1A, P/Q type calcium channel, CaV2.1, Spinocerebellar Ataxia type 6, SCA6, polyglutamine
disorder, channelopathy

INTRODUCTION
Spinocerebellar Ataxia type 6 (SCA6, OMIM 183086) is a
neurodegenerative disease characterized by late onset, slowly
progressive, mostly pure cerebellar ataxia sometimes preceded
by an episodic phase showing dysarthria, nystagmus and
vertigo (Jodice et al., 1997). SCA6 is one of three autosomal
dominant disorders due to mutations of CACNA1A gene.
The gene encodes for the pore forming α1A subunit of P/Q
type calcium channels Cav2.1, responsible for initiation of
synaptic transmission at fast synapses (Catterall, 2000). Other
auxiliary subunits cooperate in channel regulation (Catterall,
2000). SCA6 is due to small expansions of a CAG repeat
stretch in exon 47, expressed only in some of the numerous
isoforms of the CACNA1A gene as a polyglutamine sequence
at protein level (Zhuchenko et al., 1997). The α1A subunit
is a four domain-containing transmembrane protein of about
280 KDa with cytoplasmic N- and C-terminal regions. The
cytoplasmic C-terminus, a 75 KDa polypeptide, contains
residues involved in channel inactivation and modulation by
intracellular signaling proteins (Catterall, 2000). The C-tail
plays regulatory roles in the gating and trafficking of the
channel, as reported also for the Cav1 family (Catterall,
2010). For Episodic Ataxia type 2 (EA2, OMIM 108500)
and Familial Hemiplegic Migraine type 1 (FHM1, OMIM

141500) the molecular mechanism is clearly defined, a loss
and a gain of channel function respectively (Guida et al.,
2001; Tottene et al., 2002). In SCA6 the type of mutation
(the polyglutamine expansion), the protein affected (the pore
forming subunit of the P/Q type calcium channel) and the
location of the mutation (the cytoplasmic C-terminal tail of
the α1A subunit) suggest a more complex pathogenesis of
the disease as opposed to a simpler gain of function model.
Currently there is no treatment for SCA6, and understanding
the underlying mechanism of the disease can be crucial in
order to find molecular targets for therapeutic treatments.
This review is focused on updating the recent advances
in our understanding of molecular mechanisms of SCA6
pathogenesis.

SCA6 AS A POLYGLUTAMINE DISORDER
SCA6 belongs to the group of autosomal dominant cerebellar
ataxias (ADCAs) and, as with most ADCAs, the mutation is due
to expansions of a polyglutamine repeat motif.

SCA6 shares features in common with other polyglutamine
diseases, but differs in several aspects. The CACNA1A gene
product is a membrane protein rather than a nuclear or
cytoplasmic protein, as is the case in most polyglutamine
disorders.
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The formation of insoluble aggregates which leads to the
production of intranuclear inclusions is the principal pathogenic
feature in most of the polyglutamine diseases (Paulson, 1999).
In SCA6, aggregates are rare, preferentially located in the
cytoplasm as in SCA2 (Huynh et al., 2000; Ishiguro et al.,
2010; Takahashi et al., 2013) and very rarely localizing to the
nucleus in Purkinje cells (Kordasiewicz et al., 2006; Ishiguro
et al., 2010). In SCA6 the normal repeat size ranges from
4 to 18 units (Zhuchenko et al., 1997) while that of the
expanded alleles is from 20 to 33 repeats (Jodice et al.,
1997; Yabe et al., 1998). Nineteen CAG repeats is considered
an “intermediate allele”, predisposing to expansion into the
abnormal range (Mariotti et al., 2001) or a susceptibility factor
with variable penetrance and expression (Brenman, 2013). The
pathological range falls within the distribution of normal alleles
in other SCAs and below the threshold for polyglutamine
aggregation, which typically is a number of units ranging from
35 to over 100 (Frontali et al., 1999). Furthermore, the small
SCA6 repeat expansions are much more stable than in other
polyglutamine disorders (Jodice et al., 1997; Zhuchenko et al.,
1997).

A significant inverse correlation between age of disease onset
and size of expanded alleles has been reported, as in other SCAs
(Ishikawa et al., 1997; Zhuchenko et al., 1997; Maruyama et al.,
2002), but an even closer correlation has been shown between
the age of onset and the sum of CAG repeats in the normal and
expanded alleles (Takahashi et al., 2004).

SCA6 AS A CHANNELOPATHY
It is still unclear whether and how the SCA6 mutation exerts a
pathological effect on the calcium channel function, aside from
the weak toxic function of the polyglutamine expansion. Several
studies attempting to determine the possible altered channel
function reached highly variable, often conflicting results.

Matsuyama et al. (1999) studied the effect of 24, 30,
or 40 polyglutamine expansions on channel properties in
Baby Hamster Kidney (BHK) cells stably expressing α2δ and
β1a auxiliary subunits, and first indicated that the 30–40
expanded polyglutamines directly alter channel function, causing
a significant 8 mV hyperpolarizing shift in the voltage dependance
of inactivation, which reduces the available channel population.
This suggested that polyglutamine expansion in SCA6 leads to
neuronal cell death and cerebellar atrophy through reduction
in Ca2+ influx into Purkinje cells, while Ca2+ channels with
24 polyglutamines or fewer showed normal gating properties.
Interestingly, Toru et al. (2000), in another study, detected
a 6 mV hyperpolarizing shift in the voltage dependance of
inactivation also using the 24 polyQ expanded allele, transfected
into the HEK293 human cell expression system together with
the human α2δ and β1a subunits. The crucial point of this
experiment was that it has been performed using two splice
variants of P/Q type Ca2+ channel exon 31+ and exon31−
(Bourinet et al., 1999). The alternatively spliced CACNA1A gene
exon 31 codes for two aminoacidic residues, asparagine and
proline (NP) in the transmembrane domain IV. The resulting
isoforms produce channels with distinct kinetics and generate
P-type (NP−) and Q-type (NP+) channels expressed respectively

in Purkinje and cerebellar granule cells. The negative shifts
in voltage dependent inactivation were only observed in the
variants of the P type Ca2+ channel NP−. These studies
demonstrated that the effect of polyQ expansions on calcium
influx results in reducing of Ca2+ entry into Purkinje cells
(−NP isoform) and increasing Ca2+ entry into granule cells
(+NP isoform). This provides an explanation for the selective
Purkinje cell degeneration in SCA6. The hypothesis of SCA6
being a channelopathy was strongly supported by Restituito et al.
(2000). They further elucidated the role of the different subtypes
of the calcium channel subunits in determining the channel
gating consequences of the mutation. In experiments performed
in Xenopus oocytes, the SCA6 polyglutamine expansion shifted
the voltage dependance of channel inactivation and the rate
of inactivation only when expressed with the β4 subunit. In
addition the mutation impairs the normal G-protein regulation
of P/Q type Ca2+ channels, causing Purkinje cell degeneration
through a possible gain-of-function mechanism with increased
Ca2+ ion entry. Subsequently, studies in HEK293 cells stably
expressing α2δ and β1 subunits showed that SCA6 Ca2+ channels
do not have altered channel kinetics, but an increased current
density attributable to a greater protein expression in the cellular
membrane (Piedras-Rentería et al., 2001). In a follow up of
these experiments, Chen and Piedras-Rentería (2007) obtained
the same results using β2a or β4 auxiliary subunits, rather than
the β1 subunit.

In summary, different model systems reached conflicting
results. The isoforms of α1A subunit, the different auxiliary
subunits and the cellular system seem to create the difference
among the results obtained by different groups. On the other
hand, studies performed on transgenic mice expressing polyQ
expanded α1A subunit showed unchanged P/Q channel kinetics
in cerebellar neurons (Saegusa et al., 2007; Watase et al., 2008).

SCA6 AS TRANSCRIPTIONAL DYSREGULATION
Additional studies show a relevant role of the α1A subunit
whole intracytoplamic C-terminal tail in SCA6 pathogenesis.
Kordasiewicz et al. (2006) found that the C-terminal tail,
from both the wild type and the mutant, is cleaved from
the full-length protein and transported to the Purkinje cell
nuclei equally. The SCA6 glutamine expansion is toxic to the
cell only when inserted in its flanking sequence, indicating a
mechanism for the pathogenesis of SCA6 which involves the
whole C-terminal tail containing a nuclear localization signal and
several protein binding sites. Despite the substantial evidence
that the C-terminal fragment is conveyed to the nucleus, its
potential role in this compartment was unknown. Interestingly,
it has been reported that the C-terminus of the α1C subunit
(Cav1.2, L-type calcium channel) is cleaved and is also present
in cell nuclei where it acts as a transcription factor regulating a
wide variety of endogenous genes (Gomez-Ospina et al., 2006).
Recently Du et al. (2013) shed light on the origin and the
function of this critical protein region. They demonstrated that
a second cistron in the CACNA1A gene encodes a transcription
factor, corresponding to the C-terminus, which coordinates
the expression of neuronal genes involved in Purkinje cells
development. They found a cryptic internal ribosomal entry
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site (IRES) located in a highly conserved sequence of 534 bp
upstream the ATG 1960 (nucleotide 6,114 GenBank accession
number NM_001127222) in CACNA1A mRNA, mediating the
expression of the α1A C-Terminal (α1ACT) fragment. They
further investigated the role of the wildtype and mutated α1ACT
fragment in regulating gene expression. Through chromatin
immunoprecipitation-based cloning experiments TAF1, BTG1,
PMCA2 and GRN have been identified as target genes. These
genes are abundantly expressed in Purkinje cell, although not
uniquely, and they are possibly involved in the neurite outgrowth
program. The wild type C-terminus increases the expression of
at least these four genes, while the SCA6 mutated C-terminus
abolishes this function and impairs the expression of the
target genes in Purkinje cells, causing increased cell death and
neurodegeneration. These results have been also obtained in vivo,
in mice overexpressing α1ACTSCA6. These mice have reduced
expression of TAF1, GRN, BTG1, PMCA2 genes and show ataxia
and cerebellar cortical atrophy. On the contrary, overexpression
of α1ACTWT in α1A−/− mice partially rescues their ataxic
symptoms improving the phenotype at behavioral, histological
and electrophysiological levels. Consistent with these findings, the
TAF, BTG1, PMCA2 and GRN genes expression has increased
from 1.5- to 3-fold.

CONCLUSIONS
Currently, no therapy is known for SCA6, except for the use
of Acetazolamide, a brain carbonic anhydrase inhibitor, that
has been successfully used for EA2 but is possibly effective
only in the episodic phase of SCA6 (Jen et al., 1998); however,
Yabe et al. (2001) suggested that this drug can also temporarily
reduce the severity of symptoms during the progression of
the disease. Other therapies are in the experimental phase or
their use is still controversial (Perlman, 2012) such as the NMDA
antagonist (Ogawa et al., 2003; Ogawa, 2004) and branched-chain

amino acids (BCAA), which improve neurotransmission among
cerebellar neurons by stimulating intracellular glutamate
metabolism (Mori et al., 2002). The latter treatment, used for
other polyglutamine disorders, is likely to act on the effects of
CAG repeat toxicity, in a later phase of the disease. In rare cases
with Parkinsonism associated with SCA6, L-dopa has also been
used (Khan et al., 2005). These different therapeutical approaches
reflect the complex pathogenic mechanism of SCA6, which
exhibits features of polyglutamine disease, channelopathy and
dysregulation of transcription. The three proposed mechanisms
seem to act according to divergent pathogenic pathways, but
in some aspects they overlap and probably result in different
symptoms occurring in different stages of the disease (see
Table 1). The disease progression presumably occurs as the result
of the synergy of the three mechanisms which lead to the selective
Purkinje cells’ death and neurodegeneration.

It is now clear that the Cav2.1 C-terminal tail has a relevant
role in the multifaceted protein activity and that the SCA6
mutation alters most of the protein functions. It is to note
that, besides the SCA6 polyglutamine expansion, the α1ACT
harbors only mutations associated to EA2 and lacks FHM1
mutations. The properties of the wild type Cav2.1 C-terminal tail
are similar to those shown by the analogous protein fragment
of Cav1.2 of the L-type voltage-gated calcium channel, which
also encodes a transcription factor (Gomez-Ospina et al., 2006).
Cav2.1 C-terminus has a potential self-regulatory role, due to
the presence of binding sites for proteins modulating channel
activity, such as calmodulin, which interacts with most calcium
channels (Dunlap, 2007). In contrast, EA2 mutations probably
alter channel function, impairing the binding with other channel
subunits or auxiliary proteins such as G proteins, SNARE proteins
and CaMKII (Catterall, 2010).

Beyond binding sites for proteins regulating channel function,
the C-terminus harbors AT-hook domains, corresponding to exon

Table 1 | Principal features of the SCA6 molecular mechanism.

Polyglutamine disorder Channelopathy Transcriptional dysregulation

Formation of few insoluble protein aggregates
mainly in the cytoplasm, very rarely in the nucleus.

In vitro: reduced Ca2+ influx into Purkinje
cells and increased Ca2+ influx into granule
cells depends on the involved isoform (NP+
or NP−).

The wild type and the SCA6 mutated Cav2.1
C-terminus localize in Purkinje cell nuclei equally.

The pathological range of the CAG repeat size falls
within the normal range of the repeat size in other
polyglutamine disorders.

In vitro: different subtypes of the calcium
channel auxiliary subunits (β1, β2a and
β4) determine different channel gating
consequences of the mutation.

A second cistron in CACNA1A gene encodes
a transcription factor corresponding to the
C-terminus.

The small SCA6 repeat expansions are much more
stable than other polyglutamine disorders

In vivo: transgenic mice expressing polyQ
expanded α1A subunit show unchanged
channel kinetics in cerebellar neurons.

The α1A C-terminus regulates the expression of
genes involved in neurite outgrowth.

Inverse correlation between age of onset and
size of expanded alleles. Closer inverse correlation
between the age of onset and the sum of CAG
repeats in the normal and expanded alleles.

In vivo the wild type C-terminus increases the
expression of TAF1, GRN, BTG1 and PMCA2 genes
in Purkinje cells. The mutated C-terminus abolishes
this function.

Possibly responsible for the neurodegeneration Possibly responsible for the early episodic
symptoms

Responsible for the neurodegeneration
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44, which is present or spliced in different isoforms (Soong et al.,
2002). This domain is a tripartite DNA binding motif that is
specific for AT-rich sequences typically found in nuclear proteins
belonging to the HMG (High Mobility Group), and DNA binding
proteins (Aravind and Landsman, 1998). Moreover, the α1ACT
harbors several binding sites for proteins regulating cleavage and
translocation to the nucleus, where the cleaved fragment, or
the α1ACT generated by IRES, exerts its transcriptional activity
on genes involved in the neuronal phenotype, in neurogenesis
or neurodegeneration. The α1ACTSCA6 abolishes the normal
function of the wild type α1ACT, leading to a transcriptional
dysregulation, as most of the other polyglutamine disorders
(Ross, 2002). More studies are needed to fully understand
the mechanisms underlying SCA6, which could possibly reveal
pathways involved also in other neurodegenerative disorders and
suggest therapeutical targets.
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