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Ontogeny of CX3CR1-EGFP expressing cells unveil
microglia as an integral component of the postnatal
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The full spectrum of cellular interactions within CNS neurogenic niches is still poorly
understood. Only recently has the monocyte counterpart of the nervous system, the
microglial cells, been described as an integral cellular component of neurogenic niches.
The present study sought to characterize the microglia population in the early postnatal
subventricular zone (SVZ), the major site of postnatal neurogenesis, as well as in its
anterior extension, the rostral migratory stream (RMS), a pathway for neuroblasts during
their transit toward the olfactory bulb (OB) layers. Here we show that microglia within
the SVZ/RMS pathway are not revealed by phenotypic markers that characterize microglia
in other regions. Analysis of the transgenic mice strain that has one locus of the
constitutively expressed fractalkine CX3CR1 receptor replaced by the gene encoding the
enhanced green fluorescent protein (EGFP) circumvented the antigenic plasticity of the
microglia, thus allowing us to depict microglia within the SVZ/RMS pathway during early
development. Notably, microglia within the early SVZ/RMS are not proliferative and display
a protracted development, retaining a more immature morphology than their counterparts
outside germinal layers. Furthermore, microglia contact and phagocyte radial glia cells (RG)
processes, thereby playing a role on the astroglial transformation that putative stem cells
within the SVZ niche undergo during the first postnatal days.
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INTRODUCTION
Most often neurogenesis occurs in discrete regions known as
germinal or germinative zones (Götz and Huttner, 2005; Franco
and Müller, 2013). Interactions of specific cellular and molecular
components of the neurogenic niche determine the progeny
output (Jones and Wagers, 2008; Pathania et al., 2010; Lim
and Alvarez-Buylla, 2014). In postnatal germinal zones, such
as the adult telencephalic subventricular zone (SVZ) (Lim and
Alvarez-Buylla, 2014) and subgranular layer of the hippocampus
dentate gyrus (Seri et al., 2004), a common set of cells with
distinct features are observed (Miller and Gauthier-Fisher,
2009), including quiescent multipotent neural stem cell with
astrocytic characteristics, support cells, intermediary progenitors,
immediate progeny, blood vessels and a specialized extracellular
matrix (Tavazoie et al., 2008; Miller and Gauthier-Fisher, 2009).
In the last few years it has been demonstrated that the monocyte
counterpart of the nervous system, the microglial cell, is a full
component of neurogenic niches (Mercier et al., 2002; Sierra
et al., 2010; Olah et al., 2011; Cunningham et al., 2013). However,
its importance, function, and interactions are yet to be fully
uncovered.

Microglial cells constitute the main mesoderm-derived
macrophage population of the central nervous system (CNS)
(Prinz and Mildner, 2011) and are distinguished from other CNS
cell types by their small cell soma, as well as by the expression
of specific macrophage markers (Vilhardt, 2005). Monocytes
precursors generated in the yolk sac invade the early embryonic
nervous parenchyma as ameboid microglial cells (Chan et al.,
2007; Ginhoux et al., 2010, 2013). As development progresses,
microglia within the CNS parenchyma undergo differentiation,
changing from ameboid morphology into ramified cells, rather
deceitfully known as resting state (Nimmerjahn et al., 2005).
Ramified microglia are typically distributed throughout the
adult, healthy CNS (Imamoto and Leblond, 1978; Cuadros and
Navascués, 1998; Dalmau et al., 2003; Hanisch and Kettenmann,
2007). In the course of an insult microglia revert to an ameboid
morphology, which usually indicates their active state (Perry
et al., 1993; Hanisch and Kettenmann, 2007). Moreover, microglia
are involved in several events of brain development, such as
phagocytosis, neurito- and synaptogenesis, synaptic pruning,
myelination, astrocyte proliferation and differentiation, and
vasculogenesis (Giulian et al., 1988; Pow et al., 1989; Hamilton
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and Rome, 1994; Presta et al., 1995; Honda et al., 1999; Navascués
et al., 2000; Streit, 2001; Rochefort et al., 2002; Marín-Teva
et al., 2004; Shin et al., 2004; Checchin et al., 2006; Bessis et al.,
2007; Nakanishi et al., 2007; Paolicelli et al., 2011; Kettenmann
et al., 2013). Recently, microglia have also been shown to play an
important role regulating neural progenitor physiology (Monje
et al., 2003; Ziv et al., 2006; Sierra et al., 2010; Arnò et al., 2014;
Su et al., 2014).

Here we investigate the ontogenesis, distribution and cellular
interactions of microglia residing in the early postnatal SVZ,
and its anterior extension, the rostral migratory stream (RMS).
This region represents the major neurogenic niche in the
mammalian brain that generates mostly interneurons destined for
the olfactory bulb (OB) from birth to senescence (Altman, 1969;
Luskin, 1993; Lois and Alvarez-Buylla, 1994). During the first two
postnatal weeks a peak on proliferation is observed within the
SVZ and its main progenitor cell, the radial glia (RG), undergo a
process known as astrocytic transformation (Voigt, 1989; Misson
et al., 1991; Freitas et al., 2012). During astrocytic transformation
a set of RG transforms into astrocytes destined to populate
the overlying mantle layers and/or into resident astrocytes of
the SVZ/RMS pathway. Our results reveal that at this critical
period microglia is already present in this germinal layer and
greatly outnumber the microglia cells observed in the overlying
cerebral cortex (CTX). Besides, SVZ/RMS microglia exhibit a
more protracted differentiation rate compared to the regions
outside this germinal zone. Importantly, during the first postnatal
week SVZ/RMS microglia interact with RGs, the putative stem
cells of this niche, possibly using RG processes as scaffold for its
migration. Furthermore, SVZ/RMS microglia seem to engulf RGs
processes, thus playing a key role in RG astrocytic transformation
and possibly acting on progenitor regulation.

MATERIALS AND METHODS
EXPERIMENTAL ANIMALS
CX3CR1-encoding the green fluorescent protein (EGFP) mice
on the C57BL/6J background were purchased from Jackson Labs
(Strain Name B6.129P-CX3CR1tm1Litt/J, stock number 005582).
Wild type Swiss mice, raised in our own colony, were also used.
For both strains, mice at postnatal day (P) 0 up to P7 were used in
our analysis. All experiments were performed in conformity with
NIH (National Institute of Health, USA) guidelines for animal
care and in accordance with protocols approved by both, the
Animal Use Committees at the University of Rochester (UCAR-
2011-021) and the Committee of Ethics on Animal Handling and
Care at the Federal University of Rio de Janeiro (CEUA/DAHEICB
052; ICB/CCS—UFRJ).

Tissue harvesting
Heterozygous animals (CX3CR1+/EGFP+) and Swiss mice at
P1 and P7 (n = 12 animals for each age, both strains)
were deeply anesthetized by isoflurane inhalation (chamber
atmosphere containing 4% isoflurane). Upon cessation of
reflexes, mice were transcardially perfused with phosphate
buffered saline 0.1 M (PBS, pH 7.4, Sigma Aldrich) and
paraformaldehyde 4% (PFA, Sigma Aldrich, in PBS 0.1 M
pH 7.4). Brains were dissected and post fixed in PFA 4%

for 3–6 h at room temperature (RT). Histological sections
(50–100 µm) were obtained in vibratome (Vibratome Series
3000, Vibratome Co.) and kept in PBS containing azide 0.1%
(Fisher Scientific) at 4◦C for immunohistochemistry analysis (see
Section Immunohistochemistry).

BrdU administration
Short pulses of the thymidine analog BrdU (5-bromo-2′-
deoxyuridine; Sigma Aldrich) were performed in order to evaluate
microglia proliferation along the SVZ niche. CX3CR1-EGFP mice
(P1 and P7, n = 6 animals for each age) received a single pulse of
BrdU into the intraperitoneal cavity (i.p. injection; 150 mg Kg−1)
and were euthanized 1 h after BrdU administration. Proliferative
cells were revealed by immunohistochemistry (described below),
using a primary antibody that reacts with BrdU incorporated into
single stranded DNA.

IMMUNOHISTOCHEMISTRY
Histological sections were blocked for 1 h at RT in a PBS
containing 0.1% Triton-X (Sigma Aldrich) solution added with
5% normal donkey serum (NDS, Vector Labs) and incubation
with specific antibodies against microglial/monocyte markers
(Iba1; 1:500, Wako, CD68, F4/80 and CD11c; 1:100, AbD Serotec),
neuroblasts (DCX; 1:1000, Millipore) and astroglial lineage
cells (GFAP; 1:250, Sigma Aldrich) was performed overnight
at 4◦C. Proliferative cells were revealed by using an anti-BrdU
antibody (1:100, AbD Serotec). To allow labeling of nuclear
DNA, before blockage, sections were treated for 1 h with HCl
1M (RT) under agitation (Tang et al., 2007). Staining was
revealed by 2-hour incubation period (RT) with appropriated
secondary antibodies conjugated to Cy3 or Cy5 fluorophores
(1:250, Jackson ImmunoResearch). DAPI (4′,6-Diamidino-2-
phenylindole, 1:1000, Sigma Aldrich) was used for nuclear
counterstaining and slides were mounted with ProLong Antifade
(Life Technologies). Immunolabeled brain sections were analyzed
and imaged using a confocal microscope (Olympus FluoView
500) with 40x (NA 1.30) and 60x oil-immersion (NA 1.25)
objective lens (Olympus). Acquired images were adjusted for
brightness and contrast using FIJI/ImageJ software.

FLUORO-GOLD TRACER INJECTIONS
Pups (P0 or P1) were anesthetized by isoflurane inhalation
(chamber atmosphere containing 4% isoflurane), and
under visual guidance, 100–200 nl of Fluoro-Gold (FG;
hydroxystilbamidine methanesulfonate in 2% in deionized
water; Fluorochrome, Englewood, CO) were injected unilaterally
in the pial surface (1–0.5 mm from midline and 0.5 mm anterior
to Bregma) using a glass micropipette (80–100 mm tip diameter)
coupled to a pressure injector (Nanoliter 2000, WPI, Sarasota,
USA). Animals were analyzed 2 or 7 days after pial injections
(n = 6; injection site included cortical supragranular layers;
animals with deep injections reaching the cortical subgranular
layers or the white matter were discarded from analysis).

STATISTICAL ANALYSIS
Histograms are expressed as mean ± standard error (SEM). Raw
data, obtained in distinct experimental approaches used in the
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present work, were statistically analyzed using Prism (GraphPad
Software, Inc.).

RESULTS
ANALYSIS OF CX3CR1-EGFP+ CELLS DEPICTS MICROGLIA AS A
CELLULAR COMPONENT OF THE EARLY POSTNATAL SVZ/RMS
Confocal microscopy analysis of brain sections obtained from
newborn mice (P1) reveals that CX3CR1-EGFP+ cells accumulate
at the ventricular layers, VZ/SVZ (Figure 1A). CX3CR1-EGFP+

cells are also distributed in the RMS core (Figure 1B), and
within the OB layers (Figure 1C). In contrast, we observe
very few CX3CR1-EGFP+ cells in the cortical parenchyma
(Figure 1D). In common, CX3CR1-EGFP+ expressing cells
in the SVZ, RMS, OB and CTX display immature/amoeboid
morphology (Figures 1A1–D1), regardless of the significative
difference on cell density between these regions [SVZ: 35 ×
103
± 4.3 × 103; RMS: 19.3 × 103

± 1.3 × 103; OB:
20 × 103

± 3 × 103; CTX: 4.4 × 103
± 0.6 × 103;

CX3CR1-EGFP+ cells/mm3; mean ± SEM; p < 0.05 for SVZ
in comparison to RMS and OB, and for RMS and OB in
comparison to CTX, and p < 0.005 for SVZ in comparison
to CTX; 1way ANOVA Bonferroni’s Multiple Comparison Test]
(Figure 1E).

We next asked if the CX3CR1-EGFP+ cells observed within
the SVZ/RMS niche, OB and in the cortical parenchyma
correspond solely to microglial cells, as the fractalkine receptor

is also expressed by monocytes, subsets of natural killers
and dendritic cells (Jung et al., 2000). Since the dendritic
cell antigen CD11c was detected in a transgenic mice strain
in postnatal SVZ cells that were also immunoreactive for
microglial markers (Bulloch et al., 2008), we analyzed by
immunohistochemistry if CX3CR1-EGFP+ cells were co-labeled
by CD11c. Notably, the majority of CX3CR1-EGFP expressing
cells present in the SVZ/RMS, OB and cortical parenchyma
correspond to microglia, as only a few cells restricted to the
pial surface, are co-labeled by dendritic cell marker CD11c
(Figures 2A,B,B1,B2).

Remarkably, analysis of brain sections obtained from
CX3CR1-EGFP mice demonstrates that part of CX3CR1-
EGFP+ cells are not co-labeled by CD68 (Figures 2C–E).
Of the total of microglial cells observed within the SVZ,
CX3CR1-EGFP+/CD68+ cells corresponded to 30.3%
and CX3CR1-EGFP+/CD68− cells corresponded to 69.7%
(Figure 2I). No CX3CR1-EGFP−/CD68+ cells were observed.
Similarly, immunostaining for Iba1 revealed that 42.6% of the
microglia in the SVZ are CX3CR1-EGFP+/Iba1+ and 57.4%
CX3CR1-EGFP+/Iba1− (Figures 2F–I), indicating that the SVZ
microglia are a heterogeneous population (Olah et al., 2011).

At later stages (P7), CX3CR1-EGFP expressing microglia
present in the SVZ retains their immature morphology
(Figures 3A,A1). Despite the dense population of ramified
microglia outside its borders, CX3CR1-EGFP+ cells along

FIGURE 1 | Characterization of CX3CR1-EGFP+ cells morphology
and distribution in newborn mice (P1). CX3CR1-EGFP+ microglia
accumulate at the ventricular layers (A). Interestingly, the core of
RMS has a significative number of microglia cells (B), as well as
the distinct OB layers (C). In contrast, we observe very few
CX3CR1-EGFP+ cells in the cortical parenchyma (D). As expected,
CX3CR1-EGFP expressing cells exhibit immature/amoeboid
morphology in all analyzed regions (A1,B1,C1,D1).
(E) CX3CR1-EGFP+ cell density in newborn mice: SVZ: 35 × 103

±

4.3 × 103; RMS: 19.3 × 103
± 1.3 × 103; OB: 20 × 103

± 3 ×
103; CTX: 4.4 × 103

± 0.6 × 103; cells/mm3; mean ± SEM; p <

0.05 (*) for SVZ in comparison to RMS and OB, and for RMS and
OB in comparison to CTX, and p < 0.005 (***) for SVZ in
comparison to CTX; 1way ANOVA Bonferroni’s Multiple Comparison
Test]. CTX, cerebral cortex; EPL: external plexiform layer; GCL:
granular cell layer; GL: glomerular layer; lv: lateral ventricle; Mi:
mitral layer; OB: olfactory bulb; RMS: rostral migratory stream; SVZ:
subventricular zone; WM: white matter. Scale bars: 10 µm.
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FIGURE 2 | Antigenic heterogeneity of CX3CR1-EGFP+ cells
morphology in early postnatal SVZ. (A) DAPI counterstaining unveils
the cytoarchitecture of cortical parenchyma and ventricular region.
Dendritic cells (CD11c+, red) are restricted to the pial surface and
some of them co-express CX3CR1-EGFP (B,B1,B2). Immunolabeling of
brain sections obtained from CX3CR1-EGFP mice with CD68 (C–E, red)

and Iba1 (F–H, red) demonstrate that some of EGFP+ cells (green) are
not co-labeled by these common used microglia markers (white
arrowheads). (I) The percentage of CX3CR1-EGFP+/CD68+ cells is
30.3% of the total of microglia observed and of CX3CR1-EGFP+/Iba1+

cells is 42.6%. SVZ: subventricular zone. Scale bars: 100 µm (A) and
10 µm (B1,B2,C–H).

the RMS also display immature/migratory morphology
(Figures 3B,B1), similar to the microglial cells distributed
within the OB layers (Figures 3C,C1). In contrast, we observe
ramified CX3CR1-EGFP+ microglia spanning all the cortical
layers (Figures 3D,D1), and at this age, no significative
differences on CX3CR1-EGFP+ cell number are observed
when comparing all analyzed regions [SVZ: 33 × 103

± 3
× 103; RMS: 26.9 × 103

± 3.7 × 103; OB: 30 × 103
±

3.7 × 103; CTX: 36 × 103
± 2.6 × 103; CX3CR1-EGFP+

cells/mm3; mean ± SEM; p > 0.05, 1way ANOVA Bonferroni’s
Multiple Comparison Test] (Figure 3E). Likewise observed
in newborn mice, CX3CR1-EGFP+ cells in the SVZ/RMS,
regarding their immunoreactivity, remain a quite heterogeneous
population at P7. Our results show that CX3CR1-EGFP+/CD68+

cells corresponded to 40.2% and CX3CR1-EGFP+/CD68−

cells represent 69.7% of microglia present in the SVZ
(Figures 4A–C,G). Analysis of Iba1 immunoreactivity shows
that CX3CR1-EGFP+/Iba1+ cells correspond to 20.8% of the
microglia, whereas CX3CR1-EGFP−/Iba1+ cells correspond
to 27.3%. However, the majority of microglia in the SVZ
is CX3CR1-EGFP+/Iba1− cells, corresponding to 51.9%
(Figures 4D–G).

MICROGLIAL CELLS RESIDING IN THE SVZ NICHE ARE NOT
PROLIFERATIVE DURING EARLY NEONATAL STAGES
Once inside the CNS, microglia precursors spread within the
neural tissue, a process that includes cell proliferation and/or
migration. In order to determine the spreading dynamics of
microglial cells in the SVZ niche, we accessed the proliferation
status of CX3CR1- EGFP+ cells in the SVZ, RMS and OB
during the first postnatal week. After a short pulse of BrdU
(1 h before euthanasia), scarce CX3CR1-EGFP+/BrdU+ cells are
observed in the lateral (lv) and olfactory ventricles (Olfv) of

P1 mice (Figures 5B,C, respectively, and Figure 5H). Within
the OB layers, only CX3CR1-EGFP+/BrdU− are observed,
indicating that the majority of microglial cells in the neonatal
SVZ niche is quiescent (Figures 5D,H). At P7, we observe
few CX3CR1-EGFP+/BrdU+ cells in the ventricular region
(Figures 5E,I). Along the RMS, dividing microglia are detected
in its borders, as well as some BrdU fragments are engulfed by
microglia (Figures 5F,I). Remarkably, in the OB BrdU+ cells
distributed along the distinct layers are sparsely contacted by
CX3CR1-EGFP+ microglia and some CX3CR1-EGFP+/BrdU+

are observed (Figures 5G,I).

MICROGLIA CELLULAR INTERACTIONS WITHIN THE NEONATAL
SVZ/RMS NICHE
We next sought to determine the microglial interactions with
the typical cell types observed within the SVZ niche, namely the
astroglial stem cell lineage (RGs and stem cell-like astrocytes/type
B cells) and neuroblasts. Since previous studies show that tracer
injections at the pial surface labels exclusively RG within the
SZV (Freitas et al., 2012), we took advantage of the fact that
at birth many RGs still maintain a long process touching the
pial surface (Misson et al., 1991; Alves et al., 2002) to label
this cell population. The neuroanatomical tracer Fluoro-Gold
was injected in the pial surface of newborn mice (P0) and
we followed labeled RGs up to the first postnatal week (P7).
Immunohistochemistry analysis of brain sections obtained from
injected animals reveals the transcellular labeling of microglia
(F4/80+ cells) neighboring labeled RG (Figures 6B,B1,B2). This
is suggestive of a very intimate contact of microglia with RG,
although we could not distinguish if this transcellular labeling
was due to whole engulfment of RG by microglia, or partial
phagocytosis of RG processes. Immunolabeling of RGs and
astrocytes with GFAP antibody reveal a close apposition of
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FIGURE 3 | Characterization of CX3CR1-EGFP+ microglia morphology
and density in neonatal mice. In P7 mice, microglia present in the SVZ
retains immature morphology (A,A1), differing from EGFP+ cells present in
the adjacent areas (WM and Str). In the RMS, CX3CR1-EGFP+ cells also
display immature/migratory morphology (B,B1). Similar morphology is
shown by CX3CR1-EGFP+ cells in the OB (C,C1). Within CTX layers,
ramified CX3CR1-EGFP+ microglia are homogenously distributed (D,D1).

(E) At this age, no significative differences on CX3CR1-EGFP+ cell number
are observed in the analyzed regions [SVZ: 33 × 103

± 3 × 103; RMS:
26.9 × 103

± 3.7 × 103; OB: 30 × 103
± 3.7 × 103; CTX: 36 × 103

±

2.6 × 103; cells/mm3; mean ± SEM; p > 0.05, 1way ANOVA Bonferroni’s
Multiple Comparison Test]. EPL: external plexiform layer; GCL: granular cell
layer; lv: lateral ventricle; Mi: mitral layer; WM: white matter. Scale bars:
10 µm.

FIGURE 4 | Macrophage markers cannot depict the entire SVZ
microglial population. (A–C) Similar to newborn mice, some of EGFP+

cells (green) are not co-labeled by CD68 (red) (indicated by
arrowheads). CX3CR1-EGFP+/CD68+ cells correspond to 40.2% of the
microglia in the SVZ (G). Immunostaining with Iba1 (D–F, red) reveals

that CX3CR1-EGFP+/Iba1+ cells (arrows) correspond to 20.8%. and
CX3CR1-EGFP+/Iba1− cells (arrowheads) represent 51.9% of microglia
(G). Notably, some cells are solely labeled by Iba1, corresponding to
27.3% of the SVZ microglia (round arrowheads). lv: lateral ventricle.
Scale bars: 10 µm.

microglia to astroglial processes (Figure 6C). Some microglia
display a migratory morphology (Figures 6C1,D,E), indicating
that microglia use radial processes to migrate within the
cortical parenchyma. Remarkably, we also observe microglial

cells enfolding GFAP+ processes in the SVZ/WM border,
where GFAP+ cells accumulate during their putative astroglial
transformation (Figure 6C2). Interestingly, along the SVZ/RMS
of neonatal mice (P7) microglia are conspicuously distributed,
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FIGURE 5 | Microglia residing in neonatal the SVZ, RMS and OB are
quiescent cells. (A) Schematic representation of brain parasagittal section
obtained from neonatal mice that received a single, short pulse of BrdU (i.p.
injections of BrdU; 150 mg kg−1). Sections containing the SVZ, RMS and OB
were processed for BrdU immunostaining. (B) Dividing (BrdU+ cells, red) are
observed in the ventricular layers of P1 mice, but majority of SVZ microglia do
not incorporate BrdU and only few cells are EGFP+ (green)/BrdU+, as
depicted by optical sectioning. In the RMS of P1 mice,
CX3CR1-EGFP+/BrdU+ cells are restricted into the olfactory ventricle

(C), while in the OB, we do not observe any CX3CR1-EGFP+/BrdU+ cell at
this stage (D). At P7, CX3CR1-EGFP+ cells intermingle BrdU+ cells, but few
proliferative microglia are observed in the SVZ (E, arrows) and in the borders
of RMS (F, arrows). Within OB layers, few CX3CR1-EGFP+ cells do not
incorporate BrdU (G, arrows). Quantification is shown, in absolute numbers,
in H and I. EPL: external plexiform layer; GCL: granular cell layer; GL:
glomerular layer; lv: lateral ventricle; Mi: mitral layer; OB: olfactory bulb; Olfv:
olfactory ventricle; RMS: rostral migratory stream; SVZ: subventricular zone;
WM: white matter; VZ: ventricular zone. Scale bars: 10 µm.

most often intermingling with the astrocyte compartment and
outside of the chains of migratory neuroblasts (Figures 6F,
F1, F2).

DISCUSSION
Here we demonstrate that microglia present within the early
postnatal SVZ represents a copious population, which outnumber
cortical microglia population during neonatal stages (Figure 1E).
Our observations also show that SVZ microglia exhibit a
remarkable antigenic plasticity (Figures 2, 4) and quiescence
(Figure 5), confirming and extending the concept of microglia
regional heterogeneity (Carson et al., 2007; Olah et al., 2011).
Furthermore, our analysis reveal that microglia is intimately
associated to the astroglial compartment within the SVZ, since
dye transfer between RG cells and microglial cells were observed,
possibly a result of phagocytosis, and a spatial overlap with
GFAP positive cells (Figure 6). This interaction could represent
a direct microglia control over late cortical progenitors of the
outer SVZ (Franco et al., 2012) or progenitors for interneurons of
the OB layers (Merkle et al., 2007; Ventura and Goldman, 2007).
Alternatively, suggest that microglia is involved in the astrocytic
transformation of a subset of RG cells in the early postnatal

SVZ/RMS as suggested in earlier publications (Schmechel and
Rakic, 1979; Voigt, 1989; Misson et al., 1991; Alves et al., 2002;
Freitas et al., 2012).

For several years, the presence of microglia within the early
postnatal SVZ/RMS was either neglected (Dalmau et al., 2003),
or undetected (Peretto et al., 2005). Only recently has microglia
within the early SVZ been investigated (Shigemoto-Mogami
et al., 2014). The previous underestimation of microglia within
germinative layers, and specifically in the postnatal SVZ, may
be due to the great phenotypic plasticity of microglia cells
(Saijo and Glass, 2011), making detection by usual phenotypic
markers unreliable. We have circumvented this limitation by using
a transgenic animal in which the reporter gene encoding the
green fluorescent protein (EGFP) was introduced in the locus of
the constitutively expressed fractalkine CX3CR1 receptor (Jung
et al., 2000), yielding a stable marker for this population. This
results in a golgi-like cell labeling with EGFP, throughout the
developing brain parenchyma, displaying several chracteristics of
microglia. CX3CR1-EGFP+ microglia in the SVZ were neither
immunoreactive for neural nor blood vessel markers (data
not shown), and also unlabeled by a dendritic cell marker
CD11c. Interestingly and rather unexpected, common used
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FIGURE 6 | Microglia cellular interactions within the SVZ niche.
(A) Schematic representation of brain parasagittal section obtained from
neonatal Swiss mice injected with FG (2%) in the pial surface. (B) Histological
sections of injected mice and immunolabeled for F4/80 antigen reveal the
overlapping of FG+ cell soma (magenta) and F4/80+ cells (green) in the SVZ
and in the WM. RGs present in both the SVZ and overlaying WM are depicted
in higher magnification in (B1) and (B2), respectively. Optical sectioning
shows that FG+ cells are engulfed by F4/80+ microglia. (C) Microglia (F4/80+

cells, green) appose to RG processes (GFAP, magenta) that span the cortical
parenchyma. (C1) Microglia displaying migratory morphology appose to RG

processes spanning the WM (arrowheads). (C2) Within the SVZ, microglia
displaying immature morphology are closely associated to GFAP+ astroglial
cells (round arrowheads). (D) In transgenic mice, CX3CR1-EGFP+ cells (green)
also associate to RG processes (GFAP, cyan), displaying migratory
morphology, thus using astroglial processes as scaffold to invade the cortical
parenchyma. (E) Orthogonal view of CX3CR1-EGFP+ cells along GFAP+

processes (arrowheads). (F). SVZ and RMS delimit the cell dense region
counterstained with DAPI. Within the SVZ, CX3CR1-EGFP+ cells intermingle
GFAP+ cells (F1), whereas in the RMS, microglia cells interleave neuroblasts
chains (F2, DCX+ cells, cyan).

markers for microglia only partially co-localize with CX3CR1-
EGFP+ cells. Since most of phenotypic markers used to reveal
macrophages are membrane molecules related to cell-cell or
cell-extracellular milieu interactions (Ling et al., 1991; Milligan
et al., 1991; Chen et al., 2002; Gomez Perdiguero et al.,
2013), this variability of antigen expression may reflect the
influence of discrete signals present within this neurogenic niche,
which may instruct and control identity and specialization of
microglia.

The most striking morphological feature observed for
microglia within the neonatal SVZ is their characteristic activated
profile (Figures 1, 3A), exhibiting ameboid morphology with
few thick and short branches, also typical of immature microglia
(Perry et al., 1993; Hanisch and Kettenmann, 2007). At P7,
when cortical microglia already display a ramified “resting”
morphology (Lima et al., 2001; Dalmau et al., 2003), SVZ
microglia still retains the immature/activated profile. This may
be a common feature for microglia resident of germinative
layers, since the same reactive profile has been described for

the embryonic cerebral cortical VZ/SVZ (Cunningham et al.,
2013) and adult SVZ (Goings et al., 2006). Another outstanding
difference of SVZ microglia is their relative quiescence (Figure 5),
in contrast to actively proliferating microglia distributed
throughout the cortical parenchyma during the first postnatal
week (Mallat et al., 1997; Alliot et al., 1999; Dalmau et al., 2003).
These regional differences could result from signals emanating
from a progenitor enriched environment that has been shown
to instruct resident microglia (Mosher et al., 2012; Linnartz and
Neumann, 2013). It remains to be determined if this microglia
behavior is dynamically controlled or represents an irreversible
phenotype. It is interesting to note that microglia harvested
from the adult SVZ, behave differently in culture, even after
many in vitro passages (Walton et al., 2006), suggesting some
stable and environment independent features for this microglial
population.

A straightforward mechanism for any putative function for
microglia over SVZ/RMS progenitors could lie on their intrinsic
phagocytic activity. Phagocytosis of neural progenitors has been
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shown to occur in the subgranular layer of the dentate gyrus
(Sierra et al., 2010) and in the embryonic telencephalic ventricular
zone (Cunningham et al., 2013). To test this hypothesis we have
retrogradely labeled RG cells present in the SVZ by injecting
the fluorescent tracer Fluoro-Gold at the pial surface. Previous
results have shown that 2 days after pial injection of anatomical
tracers only RG are labeled within the SVZ (Freitas et al., 2012).
Interestingly, at 7 days post injection, we find the labeling of
microglia. This can be explained as reminiscent of transcellular
transfer of dyes to microglia by phagocytosis of retrogradely
labeled cells, as observed in other systems (Thanos et al., 2000).
Together this data suggests that microglia is actively phagocytizing
RGs. However, alternatively this transcellular labeling may be
due to gap junctional communication (Freitas et al., 2012) or
partial phagocytosis of RG processes in a manner analogous
to microglia stripping of neuronal synapses and processes
described previously (Kettenmann et al., 2013). Although
further investigation may be necessary to distinguish between
these possibilities, the transcellular dye transfer and overlap
of distribution with the astroglial compartment, as shown by
double labeling with GFAP (Figure 6C2), indicates a consistent
interaction between microglia and RGs. Nevertheless, we cannot
rule out the hypothesis that microglia may also be phagocytizing
neuroblasts en route to the OB layers, as shown to occur at the
hippocampus dentate gyrus (Sierra et al., 2010).

Given their rapid response to diffusible signals and cell-cell
interactions, microglia may represent a pivotal player to integrate
short and long-range environmental cues within the germinal
layers (Su et al., 2014). It has been documented that microglia can
respond to neurotransmitters (Fontainhas et al., 2011); trophic
factors (Ryu et al., 2012); peripheral cytokines and chemokines
(Butovsky et al., 2006); humoral signaling from disease (Li and
Graeber, 2012; Tsuda et al., 2013; Yu and Ye, 2014; Hu et al.,
2015), membrane glycocalyx (Linnartz and Neumann, 2013)
and progenitor secreted proteins (Mosher et al., 2012). On the
executive side, microglia could exert their influence not only by its
phagocytic activity, engulfing whole cells, processes, or stripping
membranes (Kettenmann et al., 2013), but through the release
of cytokines and trophic factors and (Nakajima et al., 2007;
Cacci et al., 2008; Liao et al., 2008; Ueno et al., 2013). It is still
unclear what specific roles microglia play over the generation
(Shigemoto-Mogami et al., 2014), migration (Aarum et al., 2003)
and addition of new neurons to the OB (Lazarini et al., 2012)
and in response to insult (Goings et al., 2006). However, given
the possible action of the selective phagocytosis of precursors and
progeny (Sierra et al., 2010; Cunningham et al., 2013) microglia
activity could contribute to the mismatch observed between the
very restricted generative potential of SVZ neural progenitors in
situ (Luskin, 1993; Lim and Alvarez-Buylla, 2014) and its wider
capabilities when challenged in vivo or in vitro (Sequerra et al.,
2010, 2013).
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