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Cilia are whip-like projections that are widely conserved in eukaryotes and function
as a motile propeller and/or sensory platform to detect various extracellular stimuli. In
vertebrates, cilia are ubiquitously found in most cells, showing structural and functional
diversities depending on the cell type. In this review, we focus on the structure and
function of cilia in choroid plexus epithelial cells (CPECs). CPECs form one or two dozen
non-motile 9+0 cilia, which display transient acquisition of motility during development.
Genetic malfunction of cilia can lead to failure of multiple organs including the brain.
Especially, several groups have demonstrated that the defects in CPEC cilia cause the
communicating form of hydrocephalus. In order to elucidate the molecular mechanisms
underlying the hydrocephalus, we have previously demonstrated that the cilia possess
an NPFF receptor for autocrine signaling to regulate transepithelial fluid transport.
In this perspective, we also discuss the potential involvement of cilia in the other
aspects of choroid plexus functions, such as the regulation of brain development and
neuroinflammation.
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OVERVIEW OF VERTEBRATE CILIA
Cilia are hair-like projections on the cell surface with a diameter of
∼250 nm and various lengths of typically 5–10 µm (Figure 1A).
Their structure is supported and anchored to the cell by
characteristic cytoskeletal scaffolds called the axoneme and basal
body in which doublet and triplet microtubules, respectively,
are radially arranged with nine-fold symmetry. Cilia are widely
conserved across eukaryotic species, and in many unicellular
organisms, their active vibration is necessary for propelling
the cell. In vertebrates, cilia have been observed with various
characteristics, such as length, motility, and number per cell,
depending on the tissues and cell type including neurons and glia
in the brain (Gerdes et al., 2009; Louvi and Grove, 2011; Takeda
and Narita, 2012).

For example, ependyma (ependymocytes) lining brain
ventricles form hundreds of motile cilia to circulate the
cerebrospinal fluid (CSF). The axoneme of this ciliary subtype
has a central pair of singlet microtubules (termed “9+2”),
and is heavily equipped with axonemal dyneins and their
regulatory complexes, which collectively drive the back-and-forth
movement of cilia (Figure 1B, left; Afzelius, 2004; Lindemann
and Lesich, 2010). In contrast, most neurons and glia possess
solitary non-motile cilia called primary cilia. Their axoneme
has no central pair and is termed “9+0” (Figure 1B, right).
Compared with 9+2 cilia (Heuser et al., 2009; Pigino et al.,
2011), the structural details have been poorly resolved in 9+0
cilia (Gilliam et al., 2012). Although most primary cilia appear to
lack axonemal dyneins and are non-motile except for nodal cilia
(Takeda et al., 1999; Hirokawa et al., 2009), they harbor various

cell signaling receptors and mediators to detect and process
mechanical stress or chemical stimuli such as Sonic hedgehog
and platelet-derived growth factor (Praetorius and Spring, 2001;
Corbit et al., 2005; Schneider et al., 2005; Yoshimura et al., 2011;
Briscoe and Thérond, 2013; Su et al., 2013). The outer segment
of photoreceptors in the retina, where photosensitive rhodopsins
are packed in a series of membranous discs, is a specialized form
of primary cilia (Gilliam et al., 2012).

Genetic defects leading to ciliary malfunctions cause disorders
with clinically variable phenotypes. Such disorders are called
ciliopathies and include primary ciliary dyskinesia, polycystic
kidney disease, Leber congenital amaurosis, nephronophthisis,
Senior-Løken syndrome, Joubert syndrome, Bardet-Biedl
syndrome, and Meckel Gruber syndrome (Novarino et al., 2011).
These ciliopathies are often associated with brain diseases such
as neural tube defects, cerebellar hypoplasia, mental retardation,
and hydrocephalus.

BIOGENESIS OF CILIA
Numerous studies using various model organisms, such as green
algae, worms, fish, frogs, and mice, as well as human subjects,
have founded the principle of ciliogenesis as recapitulated
below. This information also provides the basis to understand
ciliopathies.

The biogenesis of cilia is initiated by assembling axonemes
and docking ciliary membrane vesicles to the distal end of the
basal body. A specialized transport system called “intraflagellar
transport” (IFT) carries tubulin and other materials along
the axoneme (Rosenbaum and Witman, 2002). IFT facilitates
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FIGURE 1 | General structure of cilia. (A) A longitudinal section of a CPEC
cilium. The cilium emerges from the microvilli-rich apical cell surface. The
structure is supported by the axoneme and basal body (pseudo-colored in
green and magenta, respectively). The distal appendage (cyan) connects to
the basal body and cell membrane. In the transition zone, characteristic
Y-shaped structures bridges the axoneme and ciliary membrane, which can
be recognized in horizontal sections. MTs, microtubules. Bar, 500 nm.
(B) Schematics of transverse sections of motile 9+2 and non-motile
9+0 cilia.

microtubule motor proteins, kinesins and cytoplasmic dyneins,
as well as IFT particles A and B, which mediate cargo attachment
to the motors. For docking to the ciliary membrane, structural
components of the appendages on the basal body are required
(Tanos et al., 2013; Veleri et al., 2014). Furthermore, the
regulation of molecules entering and leaving cilia is mediated
by several other systems including the BBSome (Nachury et al.,
2010). A molecular sieve and septin ring at the ciliary base also
restrict simple diffusion of soluble and membrane proteins,
respectively (Hu et al., 2010; Breslow et al., 2013; Lin et al., 2013).

The basal body of a primary cilium is a modified
mother centriole. When cells enter the cell cycle, the primary
cilium is shortened, and the basal body is detached from
the cell surface to function as a microtubule-organizing
center (Paridaen et al., 2013). On the other hand, the basal

bodies of multiciliated cells are generated explosively de novo
at intracellular foci called deuterosomes by the so-called
acentriolar pathway (Klos Dehring et al., 2013). Foxj1 is one
of the transcription factors that act as a master regulator of
multiciliogenesis (Thomas et al., 2010).

CILIA IN CHOROID PLEXUS EPITHELIAL CELLS
The choroid plexus is a highly undulating and vascularized
tissue that protrudes into brain ventricles. Its epithelium consists
of choroid plexus epithelial cells (CPECs) that produce CSF
with high efficiency (Damkier et al., 2013). In addition, the
choroid plexus epithelium secretes ligands that are important
for brain physiology, and regulates protein diffusion and
leukocyte infiltration from systemic circulation (Redzic et al.,
2005; Reboldi et al., 2009; Shechter et al., 2013). Because
CPECs are derived from the dorsal neuroepithelium and form
a continuous monolayer with ependyma, they are sometimes
described as choroidal or modified ependyma. However, CPECs
and ependyma are distinct in many aspects, which is also the case
for cilia.

As described above, mature ependyma form hundreds of
motile 9+2 cilia that beat in a concerted manner to circulate
CSF. In mouse, the multiciliogenesis initiates after birth and
requires about 2 weeks for full maturation (Figure 2; Spassky
et al., 2005). In contrast, CPECs form one or two dozen non-
motile 9+0 cilia (Narita et al., 2010). Ciliogenesis in CPECs
occurs shortly after the choroid plexus primordia begins to bud
during organogenesis (Figure 2; Nonami et al., 2013). In addition,
CPEC cilia exhibit transient motility around the perinatal period,
yet a low beating frequency, small amplitude, and random
orientation are all unfavorable to generate directional CSF flow
(Narita et al., 2012). The motility peaks at around the day of
birth and declines progressively during the following 2 weeks.
While both CPECs and ependyma may share a common, FOXJ1-
dependent mechanism to initiate multiciliogenesis (Lim et al.,
1997; Narita et al., 2012), their cilia show different characteristics.
This observation is intriguing from the viewpoint of the current
principle.

Genetically modified mouse models have also shown
differences in the mechanism of ciliary formation and/or the
maintenance of cilia in CPECs and ependyma. In a knockout
mouse for Celsr2, an ortholog of the planar cell polarity gene
Flamingo, an impairment of ciliogenesis is observed in ependyma
but not in CPECs (Tissir et al., 2010). Similarly, forced expression
of the PAC1 (phosphatase of activated cells 1) receptor, a G
protein-coupled receptor that is predominantly expressed in
the central nervous system (CNS) and selectively activated by
pituitary adenylate cyclase-activating polypeptide, causes severe
hydrocephalus associated with disorganization of ependymal
cilia, while CPEC cilia are unaffected (Lang et al., 2006).

Regarding the unique function of CPEC cilia, several groups
including ours have reported the potential involvement of CPEC
cilia in the regulation of CSF production. Analysis of CPEC cilia
in relation to the hydrocephalus was first described by Yoder
et al. (Banizs et al., 2005). In the Ift88Tg737Rpw mouse that has
defects in IFT88 expression and function, Banizs et al. observed
a communicating form of the hydrocephalus at neonatal periods,
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FIGURE 2 | Differences between CPEC and ependymal cilia. The
formation of multiple cilia in CPECs occurs shortly after the cells
differentiate from the neuroepithelium during organogenesis (about
embryonic day 11 in mice). The cilia exhibit transient motility during the
perinatal period, which peaks at the day of birth, and eventually become
non-motile. However, ependyma undergo multiciliogenesis after birth to
establish hundreds of motile cilia in 2 weeks. The beating orientation is
aligned at both cellular and tissue levels by planar cell polarity signaling. In

both cell types, multiciliogenesis is associated with the induction of
transcription factors, FOXJ1 and RFX3. Ciliary localization of indicated
molecules in neuroepithelium, choroid plexus epithelium, and ependyma
are reported or implicated in Lehtinen et al. (2011), (Banizs et al., 2005;
Wodarczyk et al., 2009; Narita et al., 2010), and Conductier et al. (2013),
respectively. Knockout mice lacking general ciliogenesis genes, such as
Ift88, Kif3a, and Bbs1,2,4, and 6, exhibit the communicating form of
hydrocephalus. See text for details.

when most ependyma lack mature motile cilia. During these
stages, CPEC cilia show an accumulation of polycystin-1, the
defects of which cause autosomal dominant polycystic kidney
disease, in a bulb-like structure at the tip. This abnormal ciliary
structure and protein localization coincide with an increase in
cellular cAMP levels and aberrant regulation of intracellular pH
and ion transport activities in CPECs (Banizs et al., 2005, 2007).
Similarly, Wodarczyk et al. also described the ciliary localization
of polycystin-1 in CPECs and ependyma (Wodarczyk et al., 2009).
They generated ubiquitous or brain-specific Pkd1 knockout mice,
which encodes polycystin-1, and observed hydrocephalus at
perinatal periods in both mouse lines.

We used a primary culture system for swine CPECs to analyze
ciliary function and showed that deciliation by chloral hydrate
increases both intracellular cAMP levels and basolateral-to-apical
transepithelial fluid transcytosis, which is consistent with the
above observations by Banizs et al. (Narita et al., 2010). We
also demonstrated localization of neuropeptide FF receptor 2
on CPEC cilia, and its autoactivation downregulated cellular
cAMP levels and fluid transcytosis. While the mechanism involves
negative regulation of CSF production, we do not know whether
there is a positive regulator or the production is sustained
continuously, and only negative regulation controls the amount
of CSF (Lindvall et al., 1978; Damkier et al., 2013). This point has
to be addressed in the near future.

Swiderski et al. investigated the mechanism of ventricu-
lomegaly that is common in ciliopathy models of Bbs1, Bbs2,
Bbs4, and Bbs6 mutant mice (Swiderski et al., 2012). While
ventriculomegaly is not associated with stenosis of the cerebral
aqueduct, ultrastructural abnormalities in the cilia of CPECs,

ependyma, and some circumventricular organs are observed
consistently in these mutant mice at various ages. The previous
study also concluded that a loss of regulation in CSF production
is one of the possible mechanisms underlying the pathology.

Recently, Liu et al. generated a conditional knockout of
Kif3a in cranial neural crest cells, using a Wnt1 promoter-
driven Cre recombinase (Liu et al., 2014). KIF3A is a
kinesin motor protein involved in ciliogenesis and plays a
crucial role in the determination of left-right asymmetry of
the body (Takeda et al., 1999). The genetically modified
mice exhibited ciliopathy phenotypes of craniofacial anomalies
and hydrocephalus. Regarding the hydrocephalus, the authors
observed a dramatic dilation of the lateral and third ventricles in
E16.5 embryo. Having confirmed the Wnt1cre expression in E16.5
choroid plexuses, they concluded that the hydrocephalus is due to
overproduction of CSF (Liu et al., 2014).

FUTURE PERSPECTIVES
The above studies implicate defects in CPEC cilia as a cause of
the communicating form of hydrocephalus. However, reports by
Durand et al. suggest additional mechanisms. They generated
mice deficient for Rfx3, a transcription factor that regulates
ciliogenesis, and demonstrated marked inhibition of ciliogenesis
in both CPECs and ependyma, which is associated with the
communicating form of hydrocephalus (Baas et al., 2006; El
Zein et al., 2009) and in agreement with the above studies.
Interestingly, the authors also observed marked choroid plexus
hypogenesis in the knockout mouse (Baas et al., 2006; El Zein
et al., 2009). Because CPECs synthesize and secrete various
growth factors and signaling molecules for brain development
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(Redzic et al., 2005; Reboldi et al., 2009; Shechter et al., 2013),
a reduction in the mass of choroid plexus tissue may lead to brain
abnormalities other than hydrocephalus. Indeed, the authors
later demonstrated that the Rfx3 knockout mouse also exhibits
corpus callosum agenesis (Benadiba et al., 2012), although the
significance of choroid plexus hypogenesis in this phenotype is
unclear.

A growing body of evidence suggests that the choroid
plexus functions as a selective and educative gate for circulating
immune cells in the immune surveillance of the CNS to resolve
neuroinflammation under pathological conditions (Schwartz
and Baruch, 2014). The apical surface of CPECs is the site
where immune cells reside even under physiological conditions.
These cells were initially described as epiplexus cells or Kolmer
cells (Ling et al., 1998), and are now recognized as dendritic
cells and macrophages that function as local antigen-presenting
cells (Ransohoff and Engelhardt, 2012). When activated by
inflammatory cytokines, CPECs upregulate their expression
of integrin receptors to promote immune cells entering the
CNS (Engelhardt et al., 2001; Shechter et al., 2013). Because
of the physical proximity, it is possible that CPEC cilia
make direct contact with these immune cells and/or receive
chemical substances secreted by them, thereby participating
in the regulation of choroid plexus functions in response to
neuroinflammation.

Recently, we performed proteomic analysis of CPEC cilia
from swine and identified >800 proteins (Narita et al., 2012).
Among them, 45% were shared with the proteome of the 9+0
photoreceptor outer segment and 18% were shared with the
proteome of 9+2 cilia and flagella. Among the remaining 37% of
the proteins including the CPEC-specific ciliome subset, various
signaling molecules were enriched. Functional analysis of these
proteins will clarify the role of CPEC cilia in more detail and their
link to brain disorders.

According to the traditional view, CPECs have been regarded
as solely responsible for the production of CSF. However, based
on our current understanding of CSF production, we should re-
interpret or re-evaluate the traditional views of CSF homeostasis
(Iliff et al., 2012), which are not necessarily obsolete or invalid.
In this regard, the cilia in CPECs may have various unknown
functions that are related to maintenance of brain homeostasis.
Therefore, cilia in the brain ventricular system play important
biological roles in neurophysiology and may further advance our
understanding of brain functions.
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