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During the past two decades, there has been increasing interest in understanding and
characterizing the role of inflammation in major depressive disorder (MDD). Indeed,
several are the evidences linking alterations in the inflammatory system to Major
Depression, including the presence of elevated levels of pro-inflammatory cytokines,
together with other mediators of inflammation. However, it is still not clear whether
inflammation represents a cause or whether other factors related to depression result
in these immunological effects. Regardless, exposure to early life stressful events, which
represent a vulnerability factor for the development of psychiatric disorders, act through
the modulation of inflammatory responses, but also of neuroplastic mechanisms over
the entire life span. Indeed, early life stressful events can cause, possibly through
epigenetic changes that persist over time, up to adulthood. Such alterations may
concur to increase the vulnerability to develop psychopathologies. In this review we
will discuss the role of inflammation and neuronal plasticity as relevant processes
underlying depression development. Moreover, we will discuss the role of epigenetics
in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal
plasticity, thus contributing to the long-lasting negative effects of stressful life events
early in life and the consequent enhanced risk for depression. Finally we will provide an
overview on the potential role of inflammatory system to aid diagnosis, predict treatment
response, enhance treatment matching, and prevent the onset or relapse of Major
Depression.

Keywords: childhood trauma, inflammation, stress, depression, neuroplasticity

BACKGROUND
Major depressive disorder (MDD) is a highly prevalent complex
neuropsychiatric condition characterized by a broad range
of symptoms, which causes significant distress as well as
impairment of normal functioning and that should not be
attributable to a recent loss or to a general medical condition
(American Psychiatric Association, 2000). Beside the classical
monoaminergic hypothesis of depression, at least two major
hypotheses have emerged based on dysfunction in immune-
inflammatory systems (cytokine hypothesis) or in neuronal
plasticity (neurotrophic hypothesis) (Schiepers et al., 2005;
Calabrese et al., 2009; Maes et al., 2009; Miller et al., 2009; Castrén,
2014).

The cytokine hypothesis suggests that different environmental
stressors as well as organic inflammatory conditions may trigger
depression via inflammatory processes (Maes et al., 2009). Indeed,
systemic infections, cancer or autoimmune diseases, as well as
stressful life events, are characterized by an activation of the
peripheral immune system, which is part of the required response
of the body to cope with the adverse condition. However, when

the activation of the immune system is prolonged, for example
because of a persistence of the adverse event, cytokines and other
immune modulators can access the brain and affect different
brain systems that play a role in enhancing vulnerability to
depressive disorders (Dantzer et al., 2008).

The neurotrophic hypothesis has been put forward based on
a number of clinical and preclinical evidence suggesting that,
beyond neurotransmitter changes, depression may be associated
with structural abnormalities in different brain regions as well
as defects in cell-cell communication (Frodl and O’Keane,
2013; Zhao et al., 2014). These alterations may be particularly
relevant for core disease symptoms implying that therapeutic
interventions should correct such defects in order to restore brain
function in depressed subjects.

The goal of this review is to recapitulate the alterations in
inflammation and neuronal plasticity that may be relevant for
depression. Moreover, considering that the etiology of depression
has been associated, at least in some individuals, with the
exposure to stressful events early in life, we will discuss the
possibility that alterations in inflammation-immune systems as
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well as dysfunction in neuronal plasticity may contribute to the
long-lasting negative effects of stressful life events early in life and
the consequent enhanced risk for depression.

DEPRESSION AND PERIPHERAL INFLAMMATION
There is strong evidence indicating that depression is associated
with an activation of the innate immune system (Dantzer et al.,
2008). This theory has been supported over the last 20 years by an
increasing body of evidence showing alterations in the functional
activity of the immune system in the blood and in the brain of
depressed patients, as compared to control subjects (Kronfol et al.,
1983; Maes, 1995; Maes et al., 1995a,b,c,d,e; Howren et al., 2009;
Dowlati et al., 2010; Liu et al., 2012; Valkanova et al., 2013).
To date, several studies have investigated blood and/or
cerebrospinal fluid concentrations of one or more pro-
inflammatory cytokines (e.g., interleukin IL-1β, IL-6, interferon
gamma (IFN-γ)) and/or acute phase proteins (e.g., C reactive
protein (CRP), an acute phase protein that promotes resistance
to infection and repair of damages tissues) in depressed patients.

The majority of these studies, whose main results have been
summarized in several meta-analyses (Howren et al., 2009;
Dowlati et al., 2010; Liu et al., 2012; Valkanova et al., 2013)
reported increased levels of IL-1β, IL-6, TNF-α and CRP in the
serum and/or plasma of depressed patients. For example, Hestad
et al. (2003) observed that subjects with depressive disorders had
markedly increased TNF-α plasma levels compared with healthy
controls and, similarly to TNF- α, also IL-6 plasma levels were
increased in similar clinical samples (Sluzewska et al., 1996; Pike
and Irwin, 2006). Changes of cytokine mRNA levels were also
found when investigating peripheral blood cells. Indeed, Tsao and
colleagues found higher mRNA levels of TNF-α, IL-1β, IL-6 and
INF-α in the Peripheral Blood Mononuclear Cells (PBMCs) of
patients suffering from MDD (Tsao et al., 2006), and our group
has also shown an increased expression of cytokine mRNA levels
in the leukocytes of drug free depressed patients as compared
to controls (Cattaneo et al., 2013). Of note, the same cytokines
have been significantly correlated with several clinical depressive
“traits”. In particular higher cytokines levels have been associated
with higher depression severity (Thomas et al., 2005) as well as
with poor antidepressant response (Cattaneo et al., 2013; Powell
et al., 2013; Stelzhammer et al., 2014). Similarly, CRP blood levels
that, as mentioned above, are significantly elevated in depressed
patients, may also represent a predictor of a poor outcome to
antidepressant therapies (Danner et al., 2003; Ford and Erlinger,
2004; Ford et al., 2004; Howren et al., 2009; Pikhart et al., 2009;
Uher et al., 2014).

Emerging evidence has proposed a role for cytokines also
in child and adolescent depression (Mills et al., 2013), which
is estimated to occur in approximately 2% of children and
4–8% of adolescents (Birmaher et al., 1996) and this may
carry its own burden of disadvantages, often persisting or re-
emerging at adulthood (Dunn and Goodyer, 2006; Weissman,
2009; Weissman and Talati, 2009). Moreover, similarly to adult
depression, a de-regulation of the immune system, characterized
by an imbalance between pro- and anti- inflammatory cytokines,
has been observed in adolescent depression (Gabbay et al., 2009).
To this regard, increased levels of pro-inflammatory cytokines,

including IFN-γ, IL-6 and CRP, have been observed in depressed
adolescents as compared to controls as well as in adolescents with
a history of childhood trauma (Mills et al., 2013). Furthermore,
the transition vs. depression development is accompanied by a
further increase of these cytokines, which remain higher even after
the depressive episode is improved (Miller and Cole, 2012).

Abnormalities in the immune and inflammatory systems
occurring in depression are also found in post-mortem brains of
depressed and suicide patients. Shelton and colleagues reported,
for example, increased inflammatory pattern in the brain of
depressed suicide patients (Shelton et al., 2011). Moreover, recent
studies in the hypothalamus of depressed subjects have identified
abnormalities in protein and mRNA levels of Toll Like Receptors
(TLRs), which are involved in neuronal function as well as in
the production of cytokines and chemokines in response to
inflammation or stressful insults (Wang et al., 2008).

The role for inflammation in the pathogenesis of depression
has been supported also by evidence showing that the
administration of pro-inflammatory agents, like the endotoxin
lipopolysaccharide (LPS), induces the development of depressive
symptoms in humans (Grigoleit et al., 2011). In line with this,
around the 30–40% of hepatitis C patients treated with the pro-
inflammatory cytokine peg-interferon-alpha (pegIFN-α) develop
clinically relevant depression (Miyaoka et al., 1999; Raison et al.,
2005; Asnis and De La Garza, 2006). Finally, depression shows
elevated comorbidity with several immune-related diseases, such
as cancer, cardiovascular and neurodegenerative diseases, which
are all clinical conditions characterized by the presence of
inflammatory alterations (Benton et al., 2007; Anisman et al.,
2008).

PUTATIVE MECHANISMS UNDERLYING THE ASSOCIATION
BETWEEN DEPRESSION AND INFLAMMATION
There are several mechanisms by which cytokines can access
the brain, influence central neuronal functions and cause
behavioral changes known as “sickness behavior”, a coordinated
set of psychological and physiological modifications that develop
during the course of an infection (Dantzer, 2004) and that
resemble depressive symptoms. One pathway may involve
macrophage-like cells located in the circumventricular organs
and the choroid plexus, which detect and respond to circulating
pathogen-associated molecular patterns by producing pro-
inflammatory cytokines; these cytokines can then cross the
Blood Brain Barrier (BBB) and affect neuronal function and
microglia activation. Another mechanism by which cytokines can
reach the brain is via binding with their specific transporters,
which are located on the BBB. Moreover, microglia cells in
the brain produce cytokines receptors and thus amplify the
inflammatory signals (Besedovsky and del Rey, 1996; Capuron
and Miller, 2004). Once in the brain, cytokines can affect
brain function in a variety of ways, including the modulation
of neurotransmitter metabolism and neurotoxic mechanisms.
As an example, cytokines induce the enzyme Indoleamine 2,3
Dioxygenase (IDO), which breaks down the serotonin precursor
tryptophan into kynurenine that, once converted into quinolinic
acid, may lead to neurotoxicity through the activation of the
glutamatergic system (Myint and Kim, 2014). Cytokines have
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also been shown to decrease the neurotrophic support and
to reduce neurogenesis in several brain areas, particularly in
the hippocampus (Hashmi et al., 2013; Williamson and Bilbo,
2013). This may eventually contribute to the reduction of
neuronal plasticity that represents a core feature of depression-
related dysfunction (see below). Furthermore, as we have also
represented in Figure 1, cytokines can increase the levels of stress
hormones, including corticotrophin releasing hormone (CRH),
adreno-corticotrophin hormone (ACTH) and cortisol, which
have been reported to be elevated in patients with depression
(Besedovsky and del Rey, 1996; Pariante and Miller, 2001) and
may therefore participate to HPA dysfunction (Miller et al.,
2009).

Deregulation of microglia function has been associated with
neurologic and psychiatric diseases and may lead to critical
changes in neuronal activity and function (Beumer et al., 2012;

Stertz et al., 2013; Paolicelli et al., 2014; Najjar and Pearlman,
2015).

One major mechanism through which microglia can
alter brain functions associated with psychiatric diseases is
neurogenesis. The impact of inflammation on adult hippocampal
neurogenesis was originally discovered by the groups of Lindvall
and Palmer, demonstrating that systemic or intra-hippocampal
administration of LPS reduces the formation of newborn neurons
in the adult hippocampus, an effect that can be prevented by
indomethacin, a non steroidal anti-inflammatory drug, which act
by inhibiting the synthesis of pro-inflammatory prostaglandins
(Ekdahl et al., 2003; Monje et al., 2003).

Microglia can exert a positive or negative influence on
proliferation, survival, or differentiation of newborn cells,
depending on the inflammatory context. For instance, microglia
can compromise the neurogenic cascade during chronic stress,

FIGURE 1 | Schematic rappresentation of the direct and indirect
effect of stress on inflammation and neuroplasticity related
processes. Stress induces directly an immediate release of
glucocorticoids and pro-inflammatory cytokines (IL-1β, IL-6, CRP, TNF-α,
INF-α); in turn incresead levels of glucocorticoids act on the brain by
altering the CRH-ACTH signaling and, in turn, negatively affecting
neurogenesis as well as the production of neurotrophic factors, including

Brain Derived neurotrophic Factor (BDNF). Similarly, proinflammatory
cytokines can negatively affect brain functioning and neurotrophins
production and release. Stress can also work indirectly by activating
epigenetic mechanisms (methylation, deacetylation, miRNAs), which may
act on the same target stress related genes i.e., glucocorticid receptors,
cytokines and BDNF. Red arrows indicate a suppressive effect, green
arrows a stimulating effect.
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through the release of pro-inflammatory cytokines such as IL-1β,
IL-6, and TNF-α. Microglia has been also shown to phagocyte
the excess of newborn neurons undergoing apoptosis in the
hippocampal neurogenic niche during normal physiological
conditions, while a similar role in the synaptic integration of
newborn cells was also proposed in light of microglial cells
to phagocyte synaptic elements (Sierra et al., 2014). Kreisel
et al. provided also a link between stress-induced alterations
in microglia and the development of stress-induced depression
(Kreisel et al., 2014). Indeed they showed a role of dynamic
alterations in microglia activation status in the development
of chronic unpredictable stress (CUS)-induced depressive-like
condition in rodents and the ability of minocycline and of
the transgenic interleukin-1 receptor antagonist to rescue the
subsequent microglial apoptosis, as well as the CUS-induced
depressive-like behavior and suppressed neurogenesis.

It has to be mentioned that depending on its activation state,
microglia may have opposite effects on adult neurogenesis and it
is likely that pro-neurogenic and anti-neurogenic microglial cells
may co-exist, with a different responsiveness to external stimulus,
such as voluntary running and housing conditions. Thus it may
be inferred that the overall impact on adult neurogenesis may
depend on the outcome of the interaction between environmental
factors and microglial state (Gebara et al., 2013).

Cytokines alterations in depression have also important
implications with respect to the response to pharmacological
treatments. On one end, different studies have demonstrated the
ability of some antidepressants to reduce cytokines activation in
depressed patients (Sluzewska et al., 1995; Frommberger et al.,
1997; Tuglu et al., 2003; Basterzi et al., 2005). Our research
group has recently demonstrated that cytokine expression in
the leukocytes from depressed patients are reduced following
escitalopram and nortriptyline treatment with a significant
correlation between these changes and treatment response
(Cattaneo et al., 2013).

Moreover, depressed patients who are non responders to
antidepressant therapies or who are treatment resistant show
higher plasma concentrations of several pro-inflammatory
cytokines and CRP as compared to responders (Sluzewska et al.,
1997; Lanquillon et al., 2000; Fitzgerald et al., 2006; Uher et al.,
2014). In line with these results, we found that patients who do
not respond to two different classes of antidepressants have higher
baseline mRNA levels of IL-1β, macrophage migration inhibitory
factor (MIF), and TNF-α (Cattaneo et al., 2013). Similar results
on the role of TNF-α in treatment response were also reported by
Powell et al. (2013).

It may be argued that peripheral inflammation could alter
behavioral response to monoaminergic drugs because high levels
of cytokines are known to modulate monoamine synthesis,
reuptake and metabolism, for example by altering the function of
the serotonin transporter, which is a key target of antidepressant
drugs (Tynan et al., 2012). Thus, cytokine-induced changes
in monoaminergic signaling may not only induce depressive
states, but may conceivably compromise the therapeutic effects
of monoamine reuptake inhibitors, leading to first-line treatment
resistance. Conversely, monoaminergic drugs may impact directly
the inflammatory gene expression or peripheral immune cells,

although this possibility has yet to be fully tested and established
(Pollak and Yirmiya, 2002).

DEPRESSION AND NEURONAL PLASTICITY
Neuronal plasticity is a concept that refers to a number of
mechanisms crucial for brain function and its ability to perceive,
adapt and respond to a variety of internal and external stimuli.
It is thought that such mechanisms can be defective in different
psychiatric disorders and this may eventually enhance disease
susceptibility (Manji et al., 2003; de Kloet et al., 2005; Duman and
Monteggia, 2006; Calabrese et al., 2009).

A large body of evidence has demonstrated that stress, a
major environmental challenge for depression, can lead to an
impairment of neuronal plasticity (McEwen et al., 2012; Bohacek
et al., 2014). Among the systems contributing to the maintenance
of neuronal plasticity, neurotrophic factors, and in particular
the neurotrophin Brain-Derived Neurotrophic Factor (BDNF),
have emerged as important mediators for long-term functional
deterioration associated with mental illness (Bramham and
Messaoudi, 2005; Lu et al., 2005; Duman and Monteggia, 2006;
McClung and Nestler, 2008; Cirulli et al., 2009; Castrén and
Rantamäki, 2010a; Calabrese et al., 2011b; Chourbaji et al., 2011).
BDNF, in fact, is not only important during brain development,
but it exerts a pivotal role for neuronal remodeling as well as
synaptic function (Lu et al., 2008; Waterhouse and Xu, 2009).
Several studies have demonstrated that, in depressed subjects,
the expression of BDNF is reduced in brain structures, such
as the hippocampus and the prefrontal cortex, which represent
key anatomical targets for stress-induced structural changes.
Preclinical studies have confirmed the association between stress
exposure and BDNF, since chronic exposure to different stress
paradigms leads to a consistent reduction of neurotrophin
expression (Pittenger and Duman, 2008) (Tsankova et al., 2006).
The expression of BDNF is also reduced in the hippocampus and
prefrontal cortex of serotonin transporter knockout rats, a genetic
model of depression and anxiety (Molteni et al., 2010), suggesting
that changes of neuronal plasticity may also contribute to the
genetic susceptibility to mood disorders.

Changes of BDNF expression may represent a relevant
component for functional disability. For example it has been
shown that targeted or inducible deletion of the BDNF
gene produces behavioral dysfunction related to anxiety and
depression (Chourbaji et al., 2011; Burke et al., 2013), suggesting
that such changes may contribute to the pathologic condition.
Furthermore BDNF expression plays a critical role in resilience
to chronic stress and in the development of neural circuits that
control coping mechanisms (Taliaz et al., 2011).

Since the expression of trophic factors is reduced in depression
and this may contribute to functional defects associated with
the pathologic condition, it may be inferred that effective
pharmacological intervention should be able to normalize such
alterations. Indeed, a key step in long-term adaptive changes
brought about by antidepressants appears to be their ability to
modulate the expression of BDNF as well as of other growth
factors (Berton and Nestler, 2006; Groves, 2007; Martinowich
et al., 2007; Calabrese et al., 2009, 2011a; Castrén and Rantamäki,
2010b; Cattaneo et al., 2013). The majority of the studies focusing
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on BDNF have demonstrated that these drugs can modulate
neurotrophin transcription (Coppell et al., 2003; Molteni et al.,
2006; Calabrese et al., 2007, 2011a; Nair et al., 2007; Kozisek
et al., 2008), its translation and trafficking to specific sub-cellular
compartments (Calabrese et al., 2007), as well as BDNF receptor
activation and signaling (Saarelainen et al., 2003; Fumagalli et al.,
2005; Duman et al., 2007). The ability to modulate BDNF
has also been demonstrated for the rapid acting antidepressant
ketamine (Autry et al., 2011). A number of experimental
studies have shown that defective BDNF expression or release
may limit the antidepressant activity (Wolkowitz et al., 2011;
Dreimüller et al., 2012), suggesting that neurotrophin modulation
may represent an important mechanism of antidepressant
drugs. This possibility is in accordance with clinical data
demonstrating that serum BDNF levels, which are reduced
in depressed subjects, can be normalized only in patients
that are responsive to pharmacological intervention (Bocchio-
Chiavetto et al., 2010; Yoshida et al., 2012; Molendijk et al.,
2014).

The modulation of neurotrophic proteins can lead to
functional and structural changes affecting brain regions key
to depressive symptoms. One of the mechanisms that lie
downstream from neurotrophic factors is neurogenesis, the
process by which neurons are generated from stem cells. Indeed
chronic antidepressant treatment can increase neurogenesis in the
adult brain, primarily in the subgranular zone of hippocampal
dentate gyrus, a mechanism that depends on the modulation of
trophic factors and that appears to be relevant for the behavioral
action of antidepressant drugs (Cameron et al., 1998; Duman
et al., 2001; Santarelli et al., 2003; Malberg, 2004; Sairanen et al.,
2005; Banasr and Duman, 2008).

CHILDHOOD TRAUMA AS VULNERABILITY FACTOR FOR
DEPRESSIVE PHENOTYPES
A recent European Report from WHO indicates that at least 18
million children in Europe suffer from early life trauma, harming
mental and physical health, and with enormous societal costs,
including for medical and social care (Europe WHO of European
report on preventing child maltreatment).

Childhood maltreatment is defined as acts of commission or
omission by parents or caregivers resulting in potential harm
to the child’s health, and includes experiences such as physical,
sexual and psychological abuse, as well as physical or emotional
neglect. Among substantiated reports, 60% of the childhood
maltreatment is classified as neglect, 20% as physical abuse, and
10% as sexual abuse (Holmes and Slap, 1998). The prevalence
of emotional abuse and neglect is likely much higher than that
of sexual and physical abuse, but more difficult to measure and
quantify (Holmes and Slap, 1998).

A number of studies have shown that the onset of mood
disorders, such as depression, is undoubtedly influenced by
stressful life events that occur in childhood (Kendler et al.,
2004a,b; Horesh et al., 2008). In one community-based study of
approximately 2,000 women, those with a history of childhood
physical or sexual abuse had an increased risk of depression and
anxiety and were more likely to have attempted suicide than
women without such a history (Kendler et al., 2004a,b). It is also

evident that different types of child maltreatment have long-term
adverse consequences for mental health (Cicchetti and Toth, 2005;
Gonzalez, 2013; Allen et al., 2014; Bailer et al., 2014; Cummings
and Berkowitz, 2014; Hagan et al., 2014; Roth et al., 2014). Among
the different types of maltreatment, sexual abuse is probably
the most relevant with respect to increased risk for psychiatric
disorders, such as depression and anxiety (Booth and Gulati,
2014; Kanamüller et al., 2014; Letourneau et al., 2014; Visser et al.,
2014). On these bases, there is high interest in understanding,
which are the mechanisms that may link the exposure to
adversities early in life with the enhanced susceptibility to mood
disorders.

CHILDHOOD TRAUMA AND ALTERATIONS IN THE
INFLAMMATORY SYSTEM
Although the association between early life stressful events and
depression may occur via several biological processes, a number
of studies have suggested a role for increased inflammation or
increased sensitivity of inflammatory responses. Taking advantage
of the Dunedin cohort subjects, Danese et al. were the first to
demonstrate that elevated CRP blood levels were significantly
associated with maltreatment during childhood (Danese et al.,
2008) and such association was particular strong in individuals
that developed depression later in life (Danese et al., 2008,
2009). Similarly Slopen et al. reported that exposure to childhood
adversities is associated with higher levels of IL-6 and CRP in
teenagers (Slopen et al., 2014).

It has also been shown that depressed subjects with a history
of early life stress show an increased inflammatory response
when re-exposed to an acute psychological stress at adulthood,
as indicated by an exaggerated IL-6 response as well as increased
DNA binding of the key pro-inflammatory transcriptio factor,
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) in PBMCs (Pace et al., 2006).

Based on this evidence, it is possible to speculate that
individuals who experience major stressors early in life are more
vulnerable to an immune dysregulation at adulthood, regardless
of whether they subsequent develop adverse physical or mental
health consequences. Miller and Chen have proposed a model
suggesting that stress that occurs during a sensitive period in
life, when immune function is highly plastic, gets embedded in
the functioning of the cells that regulate inflammation (Miller
and Chen, 2007). Therefore, brain inflammatory cells including
macrophages, microglia and dendritic cells, will develop a hyper-
sensitivity that leads to a chronic pro-inflammatory state, due to
an activation of pro-inflammatory transcription factors such as
NF-κB and down-regulation of anti-inflammatory transcriptions
factors such as the glucocorticoid receptor, thus increasing the
levels of circulating cytokines. In addition, an altered response
of innate immune cells to stimuli causes abnormalities in other
leucocytes, particularly the T- and B- cells that orchestrate
adaptive immune responses.

How childhood trauma generates a “pro-inflammatory”
phenotype is still an open question but it is probably the
result of a deregulation in complex networks within biological
pathways affected by such experiences (see Figure 1). With this
respect, the study of epigenetic processes holds a substantial
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promise to explain many of these unsolved questions, since
epigenetic operates at the interface between the individual genetic
background and the environment.

Studies in rodents have also shown that early life stress
induces a premature activation of the immune system that
can significantly shift the developmental trajectory of microglia,
changing the long-term patterns of activation of these cells
(Schwarz et al., 2011; Williamson et al., 2011). As a consequence
of these changes, rats exposed to stress early in life are more
vulnerable to increase in pro-inflammatory cytokines production
following an LPS challenge in the adulthood, suggesting that this
pro-inflammatory state persists in time and can be responsible
of an enhanced vulnerability and sensitivity to a novel insult in
adulthood (Sominsky et al., 2013).

EARLY LIFE ADVERSITIES AND LONG-TERM CHANGES IN
NEURONAL PLASTICITY
Since neuronal plasticity may contribute to structural
modifications and to the inability to respond or adapt to
environmental challenges (Berton and Nestler, 2006; Krishnan
and Nestler, 2008; McClung and Nestler, 2008; Pittenger and
Duman, 2008; Calabrese et al., 2009), it is feasible to hypothesize
that alterations of these mechanisms may also represent the
long-lasting consequence of stressful experience occurring early
in life.

In accordance with this possibility, a long-term reduction
of BDNF expression and function may represent a common
endpoint for adverse experience early in life, although the
anatomical specificity of such changes depends on the type,
timing and duration of the manipulation. Indeed, BDNF mRNA
levels are reduced in the hippocampus of adult rats that were
exposed to 24 h of maternal deprivation at postnatal day 9 (Roceri
et al., 2002), whereas more protracted manipulations during
gestation or the early phase of postnatal life (such as prenatal
stress or repeated maternal deprivation) reduce the levels of the
neurotrophin, primarily in the prefrontal cortex (Koo et al., 2003;
Fumagalli et al., 2004; Roceri et al., 2004; Roth et al., 2009). The
time course analysis of BDNF changes in rats exposed to prenatal
stress (PNS) suggests that the reduced expression observed in
adult animals is not directly linked to stress exposure, but is
dependent on the maturational stage of the prefrontal cortex,
becoming fully manifest after adolescence (Luoni et al., 2014).
Moreover we have recently demonstrated that exposure to PNS
leads to a significant down-regulation of the pool of BDNF
transcripts with long 3’UTR that are responsible for targeting
BDNF mRNA to dendrites, where activity-dependent translation
may occur (An et al., 2008; Lau et al., 2010). Hence, the selective
decrease of long 3’UTR BDNF mRNA levels after PNS may
contribute to defects in local, activity-dependent neurotrophin
synthesis (Lau et al., 2010), which may eventually lead to reduced
cell-cell communication and synaptic function and ultimately
contribute to cognitive and emotional deterioration associated
with exposure to early life adversities (Murmu et al., 2006;
Michelsen et al., 2007). Interestingly, reduced neurogenesis was
also found in response to stress early in life. For example,
PNS in rats induced lifespan reduction of neurogenesis in the
dentate gyrus and leads to an impairment of hippocampal-related

spatial tasks (Lemaire et al., 2000). Similar stressful experiences
in monkeys can result in reduced hippocampal volume and
an inhibition of neurogenesis in the dentate gyrus, which is
associated with increased pituitary-adrenal activity, as well as with
behavioral profiles indicative of greater emotionality (Coe et al.,
2003). Furthermore, it has been demonstrated that the exposure
to prolonged, but not brief, bouts of maternal separation during
the first 2 weeks of life determines a long-lasting suppression of
adult neurogenesis and diminished plasticity in this parameter
after exposure to stress in adulthood (Mirescu et al., 2004).
Interestingly, some of the neuroplastic alterations brought about
by early life stress can be normalized or even prevented by
pharmacological intervention during early life, adolescence as
well as adulthood (Matrisciano et al., 2012; Luoni et al., 2014).

CHILDHOOD TRAUMA, INFLAMMATION AND DEPRESSION:
IS EPIGENETIC THE LINKING MECHANISM?
The term “epigenetics” refers to long-lasting changes in gene
expression without alterations of the DNA sequence, which are
associated with several potentially reversible processes including
DNA methylation, histone modifications and aberrant expression
of micro-ribonucleic acid (miRNA; Maffioletti et al., 2014;
Provençal and Binder, 2014a). Among different epigenetic
modifications, DNA methylation is one of the best-characterized
mechanisms in relation to childhood adversities (Essex et al.,
2013). Indeed changes of DNA methylation at sensitive gene
promoters may explain the persistence of early life effects into
adulthood, rendering the subject more vulnerable and sensitive
to subsequent insults and challenges.

In humans, DNA methylation occurs, almost exclusively,
through covalent modification of DNA, where methyl groups
are coupled to cytosine residues of CpG dinucleotides. DNA
methylation has been shown to be associated with variations
in gene expression (Szyf, 2013; Reul, 2014), thus serving as a
possible mechanism for regulating the transcriptional response to
extracellular events. Several preclinical studies have highlighted
how exposure to environmental stressors can produce long-
lasting behavioral alterations and may affect coping abilities later
in life through epigenetic modifications and in particular through
changes in DNA methylation within selected brain regions (Szyf
and Bick, 2013; Provençal and Binder, 2014a; Booij et al., 2015;
Desplats, 2015). For example, in rats, reduced maternal care
produces long lasting effects on the offspring, including an
anxious phenotype and higher corticosterone levels in response
to stress. These behavioral abnormalities are associated with
reduced hippocampal expression of glucocorticoid receptors that
appears to be the consequence of increased methylation at gene
promoter (Meaney and Szyf, 2005; Szyf et al., 2005; Kofink
et al., 2013). Also, maternal separation in mice is able to
induce an hypomethylation in the vasopressin gene enhancer
region, which leads to increased expression of hypothalamic
vasopressin, accompanied by enhanced corticosterone secretion
(Murgatroyd et al., 2009). Some of these changes have been
shown to occur also in humans. Indeed, McGowan et al. have
demonstrated that in human post-mortem brain studies early life
abuse was associated with increased methylation of the GR exon
1f promoter in the hippocampus, in support of the “translational”
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implications for the epigenetic changes brought about by the
exposure to early life stress (McGowan et al., 2009). In addition
to the stress-responsive systems, also neuroplastic genes can
undergo epigenetic regulation, which may be responsible for the
changes observed in mental illness. At experimental level, it was
demonstrated that the persistent reduction of BDNF expression
in the social defeat stress paradigm is due to epigenetic changes
in the promoter region of two of its transcripts (Tsankova et al.,
2006). Similarly, we have recently shown that the expression of
BDNF is significantly reduced in the prefrontal cortex of serotonin
transporter knockout rats through an increased methylation in
the promoter region of exons VI and reduced H3 acetylation at
exon IV (Molteni et al., 2010). These results are in line with post
mortem studies since increased BDNF promoter methylation has
been found in the brain of suicide subjects (Keller et al., 2010).
Such modification may also represent the consequence of early
life adversities. Indeed, maltreatment during infancy in rodents
produces a persistent increase of the methylation in BDNF exon-
4 and exon-9 that leads to reduced neurotrophin expression in the
adult prefrontal cortex (Roth et al., 2009).

A growing number of studies is addressing the consequences
of early life stress on DNA methylation at genome wide level
in the brain as well as in peripheral tissues (Mehta et al., 2013;
Nieratschker et al., 2014; Provençal and Binder, 2014a) in order
to identify signatures that may be associated with the long-
term pathologic consequences of such experiences. With this
respect epigenetic changes in peripheral tissues may correlate
to some extent with measures in the brain. As an example
differential rearing conditions of rhesus macaques is associated
with differential methylation in early adulthood in both the brain
and T cells, suggesting that the response to early-life adversity
is system-wide and genome-wide and persists to adulthood
(Provençal et al., 2012). Furthermore the observation that ELS-
associated DNA methylation changes are not limited to the brain
but can be found in peripheral systems suggests that such changes
may also be relevant for additional health problems, such as the
described increased risk for cardiovascular and metabolic diseases
(Provencal and Binder, 2014b).

With this respect it will be extremely important to investigate
and characterize inflammatory-immune methylation signatures
as a consequence of early life stress, which will eventually provide
key information not only for their role in mental illness but also as
a potential mechanism to explain the comorbidity of depression
with different medical conditions.

CONCLUSIONS
As discussed in this review, there is evidence linking early
life stressful events, peripheral inflammation, alterations
in neuroplastic mechanisms and depression, although the
underlying biological mechanisms still need to be clarified.
We have discussed the role of epigenetics, and in particular of
DNA methylation, as one such mechanism. Indeed, early life
stressful events can activate epigenetic mechanisms at global
levels as well as at the promoter regions of key target genes,
producing long-lasting and stable changes in gene expression,
which persist up to adulthood and may be responsible of an
increased vulnerability to develop mental disorders. Through a

better understanding of how epigenetic mechanisms underlie
psychiatric disorders, we could also better characterize how these
modifications can have an impact on specific genes that, in turn,
contribute to the pathogenesis of these disorders. Moreover, as
increased inflammation is clearly observed in depressed patients
and, in particular, in those do not respond to antidepressant
therapies, future research will aim to clarify whether increased
inflammation actually identifies a single group of depressed
patients that has experienced childhood maltreatment and
is also resistant to conventional antidepressants. Moreover,
inflammatory biomarkers may be used as strategy to screen
patients who may benefit from drugs that target inflammatory
mechanisms. Finally, future studies should also provide new
insights on the reversibility of the damage associated with
childhood stress experiences, including studies testing whether
pharmacological and non-pharmacological interventions could
reverse the abnormalities induced by childhood adversities on the
functionality of the immune and stress response systems and thus
also minimize the risk for mood disorders, both in the individuals
affected and in the next generations.
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