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It is well known that mitochondrial damage (MD) is both the major contributor to oxidative
stress (OS) (the condition arising from unbalance between production and removal of
reactive oxygen species) and one of the major consequences of OS, because of the
high dependance of mitochondrial function on redox-sensitive targets such as intact
membranes. Conditions in which neuronal cells are not able to cope with MD and OS
seem to lead or contribute to several neurodegenerative diseases including Amyotrophic
Lateral Sclerosis (ALS), at least in the most studied superoxide dismutase 1 (SOD1)-linked
genetic variant. As summarized in this review, new evidence indicates that MD and OS
play a role also in non-SOD1 ALS and thus they may represent a target for therapy despite
previous failures in clinical trials.
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INTRODUCTION
Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron
disease occurring less than once in 10000 people and thus
classified as a rare disease. ALS is not purely a motor neuron
disease and neuroinflammation and muscle degeneration also
contribute to the non-cell autonomous death of motor neurons.
As for other neurodegenerative diseases, ALS is sporadic in most
cases, with a clear genetic origin in about 10% of patients, and is
clinically heterogeneous in age and site of disease onset as well as
rate of disease progression.

Different mechanisms such as protein aggregation, oxidative
stress (OS), mitochondrial damage (MD), excitotoxicity and
RNA dysmetabolism seem to contribute to ALS. Evidence on
the relevance of these mechanisms comes in large part from
models based on the expression of ALS-linked mutant superoxide
dismutase 1 (SOD1). However, mutant SOD1 causes less than 1%
of ALS cases and the list of mutant proteins found in ALS patients
has grown noticeably in the last decade (Marangi and Traynor,
2014), to include a number of proteins related to cell functions
as diverse as RNA metabolism (TDP-43, FUS/TLS, Senataxin,

Abbreviations: ER, endoplasmic reticulum; ROS, reactive oxygen species;
RNS, reactive nitrogen species; PDI, protein disulphide isomerase.

Ataxin2, HNRNPA2/B1, ELP3, HNRNPA1), vesicle trafficking
(Alsin, FIG4, OPTN, VABP, CHMP2B) and proteasomal function
(UBQLN2, VCP). Noticeably, almost half of the familial cases
are linked to a non-coding sequence, i.e., to an expanded
hexanucleotide repeat in the C9orf72 gene.

Because mutations in SOD1, an ubiquitous superoxide
scavenging enzyme, were the first identified cause of familial
ALS in 1993, OS has been an obvious candidate to explain
the pathogenesis of this disease. MD was also demonstrated in
patients and in mutant SOD1 models soon after (reviewed in
Cozzolino et al., 2012) and the link between the two, OS and MD,
appeared most probable, if not obvious.

We will now briefly review recent evidence that OS and MD
are found also in non-SOD1 linked ALS.

OXIDATIVE STRESS IN ALS
OS biomarkers have been repeatedly found in sporadic ALS
patients, which may indicate that abnormal OS is relevant
to the pathogenesis of this disease (D’Amico et al., 2013).
A number of environmental factors may contribute to the
generation of noxious free radicals, both Reactive Oxygen Species
(ROS) and Reactive Nitrogen Species (RNS). For instance,
transition metal-mediated OS has been proposed to contribute
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to ALS pathogenesis more than 10 years ago (reviewed in Carrí
et al., 2003) and the role of metals is still discussed (Lovejoy
and Guillemin, 2014). While no single pro-oxidant factor has
emerged as crucially linked to sporadic ALS, recent genetic
evidence reinforces the concept that OS may play a main role
in familial ALS including in non-SOD1 ALS. For instance,
expression of mutant valosin-containing protein (VCP, a member
of the type II AAA+ ATPase family with a number of cellular
functions including mitochondrial quality control, autophagy,
vesicle transport and fusion, 26 S proteasome function, and
assembly of peroxisomes) found in ALS patients makes human
neuroblastoma SH-SY5Y cells susceptible to OS induced by
treatment with L-buthionine sulfoximine, an inhibitor of the
synthesis of glutathione (GSH; Hirano et al., 2014). GSH is
a free-radical scavenger tripeptide which is among the main
regulators of the intracellular redox state. Its levels are lower in
the motor cortex of ALS patients than in healthy volunteers in
vivo (Weiduschat et al., 2014) and decreasing GSH accelerates
neurological deficit and mitochondrial pathology in the mutant
SOD1 ALS mice model (Vargas et al., 2011). Furthermore,
GSH depletion in cultured neurons induces the formation of
cytoplasmic TDP-43 inclusions which are found in sporadic ALS
patients (Iguchi et al., 2012).

Alterations in markers of OS other than GSH are found
as a consequence of the expression of ALS-linked mutations.
For instance, expression of mutant TDP-43 in a motor neuron-
like cell line induces OS, MD and nuclear accumulation of
nuclear factor E2-related factor 2 (Nrf2) that is an indicator and
modulator of OS (Duan et al., 2010); in a yeast model, TDP-
43-expressing cells display increased markers of OS, apoptosis,
and necrosis and these cytotoxic effects are potentiated upon
expression of disease-associated variants (Braun et al., 2011) and
Drosophila flies engineered for motoneuron-directed expression
of TDP-43 have increased levels of protein carbonylation and
Glutathione S transferase D1, both known markers of OS (Zhan
et al., 2015). Overall these data indicate that OS is important also
for TDP-43-triggered cell death, although the mechanism is still
debated.

OS may not only increase the net production of ROS and
RNS, but also affect protein conformation and structure, leading
to the accumulation of the abnormal protein inclusions that
are extensively described in ALS mouse models and patient-
derived tissue. Cysteine-mediated aggregation of mutant SOD1
has been widely studied and wild type SOD1 also hyper-
aggregates when oxidized (Guareschi et al., 2012). Treatments
that deplete the cellular pool of GSH exacerbate mutSOD1s
insolubility, whereas an overload of intracellular GSH or
overexpression of glutaredoxins 1 and 2 significantly rescues
mutSOD1s solubility in the cytosol and in mitochondria,
respectively (Ferri et al., 2010). Interestingly, recent evidence
suggests that also wild-type and mutant TDP-43 aggregation
is caused by incorrect disulphide bonds involving Cys residues
in one of its RNA recognition motifs, and that aggregation
is promoted by OS (Cohen et al., 2012; Shodai et al.,
2013).

Aggregation of TDP-43 (Parker et al., 2012) and FUS (Gerbino
et al., 2013; Vance et al., 2013) proceeds, at least in part, through

the stress granules (SGs) pathway. SGs are highly dynamic
structures that are formed upon OS and contain RNA-binding
proteins, transcription factors, RNA helicases and nucleases that
work as sorting granules for mRNAs undergoing degradation,
storage or translation (Baron et al., 2013 and references therein).
SGs are found as a consequence of FUS mutation and mutated
FUS is more rapidly directed to SGs after OS than wild type FUS
(Bosco et al., 2010). Furthermore, TDP-43 is recruited to SGs in
conditions of OS (Colombrita et al., 2009). These SGs may simply
sequester a subset of mRNAs thus inducing cell dysfunction or
serve as nucleation site for larger protein aggregates as the ones
found in ALS patients.

Possibly representing a cellular response to this kind of
aggregation and as a reaction against ER stress and unfolded
protein response (UPR), protein disulfide isomerase (PDI)
expression levels are upregulated in spinal cord tissue of ALS
patients where PDI co-localizes with SOD1, TDP-43, and FUS
(Atkin et al., 2008; Honjo et al., 2011; Farg et al., 2012; Walker
et al., 2013). PDI co-localizes also with VAPB inclusions in
a Drosophila melanogaster model of ALS (Tsuda et al., 2008).
However, PDI itself contains an active site thiol group that is
necessary for its activity and it is found oxidized through S-
nitrosylation in ALS (Walker et al., 2010), which may lead to a
cycle of PDI upregulation and inactivation that perpetuates redox
dysregulation and protein aggregation.

Interestingly, even mutant C9orf72 repeats may be related to
OS. Indeed, similarly to what happens when expressing mutant
SOD1, motor neurons differentiated from patients’ iPSC (induced
Pluripotent Stem Cells) and expressing expanded C9orf72 repeat
display a significant induction of catalase, which is indicative
of OS, and a significant change in levels of the mitochondrial
transporter MTX3 (Kiskinis et al., 2014).

Mitochondria are a known target of OS because of their high
dependance on membrane integrity and because they possess
their own DNA and RNA that may be damaged by oxidation as
well.

MITOCHONDRIAL DAMAGE IN ALS
Keeping in mind that mitochondria are not only a target
of OS, but also the main site of production of ROS, it is
obvious that OS may result from impairment of mitochondrial
function.

A number of studies have reported altered mitochondrial
respiratory complex activity in ALS tissues including postmortem
brain and spinal cord tissue, patient lymphocytes, and in the
SOD1 transgenic mouse model of ALS (for a review Cozzolino
and Carrì, 2012; Tan et al., 2014). MD may follow the
accumulation of aggregated SOD1 associated to mitochondria
(Ferri et al., 2006) and result from the interaction of misfolded
SOD1 with mitochondrial partners (Israelson et al., 2010; Li
et al., 2010 and references therein). Evidence is accumulating
that MD takes place also as a consequence of the expression
of other ALS-related proteins, some of which are directly
linked to the function of these organelles. For instance,
mutations in VCP account for about 2% of familial ALS and
R155H/+ VCP knock-in mice show signs of motor damage
due to muscle denervation and degeneration accompanied by
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extensive accumulation of abnormal mitochondria in the inter-
myofibrillar space; in this model slow motor neuron loss is
accompanied by TDP-43 accumulation and extensive aggregation
of mitochondria (Yin et al., 2012; Nalbandian et al., 2013). In
a 2013 study in VCP-deficient cells and in fibroblasts with VCP
mutations, Bartolome et al. demonstrated that VCP deficiency
causes significant mitochondrial uncoupling, leading to decreased
mitochondrial membrane potential, increased mitochondrial
oxygen consumption and reduction of cellular ATP production
(Bartolome et al., 2013).

ALS may derive from mitochondrial DNA instability, as
suggested in a study on a family with a late-onset phenotype
including motor neuron disease and cognitive decline resembling
frontotemporal dementia. Those patients carried a missense
mutation in the CHCHD10 gene that encodes a mitochondrial
protein located in the intermembrane space and enriched at
cristae junctions. Muscle fibers from those patients are ragged-
red and cytochrome c oxidase-negative with respiratory chain
deficiency and abnormal assembly of complex V. Their fibroblasts
have respiratory chain deficiency, mitochondrial ultrastructural
alterations and fragmentation of the mitochondrial network
(Bannwarth et al., 2014).

Neuronal mitochondrial abnormalities occur also in models
of familial ALS associated with proteins that are (at least
apparently) not related with these organelles. MD is observed
together with oxidative damage and induction of mitophagy
in the motor neuron-like NSC34 cell line expressing wild
type or mutant TDP-43 (Duan et al., 2010; Hong et al.,
2012). Mice expressing wild-type human TDP-43 show a
pathology resembling ALS and motor neurons from these mice
display cytoplasmic TDP-43 positive inclusions composed of
mitochondria aggregates (Xu et al., 2010), that may arise from
defective intracellular trafficking and result in the reduction of
mitochondria at nerve terminals of neuromuscular junctions
(Shan et al., 2010). However, in mice expressing the mutant TDP-
43(A315T) protein, morphological abnormalities appear after the
onset of transport defects (Magrané et al., 2014). In another study,
MD in heterozygous TDP-43(A315TKi) animals is indicated by
the formation of abnormal neuronal mitochondrial cristae and
decrease in expression of Parkin and the fatty acid transporter
CD36 along with an increase in fatty acids, HDL cholesterol, and
glucose in the blood (Stribl et al., 2014). TDP-43 also perturbs ER-
mitochondria interactions and this is associated with disruption
in cellular Ca2+ homeostasis (Stoica et al., 2014). Disturbance of
mitochondrial Ca2+ transport in ALS have been widely described
in SOD1 models in vitro and in vivo by the group of B. Keller
(Jaiswal and Keller, 2009; Jaiswal et al., 2009) and by others; this
aspect has been recently reviewed in detail (Barrett et al., 2014;
Tadic et al., 2014) and thus we will not discuss it in this paper.

Not much evidence of functional MD in FUS-linked ALS
is reported. However, mitochondria are disorganized in post-
mortem neurons from juvenile ALS patients (Huang et al.,
2010) and shorter in cultured motor neurons expressing
cytoplasmic FUS mutants (Tradewell et al., 2012). Furthermore,
overexpression of ALS-linked human mutant FUS leads to Golgi
fragmentation and mitochondria aggregation in rats (Huang
et al., 2012).

How the overexpression or mutations of two proteins,
TDP-43 and FUS, which are clearly involved in physiological
mRNA metabolism, may result into MD in ALS is not clear
at all.

One possibility is that misregulation of some step of RNA
maturation leads to altered expression of proteins involved
in mitochondria homeostasis. This may be the case for FUS,
which transcriptionally regulates the expression of OS protection
genes through the interaction with peroxisome proliferator-
activated receptor coactivator 1-α (PGC-1α; Sánchez-Ramos
et al., 2011), that is a known regulator of mitochondrial
biogenesis and function. In this context, MD may arise indirectly
from modulation of Sirtuins (class III histone deacetylases).
In fact PGC-1α is downregulated in ALS patients and it is
known that silencing of PGC1α reduces the expression of
SIRT3, which is the main mitochondrial deacetylase with a
number of substrates (including SOD2), whose main function
is to counteract ROS production and detoxification (Bause and
Haigis, 2013), while overexpression of SIRT3 stimulates the
expression of PGC1α causing a further decrease of ROS in a
positive feedback loop (Kong et al., 2010). Interestingly, both
SIRT3 and PGC-1α protect against mitochondrial fragmentation
and neuronal cell death in rat spinal cord motor neurons
overexpressing ALS-linked mutant SOD1-G93A (Song et al.,
2013). Furthermore, nuclear SIRT1 also induces the expression
of OS response genes and promotes mitochondrial biogenesis
by activating PGC-1α (Hall et al., 2013). Nonetheless, SIRT1
overexpression does not protect neurons against toxicity induced
by mutant G93A-SOD1 (Valle et al., 2014 and reference
therein).

Another possibility is that, similarly to mutant SOD1,
TDP-43 and FUS have a pathological tendency to associate
with mitochondria and to aggregate. Indeed, both wild type
and a truncated form of TDP-43 were found localized in the
mitochondria in NSC34 cells (Hong et al., 2012) and TDP-43
aggregates around mitochondria in a yeast model where altered
mitochondrial respiratory activity is observed (Braun et al., 2011).
Furthermore, FUS interacts with several proteins involved in
mitochondrial metabolism and significantly reduces ATP levels in
cells with FUS accumulation (Wang et al., 2015).

CONCLUSIONS
Previous failures in translating antioxidant and mitochondria-
protective strategies that were effective in the mutant SOD1
mouse model into positive clinical trials has cast a doubt on
the real relevance of OS and MD in ALS and suggested that the
SOD1 model represents only a fraction of a more heterogeneous
population. However, new evidence has accumulated in recent
years supporting the view that MD and OS play a role also
in non-SOD1 ALS (Figure 1). This evidence is still somewhat
sparse and often comes from studies in cell or invertebrate
models that may represent only a few aspects of the human
pathology. Nonetheless, while it has become clear that ALS
is a complex disease with various presentation including an
overlap with fronto-temporal dementia (Talbot, 2014), OS and
MD may still represent a common denominator of motor
neuron degeneration in ALS, and therefore a valuable target
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FIGURE 1 | Mitochondrial dysfunction and oxidative stress (OS) are
tightly dependent on each other and are the basis of the redox
dysregulation in ALS. Increased production of ROS/RNS, the ER stress and,
at least in part, transcriptional dysregulation and abnormal RNA processing
are all consequences of mitochondrial dysfunction and OS contributing to
death of motor neurons. In turn, these pathological events cause other

correlated detrimental effects as the formation of misfolded protein leading to
insoluble cytosolic and mitochondrial aggregates, impaired axonal transport
and alteration of the enzymatic activity of PDI. The line between cause and
effect of individual events is however often difficult to draw since they are all
tightly dependent/connected. Red arrows may be considered as primary
causes, grey arrows as secondary causes/effects.

that encourages transfer of new knowledge from research into
preclinical testing.
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