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Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating

oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While

OPCs are innervated by unmyelinated axons in the normal brain, the fate of such

synaptic contacts after demyelination is still unclear. By combining electrophysiology

and immunostainings in different transgenic mice expressing fluorescent reporters, we

studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced

demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the

lesion was revealed by the presence of AMPA receptor-mediated synaptic currents,

VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions

observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1

and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in

post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions

demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early

after demyelination that was not caused by an impaired conduction of compound

action potentials. A reduction in synaptic connectivity was confirmed by the lack of

VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with

EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in

lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of

spontaneous synaptic currents did not reach control levels. In conclusion, our results

demonstrate that newly-generated OPCs do not receive synaptic inputs during their

active proliferation after demyelination, but gain synapses during the remyelination

process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation

and might have a physiopathological relevance in demyelinating disorders.

Keywords: NG2 cells, oligodendrocyte precursor cells, oligodendrocyte, neuron-OPC synapses, demyelination,

multiple sclerosis

Introduction

Demyelination is defined by the loss of the myelin sheath insulating nerve fibers. The impor-
tant consequences of demyelination are imposed on the axon in the form of disturbed conduc-
tion and compromised survival. In a process referred to as remyelination, the central nervous
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system (CNS) has the capacity to restore myelin sheaths
to demyelinated axons enabling them to recover conduction
of action potentials and to provide effective neuroprotection
(Franklin and Ffrench-Constant, 2008). This regenerative process
is mainlymediated by the endogenous oligodendrocyte precursor
cells (OPCs) expressing the proteoglycan NG2 (Nishiyama et al.,
2009), that serve as a major source of remyelinating oligodendro-
cytes in demyelinating diseases, such as multiple sclerosis (MS).
However, in MS, the extent of remyelination often fails, leading
to chronically demyelinated lesions with substantial axonal loss
(Trapp et al., 1998). The reasons why remyelination fails in MS
are not completely understood, although the complex patholog-
ical environment within the lesion is probably a major cause.
Understanding the mechanisms that control proliferation and
differentiation of OPCs in demyelinating conditions is an excit-
ing challenge as it may lead to enhanced myelin repair. This is
also of significant clinical interest as it might open up perspectives
for new remyelinating therapies.

Cells of the oligodendroglia lineage express different types
of functional glutamatergic receptors in the living tissue such
as AMPA, NMDA, kainate and metabotropic glutamate recep-
tors (Berger et al., 1992; Matute, 1998; Yuan et al., 1998; Ziak
et al., 1998; Karadottir et al., 2005; Salter and Fern, 2005; Kuk-
ley and Dietrich, 2009; Haberlandt et al., 2011). However, only
scant information exists on the activation modes of most recep-
tors. While AMPA receptors in OPCs are known to be activated
through synaptic release fromneurons (Bergles et al., 2000), other
receptors are likely activated by extrasynaptic mechanisms that
still need to be identified (Maldonado and Angulo, 2014). Inter-
estingly, OPCs in both gray and white matter receive functional
AMPA receptor-mediated synapses from neurons (Bergles et al.,
2000; Kukley et al., 2007; Ziskin et al., 2007). Most studies have
shown that OPCs receive synaptic inputs from unmyelinated
axons and express Na+ conductances, though they are unable to
trigger action potential firing (De Biase et al., 2010; Kukley et al.,
2010; Maldonado et al., 2011; Sun and Dietrich, 2013). Never-
theless, OPCs do not necessarily have the same intrinsic electro-
physiological properties in young and adult mice, supporting the
idea that the properties of an existing population of OPCs change
during development and give raise to distinct adult OPCs (Mal-
donado et al., 2013). Whether modifications of intrinsic proper-
ties arise in adult white matter OPCs in pathological conditions
is currently unknown. The role of neuron-OPC synapses also
remains unclear.

In the corpus callosum, unmyelinated axons establish gluta-
matergic synapses with OPCs as early as the first postnatal week
and synaptic connectivity increases in the adult (Kukley et al.,
2007; Ziskin et al., 2007; De Biase et al., 2010). After a demyeli-
nating injury, demyelinated axons also form functional synapses
with a minor pool of OPCs derived from the subventricular zone
(SVZ) that contribute to oligodendrocyte regeneration (Etxeber-
ria et al., 2010). However, whether all endogenous OPCs within
demyelinated lesions are contacted by synapses and whether
these synapses are regulated after demyelination is still unknown.
In the present study, we use a model of lysolecithin (LPC)-
induced focal demyelination of the corpus callosum in mice
expressing specific fluorescent reporters to analyse glutamatergic

innervation of reactivated OPCs, which are characterized by
higher proliferation and migration properties following injury.
Virtually all recorded OPCs in control and LPC-induced lesions
display Na+ currents and no changes in voltage-independent K+

conductances. Reactivated OPCs exhibit synaptic currents sen-
sitive to the AMPA receptor antagonist NBQX. They also were
characterized by the presence of VGluT1+ puncta inmouse LPC-
induced demyelinating lesions and in MS tissue. Importantly,
a drastic down-regulation of functional glutamatergic synapses
occurs during the active proliferation following demyelination in
the mouse LPC-induced lesions.

Materials and Methods

LPC-Induced Demyelination
All experiments followed European Union and institutional
guidelines for the care and use of laboratory animals. Histo-
chemical and electrophysiological experiments were performed
with transgenic mice used at adult heterozygous stages: NG2-
DsRed (Ziskin et al., 2007), PDGFRα-GFP (Hamilton et al.,
2003), CNPase-GFP (Yuan et al., 2002) and Cx3CR1-GFP (Jung
et al., 2000). Wild-type (Wt) C57BL/6 adult mice were also used
for histological analysis of VGluT1 onNG2+ cells. Focal demyeli-
nating lesions were induced by a stereotaxic injection of 2µl
lysolecithin solution (LPC, Sigma, 1% LPC in 0.9% NaCl) in the
corpus callosum in single or double adult (PN40-PN70) trans-
genic mice anesthetized with Ketamine (0.1mg/g) and Xylazine
(0.01mg/g) as previously described (coordinates: 1mm lateral,
1.5mm rostral to Bregma, and 1.8mm depth to brain surface;
Figure 1A, (see also Tepavcevic et al., 2011). Control mice were
injected with saline solution only.

Acute Slice Preparation and Electrophysiology
Acute coronal slices (300µm) of LPC-injected corpus callosum
were prepared from different mouse strains following previously
described procedures (Vélez-Fort et al., 2010). Briefly, patch-
clamp recordings were performed at 33◦C using an extracellular
solution containing (in mM): 126 NaCl, 2.5 KCl, 1.25 NaH2PO4,
26 NaHCO3, 20 glucose, 5 pyruvate, 2 CaCl2 and 1 MgCl2
(95% O2, 5% CO2). The intracellular solution contained (in
mM): 130 Cs-gluconate, 10 4-aminopyridine, 5 tetraethylam-
monium chloride, 5 EGTA, 0.5 CaCl2, 2 MgCl2, 10 HEPES, 2
Na2-ATP, 0.2 Na-GTP, and 10 Na2-phosphocreatine (pH ≈ 7.4,
296 mOsm). Potentials were corrected for a junction potential
of −10mV. Whole-cell recordings of OPCs were obtained using
Multiclamp 700B, filtered at 4 kHz and digitized at 20 kHz. Dig-
itized data were analyzed off-line using pClamp10.1 (Molecular
Devices) and Spacan, a collection of IGOR Pro functions (Dugue
et al., 2009). In our conditions, the input resistance of OPCs
was 5.03 ± 0.57G� (n = 23), 5.21 ± 0.93G� (n = 16), 5.25
± 0.81G� (n = 42) and 4.94 ± 0.76G� (n = 46) in con-
trol, at 4, 7, and 14 days post injection (dpi), respectively (p >

0.05). The voltage-independent K+ current density for each cell
was calculated by dividing the K+ current amplitude obtained
at −120mV by its capacitance. The Na+ current density for
each cell was calculated by dividing the Na+ current amplitude
obtained after leak subtraction at −10mV by its capacitance. It
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FIGURE 1 | LPC-induced demyelination model. (A) Lysolecithin (LPC)

was injected in the corpus callosum (CC) under anesthesia in a

stereotaxic apparatus (coordinates respect to bregma: 1mm lateral,

1.5mm rostral; 1.8mm depth to brain surface); Cx, cortex; Hip,

hippocampus; St, striatum; OB, olfactory bulb. (B,C) Sagittal slices of a

healthy control corpus callosum (B) and an LPC-induced lesion at 7

days post injection (dpi) (C) stained with MBP (green) and Dapi (blue).

(D) Sagittal slice of an LPC-induced lesion in the mouse corpus

callosum at 7 dpi stained with MBP (green), CD45 (red) and DAPI

(blue). (E) DIC video microscopy of the LPC lesion (dashed lines) at

7 dpi in a coronal acute corpus callosum slice. Note the trace of the

injection pipette (arrowhead).

is noteworthy that pericytes express DsRed in NG2-DsRed mice
(Supplementary Figure 1A). These cells are easily discarded for
recordings by their bipolar shape that line blood vessels visible in
DIC, as we previously performed (Vélez-Fort et al., 2010; Mal-
donado et al., 2013). Spontaneous and miniature synaptic cur-
rents of OPCs were recorded at a holding potential of −90mV
and detected with a threshold of 3 times the noise standard devi-
ation during a time window of 2min for controls, 7 and 14 dpi
and of 5min for 4 dpi. We verified that there is no correlation
between the frequency of the spontaneous currents and the noise
standard deviation either when plotting the data of all recorded
cells together or when plotting the data separately for each data
group (p > 0.05). In addition, no differences of the mean of noise
standard deviation were observed among groups (2.4 ± 0.1 pA,
2.3 ± 0.1 pA, 2.5 ± 0.3 pA, 2.3 ± 0.1 pA for control, 4, 7, and
14 dpi, respectively; p > 0.05). The lack of synaptic currents in
cells without synaptic activity was confirmed by bath application
of the potent secretagogue ruthenium red (75µM). Compound
action potentials (CAPs) were obtained by stimulating whitemat-
ter fibers at two different positions with a monopolar tungsten
electrode while a recording electrode (glass pipette) was placed
in the lesion core (100µs stimulations; Iso-Stim 01D, npi elec-
tronic GmbH, Tamm, Germany). This allowed us to calculate the
conduction velocity (Vc) as follows: Vc = D1-D2/L, where D1
and D2 correspond to the longer and shorter distance between
the stimulation and recording electrode, respectively, and L to
the latency between CAP onsets obtained for the two electrode
positions.

Immunohistochemistry, EDU Treatment and
Electron Microscopy
Adult mice were anesthetized and transcardially perfused with
2% paraformaldehyde. Brains were dissected and post fixed for
2–4 h, cryoprotected in 20% sucrose and stained using standard
protocols. The following primary antibodies were used: rabbit
anti-NG2 (1:200; Millipore), rabbit anti-Olig2 (1:200; Millipore),
mouse anti-Olig1 (1/100, R and D Systems), mouse anti-CC1
(1:100; Abcam), mouse anti-VGluT1 (1:500; Millipore), rab-
bit anti-Iba1 (1:100; Millipore), rat anti-PDGFRα (1:200; Santa
Cruz) and rabbit anti-MBP (1:100;Millipore). Edu (Invitrogen), a
BrdU analog, was injected intraperitoneally (75mg/kg) every 2 h
for 10 h before sacrifice at 4 dpi. Edu staining was detected with
the Click-It™ Kit (Invitrogen). For electron microscopy analy-
sis, Wt brains were processed as previously described (Tepavcevic
et al., 2011) and imaged using a Siemens electron microscope.

Confocal Microscopy analysis
Images were acquired using an Olympus confocal microscope or
a Zeiss apotome system (AxoVision LE Rel 4.5) and processed
using Axovision, ImageJ, Adobe Photoshop/Illustrator (Adobe
Systems) and Volocity (3D images; PerkinElmer). For quanti-
tative analysis, the number of reporter+ oligodendroglial cells
expressing NG2, CC1, or Olig2, was counted and expressed as
a percentage of the total number of reporter+ cells. To visual-
ize the co-localization between VGluT1 puncta and NG2 labeling
in lesions, we used 3D reconstructions (z-stack of 6µm; 0.2µm
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z-step). Single OPCs were isolated and VGluT1 puncta were fil-
tered according to a size ranging from 0.3–0.7µm in diameter
(Herzog et al., 2011).

MS Tissue Samples
Autopsy brain samples from eight MS patients with confirmed
secondary progressive (SP, n = 7) and relapsing progressive (RP,
n = 1) disease course, and three control cases without neurologi-
cal diseases, were obtained from the British MS Tissue Bank (col-
laboration with Dr R. Reynolds, London) and the French Brain
Tissue Bank GIE-NeuroCEB (Hôpital Pitié-Salpêtrière, France).
All MS lesions were characterized using Luxol fast blue/MHCII
(macrophages/microglia) staining and classified according to
their inflammatory activity and on the basis of histological cri-
teria of acute lesions (active demyelination, myelin vacuola-
tion, inflammation or edema, minor gliosis and vague margin),
chronic lesions (no myelin vacuolation, absence of inflamma-
tion, gliosis, axonal loss and sharp margin) and shadow plaques
(myelin pallor; Lassmann, 1998). Immunohistochemistry of NG2
and VGluT1 and 3D reconstructions of cells were performed
as described above. VGluT1+ punctas per OPC were analyzed
in active, chronic active and shadow plaques, as well as in the
normal appearing white matter of controls and MS cases.

Statistical Analysis
All values are expressed as mean ± SEM. Each data group was
first subject to D’Agostino and Pearson normality Test. Accord-
ing to the data structure, multiple group comparisons were done
using eitherOneWayANOVAorKruskal-Wallis test. Bonferroni
or Dunn’s multiple comparison post-hoc tests were used respec-
tively. All statistical tests were performed with GraphPad Prism
5.00 software (GraphPad Software Inc., USA). Correlation was
tested with the Spearman r-test.

Results

Transgenic Mouse Strategy to Identify OPCs in
Acute Slices of the Demyelinated Mouse corpus

callosum
Demyelinating lesions, induced by stereotaxic injection of LPC
into the adult mouse corpus callosum (Figure 1A), were defined
by the loss of myelin (Figures 1B,C) and by an increased num-
ber of inflammatory cells (Figure 1D). To analyze the electro-
physiological properties of OPCs following demyelination, we
performed coronal acute brain slices in control and after demyeli-
nation. The demyelinated area in corpus callosum was identified
with DIC videomicroscopy at low magnification as a brighter
region than the normal white matter surrounding it (Figure 1E).

All patch-clamp recordings were performed inside the lesion
core in adult NG2-DsRed;CNPase mice. This double transgenic
line allowed us to unambiguously discriminate OPCs and oligo-
dendrocytes in brain slices and compared their electrophysio-
logical properties in lesions, as all cells of the oligodendroglial
lineage express GFP in the CNPase-GFP mouse line (Yuan
et al., 2002). The large majority of DsRed+/GFP+ cells in the
lesion had the immunohistochemical phenotype of NG2+ OPCs
(Figure 2A) while DsRed−/GFP+ cells were labeled for CC1, a

specific marker of differentiated oligodendrocytes (Figure 2B).
As expected in the LPC model of demyelination (Watanabe
et al., 2002), the population of DsRed+/GFP+ OPCs was
largely increased at 7 dpi whereas a clear increase in differen-
tiated DsRed−/GFP+/CC1+ oligodendrocytes was detected at
14 dpi (Figure 2D). In addition to DsRed+/GFP+ OPCs and
DsRed−/GFP+ oligodendrocytes, we observed the presence of
DsRed+/GFP- cells with large somata and thick primary pro-
cesses inside the lesion, characteristic of activated microglia. To
confirm the expression of DsRed by microglia in LPC-induced
lesions, we used the microglial marker Iba1 and confirmed the
expression of DsRed in Iba1+ cells (Figure 2C, see also Bu et al.,
2001). Hence, in LPC-induced lesions, the NG2-DsRed;CNPase-
GFPmouse line allows for the unequivocal identification of OPCs
from mature oligodendrocytes and microglia by the simultane-
ous expression of both DsRed and GFP.

Reporter+ cells were recorded with a Cs-gluconate-based
intracellular solution at −90mV in acute brain slices. We found
that 90% of DsRed+/GFP+ cells show a voltage-dependent
current profile characteristic of OPCs with outwardly
rectifying steady-state currents and inward Na+ currents
(Figures 2E,H). The remaining 10% of DsRed+/GFP+ cells
and all DsRed−/GFP+ cells had the linear current profile of
mature oligodendrocytes (Kukley et al., 2010) with large K+

currents insensitive to intracellular Cs+ (Figures 2F,H). Finally,
DsRed+/GFP- cells, excluding pericytes (see Materials and
Methods), expressed a time and voltage-dependent outward
current and lacked inward Na+ currents (Figures 2G,H),
typical of activated microglia in cell culture (Klee et al., 1999).
To further confirm the expression of DsRed by microglia in
LPC-induced lesions, we also performed patch-clamp recordings
of DsRed+/GFP+ cells in LPC lesions of the double transgenic
NG2-DsRed;Cx3CR1-GFP (microglia marker) mice, and con-
firmed that all double reporter+ cells had the above described
microglia electrophysiological phenotype (Figure 2H). Hence,
the electrophysiological characteristics of different reporter+
cells inside the lesion perfectly match the immunohistochemistry
analysis. The major characteristic distinguishing OPCs from
microglia and oligodendrocytes in lesions is the presence of Na+

currents, similarly to previous observations on OPCs in normal
conditions (De Biase et al., 2010; Kukley et al., 2010).

In the healthy adult brain of this double transgenic
line, DsRed was predominantly expressed in pericytes
(Supplementary Figure 1A). Very few DsRed+/GFP+ OPCs
were detected in both white and gray matter regions, particularly
after PN45, and the large majority of DsRed−/GFP+ cells were
mature oligodendrocytes (Figures 2B,F). Therefore, to recognize
OPCs in healthy white matter, we used the PDGFRα-GFP
mouse line. Immunohistochemical analysis showed that 50%
of GFP+ cells expressed NG2 (Supplementary Figures 1B,D),
while the remaining cells were mature CC1+ oligodendro-
cytes (Supplementary Figures 1C,D; Clarke et al., 2012).
Consistent with this data, patch-clamp recordings from the non-
demyelinated corpus callosum of PDGFRα-GFP mice revealed
that 52% of recorded GFP+ cells had the typical current profile
of OPCs with Na+ currents (Supplementary Figures 1E,G);
the remaining 48% showing the classical linear phenotype of
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FIGURE 2 | Immuno-characterization and electrophysiological

properties of OPCs, oligodendrocytes and microglia in

transgenic lines following demyelination. (A) OPCs were identified

as DsRed+/GFP+ cells (arrows) in the NG2-DsRed;CNPase-GFP

double transgenic mouse. (B) Mature oligodendrocytes were identified

as CC1+ cells (blue) and also expressed GFP (arrows) but not

DsRed. (C) Iba1+ resident microglia/macrophage expressing DsRed in

the NG2-DsRed mouse strain. (D) Bar plot showing the percentage of

NG2+ and CC1+ cells within control and lesioned corpus callosum in

CNPase-GFP animals (N = 3 mice). (E) Currents elicited by voltage

steps from +40mV to −120mV in a DsRed+/GFP+ OPC. held at

−90mV and recorded inside a lesion. Note the presence of INa+

(inset). (F) Currents induced by voltage steps from +40mV to

−120mV in a DsRed−/GFP+ oligodendrocyte at 14 dpi held at

−90mV. (G) Currents induced by voltage steps from +40mV to

−120mV in a DsRed+/GFP− microglia held at −90mV. Note the

absence of INa+ (inset). We confirmed that DsRed was expressed in

activated microglia inside lesions by crossing NG2-DsRed line with the

CX3CR1-EGFP strain in which microglia/macrophages express GFP

(see Figure 1H) (Avignone et al., 2008). (H) Bar plot for the

proportion of OPCs (O), microglia (M) and oligodendrocytes (OL)

identified by their electrophysiological profiles and recorded in different

mouse strains following demyelination. Scale bars for insets: 10µm.
∗∗p < 0.01, ∗∗∗p < 0.001 respect to Olig2 expression.

mature oligodendrocytes (Supplementary Figures 1F,G; see
also Kukley et al., 2010). Therefore, our strategy was to use
PDGFRα-GFP line as controls and NG2-DsRed;CNPase-GFP
line to record reactivated OPCs, mature oligodendrocytes and
activated microglia after LPC-induced demyelination.

In order to reveal any potential upregulation of
voltage-independent K+ conductances in OPCs after demyeli-
nation as reported during gray matter development (Maldonado
et al., 2013) and to test for potential modifications on Na+

channel-mediated current amplitudes in reactived OPCs, we
compared the capacitance, K+ and Na+ current densities
between controls and at 4, 7, and 14 dpi (Figures 3A–C). No
differences were detected in lesions with respect to controls
and at any time point after LPC injection. Overall, our results
indicate that appropriate transgenic lines are needed to ensure
OPC, oligodendrocyte and microglia identification under patho-
logical conditions and that Na+ and voltage-independent K+

conductances of OPCs are not affected by LPC-induced lesions.
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FIGURE 3 | Voltage-independent K+ currents and Na+ currents did not

change in white matter OPCs following demyelination. (A–C)

Capacitance, K+ and Na+ current densities of OPCs recorded in control

conditions and in lesions at different dpi. K+ and Na+ current densities were

calculated at −120mV and −10mV, respectively (see Materials and Methods).

Note that the scale is 10 times smaller for K+ than for Na+ current densities.

ns, not significant.

OPCs Receive Glutamatergic Synaptic Inputs in
Demyelinated Lesions
To determine the presence of synaptic connectivity in reporter+
cells of demyelinated lesions, we recorded DsRed+/GFP+OPCs,
DsRed+/GFP−microglia and DsRed−/GFP+ oligodendrocytes
in slices from 7 dpi NG2-DsRed;CNPase-GFP mice (Figure 4).
As expected from previous studies (Kukley et al., 2007; Ziskin
et al., 2007; Etxeberria et al., 2010), spontaneous synaptic activ-
ity blocked by the AMPA/kainate receptor antagonist NBQX
was recorded only in reactivated OPCs (Figures 4A–C). Nei-
ther activated microglia, (n = 12; Figures 4E,F) nor mature
oligodendrocytes (n = 14; Figures 4G,H) exhibited sponta-
neous synaptic currents in lesions, even in the presence of
75µM ruthenium red (n = 4 for each cell type). Therefore,
our electrophysiological data demonstrate that OPCs display
NBQX-sensitive spontaneous synaptic activity while microglia
and mature oligodendrocytes completely lack synaptic events.

The existence of synaptic junctions in corpus callosum lesions was
corroborated by electron microscopy analysis. Figure 4D illus-
trates the ultra-structural anatomy in a lesion of a synaptic con-
tact between an axon and a putative OPC process distinguished
by the lack of gliofilaments and lipofuscin granules, two typical
features of astrocytes and microglia respectively. This synapse
is characterized by a rigid parallel apposition of membranes,
an accumulation of small and round pre-synaptic vesicles and
an electron-dense post-synaptic active zone (Figure 4D, inset),
which are typical features of asymmetric excitatory synapses
(Kukley et al., 2007; Ziskin et al., 2007; Harris and Weinberg,
2012).

To complement our electrophysiological data on OPC synap-
tic connectivity, we visualized glutamatergic contacts of OPCs,
using 3D confocal reconstructions of VGluT1 andNG2 immuno-
labeling in control corpus callosum and within demyelinated
lesions at 7 dpi (Figures 5A–C). NG2+OPCs were distinguished
from activated microglia/macrophages based on their typical
amoeboid morphology (data not shown). Our data revealed
numerous VGluT1+ puncta on OPC in both the control tissue
and within the lesion at 7 dpi (Figures 5A–C). We also exam-
ined VGluT1 and NG2 expression in MS post-mortem brain
samples. MS lesions were first classed as active, chronic active,
chronic silent, shadow plaques and normal appearing white
matter (NAWM) according to Luxol-fast blue/MHCII staining.
Figure 5D illustrates a typical chronic active lesion in the subcor-
tical white matter with a typical silent core and an active border
filled with MHCII+ microglia/macrophages. Interestingly, 3D
reconstruction of VGluT1 andNG2 immunostaining inMS brain
sections (Figures 5E,F) revealed also glutamatergic VGluT1+
puncta on NG2+ OPCs in active lesions as well as in active bor-
ders of chronic lesions (Figure 5F). It is noteworthy that NG2+
cells in these human brain samples also expressed the specific
oligodendroglial marker Olig1, which never co-localized with
Iba1 (Supplementary Figure 2). Therefore, our data demon-
strate the presence of glutamatergic axon-OPC contacts both
in mouse LPC-induced demyelinated lesions and in active MS
lesions.

Regulation of Axon-OPC Synaptic Activity in
LPC-Induced Demyelinating Lesions
To test whether synaptic properties of reactivated OPCs are mod-
ified in LPC lesions, we recorded spontaneous currents of OPCs
in slices from control animals and at 4, 7, and 14 dpi which
correspond to major phases of OPC proliferation and differen-
tiation inside the lesion (Nait-Oumesmar et al., 1999). At 4 dpi,
most cells were weakly or not connected, suggesting that newly
generated OPCs may receive few or no synaptic contacts inside
the lesion (Figures 6A,B). The proportion of innervated OPCs
in control brain slices was 97% (Figure 6D). Interestingly, this
proportion fell to 38% at 4 dpi (Figure 6D) and the frequency
of spontaneous synaptic events recorded in innervated OPCs at
this stage was also greatly reduced (Figures 6B,E). It is also note-
worthy that the reduction in synaptic activity at 4 dpi might be
caused by a decrease of membrane time and space constants and
therefore by a filtering of postsynaptic currents in recorded cells.
However, in our recording conditions, we did not observe any
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FIGURE 4 | OPCs display NBQX-sensitive spontaneous synaptic

activity while microglia and oligodendrocytes completely lack

synaptic events. (A) Currents elicited in an OPC at 7 dpi by voltage

steps from +40 to −120mV. Note the presence of INa+ (inset). (B,C)

Spontaneous synaptic currents (∗) recorded at −90mV from the same

OPC in control (B, frequency: 1.34Hz) and after bath applying 10µM

NBQX (C, frequency: 0Hz). (D) Electron-micrograph of a LPC lesion at

14 dpi, illustrating a typical synaptic contact between an axon and a

putative OPC process (arrowheads, inset). Note that the postsynaptic

process lacks gliofilaments and lipofuscin granules, two typical features

of astrocytes and microglia, respectively. (E,G) Currents induced by

voltage steps from +40 to −120mV in a microglia at 7 dpi (E) and an

oligodendrocyte at 14 dpi (G) held at −90mV. (F,H) Currents recorded

at −90mV from the same cells. Note the lack of synaptic events in

both cells types (n = 12 and n = 14 for microglia and oligodendrocytes,

respectively). Scale bar for inset: 200 nm.

change in capacitance, membrane time constant or input resis-
tance with respect to controls and no correlation was obtained
between synaptic current frequency and input resistance (Spear-
man r:−0.116; p > 0.05). In addition, bath application of 75µM
ruthenium red alone did not reveal any synaptic current in OPCs
lacking synaptic activity at 4 dpi (n = 5). Hence, to determine
whether this loss of synaptic activity of OPCs at 4 dpi is cor-
related with active proliferation of endogenous OPCs, lesioned
mice were injected with EdU (5 injections of EdU at 2 h intervals
before sacrifice) in order to label actively proliferating cells. Our
results show that all EdU+/NG2+ OPCs within the lesion virtu-
ally lacked VGluT1+ contacts (Figures 6F,G). In contrast, NG2+
OPCs with VGluT1 puncta detected in the normal appearing
white matter were not labeled with EdU (Figure 6H). Altogether,
these results show a strong down-regulation of synaptic inputs in
actively proliferating OPCs in demyelinated lesions.

After 4 dpi, the proportion of connected OPCs recovered
to more than 90% at 7 dpi and remained high at 14 dpi
(Figures 6C,D). Even though the proportion of connected OPCs
recovered, the frequency of synaptic currents did not increase
back to control levels (Figures 6D,E). Nevertheless, the aver-
aged amplitude and kinetics of spontaneous synaptic events were

similar at all-time points with respect to controls and equally sim-
ilar to those of miniature synaptic events, recorded in the pres-
ence of TTX and ruthenium red (Figures 7A–C). This implies
that spontaneous synaptic events correspond to currents gen-
erated by release of single vesicles. Estimated quantal size was
around 10 pA at a holding potential of −90mV in both the con-
trol and lesioned brains. Differences in both the proportion of
connected cells at 4 dpi and the frequency of synaptic events at 4,
7, and 14 dpi are thus not explained by a decrease in the quantal
size after demyelination.

Finally, we asked whether this deficit might result from a lack
of axonal conduction in the lesion after demyelination by ana-
lyzing extracellular compound action potentials (CAPs). Callosal
stimulation in control tissue elicited field responses characterized
by two waves with different conduction velocities correspond-
ing to myelinated and unmyelinated fibers (conduction veloc-
ities of 0.46 ± 0.05m.s−1 and 0.23 ± 0.01m.s−1, respectively
(n = 5); Figures 7D,E; see Materials and Methods). As expected
for a demyelinating lesion, only the CAP peak corresponding to
unmyelinated and demyelinated axons was detected at 4, 7, and
14 dpi (conduction velocities: 0.25± 0.02m.s−1 for 4 dpi (n = 6)
and 0.29± 0.04m.s−1 for 7 and 14 dpi (n = 5); Figure 7E). CAPs
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FIGURE 5 | VGluT1+ a xon-OPC contacts in LPC-demyelinated and

MS lesions. (A) Immunohistochemistry showing NG2 (red) and VGluT1

(green) labeling in a LPC-induced lesion at 7 dpi. Arrow indicates a VGluT1

puncta. (B,C) 3D reconstruction of NG2 (red) and VGluT1 (green) labeling in

control (B) and LPC-induced lesions at 7 dpi (C). Contacts are indicated by

arrows. (D) MS brain section stained with Luxol fast blue/MHCII (black),

illustrating a typical chronic active lesion in the subcortical white matter. The

different areas of the lesion were classified as active, chronic silent and

normal appearing white matter (NAWM). Active borders of chronic active

lesions were filled with MHCII+ macrophages/microglia, while chronic silent

cores were devoid of labeling. (E) Immunohistochemistry showing NG2 (red)

and VGluT1 (green) staining in the active border of a chronic active lesion. (F)

3D reconstruction of a NG2 cell (red) with VGluT1 puncta (green, arrows) in

the active border of a lesion. Nuclei were stained with Dapi (blue).

had variable amplitudes and were not significantly modified at
any time point (Figure 7F). Altogether, our data demonstrate
major changes in glutamatergic synaptic connectivity of OPCs
in demyelinated lesions, independent on the ability of axons to
conduct action potentials.

Discussion

The major finding of this study is that important alterations
of the synaptic connectivity between neurons and OPCs occur
following demyelination, which could have a physiopathologi-
cal relevance in demyelinating diseases. Whereas, virtually all
recorded OPCs display Na+ currents and no changes in voltage-
independent K+ conductances, newly-generated OPCs do not
receive synaptic inputs during their active proliferation after
demyelination, but gain synapses during the remyelination pro-
cess. Importantly, we also demonstrated the presence of axonal-
OPC contacts in active MS lesions.

We showed that transgenic lines constitute a powerful tool
for a reliable identification of OPCs in acute slices, but that they
have to be used with pertinence since the expression of fluo-
rescent reporters was not fully characterized in the adult brain
(see Supplementary Figures 1A,D; see also Clarke et al., 2012).
Herein, our data implies that activated microglia expressed NG2
under acute demyelinating conditions (see also Bu et al., 2001;
Zhu et al., 2012) that compromised the discrimination of OPCs
in brain slices of lesioned NG2-DsRed mice. The expression of
the NG2 proteoglycan in microglia has been underestimated in
previous studies and our result clearly indicate that this marker

should be used with caution for the identification of OPCs during
patch-clamp recordings in acute demyelinating lesions. More-
over, our analysis revealed that GFPwas not exclusively expressed
in OPCs, but was also detected in mature oligodendrocytes in
the PDGFRα-GFP transgenic mouse brain. Therefore, the com-
bination of different transgenic mouse lines, immunohistological
and electrophysiological analysis are required to overcome pit-
falls and allowed for a reliable identification of OPCs in normal
and lesioned corpus callosum of adult animals.

Interestingly, capacitance, Na+ currents and voltage-
independent K+ conductances of OPCs in the normal and
lesioned adult corpus callosum resemble those described pre-
viously in white matter OPCs recorded in juvenile animals
(Chittajallu et al., 2004; De Biase et al., 2010). On the contrary,
gray matter OPCs undergo important developmental modifica-
tions of their I-V curves, conferred by the postnatal upregulation
of Kir4.1 channels (Maldonado et al., 2013). Differences between
OPCs of gray and white matter regions are not restricted to
electrophysiological and anatomical properties. It was recently
demonstrated that the environmental “niche” from where OPCs
belong determines their differentiation properties (Vigano et al.,
2013). OPCs derived from white matter differentiate into myeli-
nating oligodendrocytes, independently if they are transplanted
to white or gray matter regions, whereas OPCs derived from gray
matter did not. The location of OPCs seems therefore to confer
intrinsic differences. These distinct differentiation properties of
OPCs from gray and white matter strengthens the idea of the
existence of heterogeneous OPC populations and suggests that
the role play by these cells diverge according to brain regions.
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FIGURE 6 | Spontaneous glutamatergic synaptic currents of OPCs

in demyelinated lesions. (A–C) Spontaneous synaptic currents of

recorded OPCs held at −90mV from a control (A), at 4 (B) and 14dpi

(C). Note the fast rise and decay times of individual currents (∗) in all

conditions (insets, see also Figures 7A,C). (D) Histogram of the

percentage of synaptically connected OPCs in control and at 4, 7, and

14dpi. (E) Bar plot of the frequency of spontaneous synaptic currents

observed in connected OPCs in control and at 4, 7, and 14dpi. Cells

without synaptic currents were excluded. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001 respect to the control (F) Triple immunolabeling for NG2

(red, arrows), EdU (white) and VGluT1 (green) in a LPC-induced lesion

at 4 dpi. (G) 3D reconstruction of a typical NG2+ (red), EdU+ (white)

cell lacking VGluT1 contacts (green) within the lesion at 4 dpi. (H) 3D

reconstruction of an NG2+ EdU- cell in the non-demyelinated area of

the corpus callosum (normal appearing white matter, NAWM). Nuclei

were stained with Dapi.

While OPCs are probably not progenitors only in the adult gray
matter (Maldonado et al., 2013), they renew the population of
oligodendrocytes throughout life in healthy and pathological
conditions in white matter (Franklin and Ffrench-Constant,
2008; Young et al., 2013).

Our electrophysiological and immunohistochemical results
revealed important alterations of OPC glutamatergic connec-
tivity in demyelinated lesions, which could reflect physiological
changes in reactivated OPCs induced by demyelination. The exis-
tence of twoOPC populations, defined by the presence or absence
of Na+ channels and of axonal synaptic inputs, has been previ-
ous suggested in the cerebellar white matter (Karadottir et al.,
2008). Yet, the existence of these two distinct subpopulations of
OPCs was contradicted in more recent reports arguing that this
heterogeneity was due to the recording of pre-oligodendrocytes
that rapidly lose both their functional Na+ channels and synapses
(De Biase et al., 2010; Etxeberria et al., 2010; Kukley et al., 2010;
see also Maldonado et al., 2011). Nevertheless, though most stud-
ies agree with the idea that all OPCs express Na+ conductances
in physiological conditions, no reports have addressed this ques-
tion in demyelinating lesions. Since OPCs do not necessarily have
the same electrophysiological properties in young and adult mice

(Zhou et al., 2006; Vélez-Fort et al., 2010; Balia et al., 2013; Mal-
donado et al., 2013), this electrophysiological criterion needed to
be tested after white matter demyelination. We concluded that
virtually all OPCs in the adult corpus callosum express Na+ chan-
nels either in control or in demyelinating lesions and thus that
this property can be considered as a hallmark. We also confirmed
that all OPCs in normal white matter are synaptically contacted
by axons as previously reported (De Biase et al., 2010). However,
axon-OPC synaptic connectivity following demyelination under-
goes a pronounced down-regulation during the reactivation and
active proliferation of endogenous OPCs, which results in a tran-
sient decrease in the number of connected OPCs in LPC-induced
lesions.

Sensory experience has recently been shown to control tha-
lamic innervation of OPCs during early postnatal development
of the barrel cortex (Mangin et al., 2012). In line with the
effect of sensory deprivation on the reduction of thalamocorti-
cal inputs and the increase in cortical OPC proliferation (Man-
gin et al., 2012), our data showed that reactivated OPCs are
poorly connected at 4 dpi during their active proliferation follow-
ing demyelination. Therefore, synaptic loss is concomitant with
OPC proliferation in different conditions, indicating that OPC
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FIGURE 7 | Properties of OPC synaptic currents and CAPs following

demyelination. (A) Averaged time course of spontaneous and miniature

synaptic events in OPCs held at −90mV in a control and at 14 dpi. Miniature

synaptic currents were recorded in the presence of 1µM TTX and 75µM

ruthenium red as previously described (Vélez-Fort et al., 2010). (B,C)

Comparison of the amplitude (B) and decay time (C) of spontaneous and

miniature synaptic currents. The large decrease of connected OPCs and the

low frequency of connected cells at 4 dpi (see Figures 6D,E) precluded the

detection of miniature events at this time point (nd: not determined). (D)

CAPs in control and in lesions at 4 and 7dpi obtained after subtracting

averaged traces before and after application of 1µM TTX (3–5 sweeps;

inset). Note that the first peak corresponding to myelinated fibers (M) is lost

following demyelination. Inset scale bar: 1mV; 500µs. (E,F) Bar plots of the

amplitude (E) and conduction velocity (F) of myelinated (M) and

unmyelinated (U) components of CAPs in control, 4 dpi and after 7 dpi.
∗p < 0.05, respect to the control. ns, not significant.

innervation is a dynamic feature that changes according to neu-
ronal activity and cell environment in different brain regions.
A role for glutamatergic synaptic activity in preventing pro-
liferation has been shown in organotypic slice cultures (Yuan
et al., 1998). However, dividing OPCs appear to retain affer-
ent synapses and share them with daughter cells during post-
natal development (Kukley et al., 2008; Ge et al., 2009). While
mitotic OPCs have a reduced synaptic activity compared to non-
mitotic cells (Kukley et al., 2008), this discrepancy seems contra-
dictory. We also showed that reactivated OPCs in LPC-induced
lesions receive sparse AMPA receptor-mediated synapses, but
gain synaptic inputs after their active proliferation following
demyelination. Therefore, even if glutamatergic inputs to OPCs
do not function exclusively to inhibiting proliferation, they seem
likely to influence this process via glutamate release. One possi-
bility of a causal link between synaptic activity and proliferation
is that AMPA receptor activation by synaptic glutamate release
locally increases intracellular calcium concentrations in thinOPC
processes (see Maldonado and Angulo, 2014 for discussion). In
turn, glutamate-dependent calcium elevations might activate a
signaling pathway controlling gene expression, as observed in
cell culture (Pende et al., 1994), and inhibiting developmental
OPC progression. In line with this, we speculate that the decrease
of glutamatergic axon-OPC synapses early after demyelination
impairs glutamate-dependent calcium signals, facilitating OPC
proliferation and having paradoxically a beneficial effect in
demyelinating conditions.
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conditions. (A) Sagittal brain section through the corpus callosum of 2 month-old

control NG2-DsRed mouse. At the adult stage, the expression of DsRed is only

detected in pericytes around blood vessels (arrows). (B,C) NG2+/GFP+ OPCs (B,

arrows) and CC1+/GFP+ differentiated oligodendrocytes (C, arrows) in

PDGFRα-GFP mouse strain. (D) Histogram showing the percentage of NG2+ and

CC1+ cells in control corpus callosum in the PDGFRα-GFP strains (N = 4 mice).
∗∗p < 0.01 respect to Olig2 expression. (E,F) Currents induced by voltage steps

from +40 to −120mV in an OPC (E) and an oligodendrocyte (F) held at −90mV

in a PDGFRαR-GFP mouse. Note the absence of INa+ in the oligodendrocyte

(inset) and the difference in the scale bars. (G) Histogram of the proportion

of OPCs (O) and oligodendrocyte (OL) identified by their electrophysiological

profiles and recorded in PDGFRα-GFP mouse strain. It is noteworthy that

patch-clamp recordings in the demyelinated corpus callosum revealed current

profiles typical of mature oligodendrocytes in 17 of 18 GFP+ recorded cells in this

mouse line, precluding the identification of OPCs in lesions.

Supplementary Figure 2 | Characterization of NG2+ cells in MS lesions.

(A,B) Immunohistochemistry of Olig1 (red) and NG2 (green, A) or Iba1 (green, B)

labeling in an active zone of a MS lesion. Nuclei were stained with Dapi

(blue).
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