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There has been an explosion of research using transcranial direct current stimulation

(tDCS) for investigating and modulating human cognitive and motor function in healthy

populations. It has also been used in many studies seeking to improve deficits in disease

populations. With the slew of studies reporting “promising results” for everything from

motor recovery after stroke to boosting memory function, one could be easily seduced by

the idea of tDCS being the next panacea for all neurological ills. However, huge variability

exists in the reported effects of tDCS, with great variability in the effect sizes and even

contradictory results reported. In this review, we consider the interindividual factors that

may contribute to this variability. In particular, we discuss the importance of baseline

neuronal state and features, anatomy, age and the inherent variability in the injured brain.

We additionally consider how interindividual variability affects the results of motor-evoked

potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can

lead to apparent variability in response to tDCS in motor studies.

Keywords: transcranial direct current stimulation, interindividual variability, transcranial magnetic stimulation,

cognition, motor-evoked potential

Introduction

Non-invasive brain stimulation (NIBS) techniques, in particular transcranial direct current
stimulation (tDCS), have become increasingly popular methods for temporary modulation of
behavior. However, there is increasing recognition of the high variability in the reported effects
of tDCS, even when using the same stimulation parameters, making the effect of tDCS on
behavior and cognition anything but predictable (Jacobson et al., 2012; Horvath et al., 2014a,
2015; López-Alonso et al., 2014; Wiethoff et al., 2014; Strube et al., 2015a). The observed effect
of tDCS is dependent on the electrical dose administered, the biological response to that dose, and
the way that response is assessed. Electrical dose is defined by “what is externally applied (and
therefore fully controlled) rather than by any physiologic or behavioral response to stimulation”
(Peterchev et al., 2012). There is lack of standardization in the electrical dose administered
across studies, particularly in the cognitive field but even in the motor field where recommended
protocols exist (Nitsche and Paulus, 2000, 2001). This significantly affects reproducibility of
study results. Recent papers have also highlighted several other issues with tDCS research, which
can confound outcomes, such as blinding techniques, task (outcome assessment) selection and
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absence of proper control conditions (Jacobson et al., 2012;
Horvath et al., 2014a; de Aguiar et al., 2015). However, the
factors affecting biological response to electrical current, and
causing interindividual variability in response to tDCS, are highly
important yet under-appreciated. Understanding the biological
response to tDCS is both crucial for developing tDCS for wider
use and for providing insights into neurophysiological function.

Early animal studies have demonstrated that anodal
stimulation increases neuronal excitability whilst cathodal
stimulation decreases neuronal excitability (e.g., Purpura
and McMurtry, 1965), and later Nitsche and colleagues
confirmed this effect in the human primary motor cortex
(M1) (Nitsche and Paulus, 2000; Stagg and Nitsche, 2011). The
majority of subsequent tDCS protocols have been based on this
premise – anodal stimulation causing neuronal, and therefore
behavioral, facilitation, with cathodal stimulation causing the
opposite. However, a recent meta-analysis of tDCS studies
found that the probability of achieving the classical “anodal-
facilitatory/cathodal-inhibitory” effect on motor outcomes was
only 0.67, and for cognitive outcomes only 0.16 (Jacobson et al.,
2012). It is becoming increasingly clear that this classical view of
a dichotomous tDCS effect is far too simplistic.

The pitfalls of an excessively simplistic view have been seen
with other brain stimulation techniques, such as transcranial
magnetic stimulation (TMS). For example, we now recognize
that repetitive or patterned TMS protocols aimed at inducing
neuroplasticity does not always have the “classical effect” in all
participants (Müller-Dahlhaus et al., 2008; Ridding and Ziemann,
2010; Hamada et al., 2013; Hinder et al., 2014; López-Alonso
et al., 2014). Studies specifically setting out to address the
underlying physiological reasons for this variation have found
numerous factors, including age, genetic polymorphisms, and
variability in inhibitory circuitry (Cheeran et al., 2008; Ridding
and Ziemann, 2010; Hamada et al., 2013).

The variability in reported results is therefore likely to
arise from variability in stimulation protocols, interindividual
variability and the interaction of the two. Understanding the
contribution of protocol variability to the observed results in
the tDCS literature is also crucial for deciphering the impact
of interindividual variability to tDCS response. This topic is
worthy of extensive review and investigation in itself and is
outside the scope of this review. In this review, we focus on
interindividual biological differences that can confound tDCS
studies, that is, factors which would cause variability in behavioral
responses even under identical electrical doses. In particular, we
discuss neurophysiological state and features, anatomy, genetics,
age, the injured brain and also the variability introduced by
TMS assessment techniques. We will primarily consider the
evidence from healthy subjects in bothmotor and cognitive tDCS
studies, and also discuss the special case of the injured brain.
Wemake suggestions for how studies can address interindividual
variability and how future research can investigate this important
issue.

Literature Search Strategy

There are extremely few published studies specifically addressing
interindividual variability in tDCS so a specific literature search

was not possible. Instead, we searched PubMedwith “transcranial
direct current stimulation” as a MeSH R© term and also as a
string, as well as performing searches with the following strings:
“tDCS anatomy,” “tDCS genetics,” “tDCS task,” “tDCS age,”
“tDCS GABA,” “tDCS dopamine,” “tDCS injury,” “tDCS stroke.”
Relevant papers were identified by all authors, and reference lists
were examined for any other relevant studies.

Anatomy

Interindividual differences in cranial and brain anatomy can
influence the impact of tDCS by creating variability in the actual
current received by the brain, even when the same electrical dose
is administered. The distribution and extent of current density
is the most common measure for assessing this current received
by the brain, and computer simulations based on anatomical
data have provided useful insights into how the factors which
modulate current density. A comprehensive discussion of the
development of such simulations is outside the scope of this
paper and is reviewed in detail elsewhere (Bikson et al., 2012,
2013; Wagner et al., 2014).

Simulation studies modeling factors derived from individual
neuroimaging have demonstrated that gross anatomical features
and microarchitectural features influence current distribution
(Bikson et al., 2012; Datta et al., 2012a). These factors include:
skull thickness (Opitz et al., 2015), cerebrospinal fluid (CSF)
thickness (Opitz et al., 2015), subcutaneous fat (Truong et al.,
2013), gyral pattern (Datta et al., 2012a; Halko et al., 2012; Opitz
et al., 2015), local tissue heterogeneities (Shahid et al., 2012;
Russell et al., 2013), and orientation of neurons (Arlotti et al.,
2012). Moreover, a recent study modeled the current density
induced by an electrode over the left dorsolateral prefrontal
cortex (dlPFC), and found that the improvement in a working
memory task correlated with the simulated current density,
suggesting that the work from simulations has real functional
relevance (Kim et al., 2014a).

Cortical anatomy shows high variability in gyrus and sulcus
patterns between individuals (Ono et al., 1990), and is likely
to produce high interindividual variability in tDCS response
(Rademacher et al., 1993). This is because the orientation of
neurons is a particularly important determinant of the polarizing
effect of direct current. Radial current flow appears to be most
effective at causing somatic polarization, whereas tangential
current flow appears to be most effective at causing terminal
polarization (Bikson et al., 2004; Rahman et al., 2013).

Individual differences in anatomical fiber connectivity
between brain regions likely influence tDCS effects. In fact,
current distribution of tDCS is influenced by integrity of white
matter indexed by fractional anisotropy (FA) of diffusion-
weighted MRI (Metwally et al., 2012; Shahid et al., 2012; Suh
et al., 2012; Russell et al., 2013; Shahid et al., 2014a). Rosso et al.,
used cathodal tDCS on the right hemispheric Broca homolog to
increase picture naming speed after stroke, and showed that the
extent of improvement correlated with tract size and functional
connectivity between the right supplementary motor area and
right inferior frontal gyrus (Rosso et al., 2014). Given that
widespread cortical networks underlie many cognitive functions,
this effect is unsurprising, particularly as tDCS has been shown
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to affect functional connectivity (Park et al., 2013a). However,
the influence of structural and functional connectivity on the
effect of tDCS has not been extensively studied.

These studies have also found that anatomical factors do
not always have the expected influence. For example, it might
be assumed that current density is inversely related to skull
thickness; however, a recent study demonstrates that the bigger
proportion of highly conducting spongy bone in thicker skull
areas results in a more complex relationship between skull
thickness and current density (Opitz et al., 2015).

The computer models based on anatomical information
will be most helpful if they can guide experimental design.
Not all modeled factors included in a simulation significantly
alter protocol decisions. For example, although thickness of
subcutaneous fat alters the spread of tDCS current, its effect is
trivial compared to other anatomical variables (Truong et al.,
2013). Similarly, including a detailed FA map in a model
of tDCS current from an electrode over the primary motor
cortex (M1) alters the modeling output but not in a way that
would necessitate changes in stimulation parameters (Shahid
et al., 2014a). Future applications of stimulations may be to
help individualize electrode placement in patients with large
anatomical variations, such as stroke patients with lesions.

Functional Organization of Local Circuits

The functional organization of local inhibitory and excitatory
circuits within the cortex appears to contribute to variability
of response to tDCS. TMS protocols have traditionally been
used to assess the function of these local circuits. TMS over
the M1 produce a motor-evoked potential (MEP), which has
been widely used as a measure of corticospinal excitability. An
MEP is composed of several components. The earliest MEP
component, called a D-wave, originates “directly” from axonal
activity of pyramidal tract neurons (PTNs). The subsequent
MEP components are called “indirect” waves (I-waves), which
originate from mono-synaptic (early I-waves) and poly-synaptic
(later I-waves) activity of interneurons projecting onto PTNs
within the M1 (Di Lazzaro et al., 1998, 2012; Di Lazzaro and
Rothwell, 2014) (Figure 1). Therefore, the measurement of I-
waves gives detailed information about the conditions of local
circuits within the M1. Crucially, the measurements of I-waves
may refute the commonly held notion that cathodal tDCS is
simply the opposite of anodal tDCS. An epidural recording
study found that M1 anodal tDCS facilitates both the earliest
I-wave (the I1-wave) and later I-waves whereas cathodal tDCS
suppresses later I-waves only (Lang et al., 2011). Despite its
potential significance, however, further studies are necessary
to establish the relationships between I-wave components and
response to tDCS since evidence is available only from a single
study consisting of a small sample size (n = 8).

New evidence suggests that interindividual differences in
I-wave components may signify differences in local circuit
architecture, and predict response to brain stimulation. I-wave
components such as early and later I-waves can be distinguished
by changes in MEP latency caused by changes in orientation of
the TMS coil (Day et al., 1989; Rothwell, 1997; Sakai et al., 1997).

That is, the latency of MEPs evoked by an antero-posteriorly
(AP)-directed coil differs from that evoked by a latero-medially
(LM)-directed coil (AP-LM latency difference) (Day et al., 1989;
Sakai et al., 1997; Di Lazzaro et al., 2012). The AP-LM latency
difference is considered to reflect later I-wave and D-wave
activity, which is taken as a measure of organization of local
circuits. Taking advantage of this technique,Wiethoff et al. (2014)
demonstrated that AP-LM latency difference correlated with the
effects of anodal tDCS, but not those of cathodal tDCS.

Although individual differences in functional organization of
local circuits may be an important factor underlying individual
differences in response to tDCS, there are few relevant studies so
far. Further research is necessary to test their utility for predicting
response to tDCS.

Baseline Level of Motor and Cognitive
Function

A participant’s initial level of function can have a significant
impact on both the motor and cognitive effects of tDCS.
Cathodal tDCS to the M1 ipsilateral to the tasked limb has
been used to improve motor coordination in people who vary
in motor coordination of the upper limb (McCambridge et al.,
2011; Uehara et al., 2015). In these studies, participants with
poor baseline motor coordination show clear improvement after
tDCS, whereas those with superior motor coordination prior to
tDCS do not improve as much. Additionally, when opposite-
polarity tDCS was applied to the bilateral M1 in both expert
musicians and non-musicians, the non-musicians improved
fine motor control of the hands whereas the expert musicians
experienced paradoxical deterioration of performance (Furuya
et al., 2014).

The effect of baseline function on tDCS response has also been
observed in cognitive studies. Performance on a visual short-
term memory task (VSTM) was improved by anodal tDCS to
the right posterior parietal cortex (PPC) only in participants who
had initially poor performance. It did not alter performance for
those participants with initially high performance (Tseng et al.,
2012). Furthermore, the improvement in VSTM performance
after tDCS was accompanied by increased amplitude of event-
related potentials (ERPs), implying improvement of attention
deployment, from concurrent EEG recordings. However, those
who did not improve already had large amplitude ERPs even
before tDCS. Though by no means comprehensive, these studies
imply the existence of ceiling effects on neuronal modulation
with tDCS, which, in turn, may explain the variable effects of
tDCS on behavior.

Task-related Neurophysiology

Interindividual differences in the neurophysiological response
to tasks performed during tDCS can produce variability in the
assessed effect of tDCS (Antal et al., 2007). Similarly, although
only specifically addressed in a handful of studies, individual
differences in the recruitment of brain regions during task
performance can contribute to variability in response to tDCS.
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FIGURE 1 | Schematic illustration of assessment and modulation of

direct (D-) and indirect (I-) waves resulting from corticospinal

activity. D-waves originate from activity of pyramidal tract neurons

(PTNs). I-waves originate from activity of mono- (early I-wave) and poly-

(later I-wave) synaptic activity of interneurons (INs) projecting onto PTNs.

(A) TMS inducing lateral-medial (LM) currents results in D-waves. TMS

inducing the posterior-anterior (PA) current and anterior-posterior (AP)

current primarily results in early I-wave and later I-waves, respectively. (B)

Modulation of D- and I-waves by tDCS protocols. Anodal tDCS can

facilitate both D- and later I-waves whereas cathodal tDCS suppresses

later I-waves only. For further detail on I-waves physiology and

relationships between tDCS on D- and I-waves (see Di Lazzaro et al.,

2004; Lang et al., 2011; Di Lazzaro et al., 2012; Di Lazzaro and

Rothwell, 2014).

The extent to which a cognitive function is lateralized can
be measured by task activation during functional magnetic
resonance imaging (fMRI), and this factor appears to influence
response to bi-hemispheric tDCS to the posterior parietal cortices
(PPC) (Kasahara et al., 2013). Related to this, handedness also
modulates the time-course and amplitude of the MEP response
to M1 tDCS, though not the direction of response (Schade et al.,
2012).

Differences in task strategy depending on baseline ability and
resulting differences in recruitment of brain regions may also
produce variability of response to tDCS. Targeting a similar
area (right PPC) using a similar task, but with variable degrees
of difficulty, Jones and colleagues demonstrated that tDCS
improved task performance, but only on difficult tasks, and
only in people with initially high task performance (Jones and
Berryhill, 2012). Additionally, in this group of people, both
anodal and cathodal tDCS produced improvements. However,
tDCS had no significant effect on the performance in those with
initially low task performance. The authors explain these findings
as an interaction of baseline function with task difficulty, possibly
because of different task strategies and recruitment of brain
regions depending on baseline ability. Other studies have also
found a similar interaction of tDCS function with task difficulty
(Sandrini et al., 2012; Wu et al., 2014).

Psychological Status

As well as baseline task performance, other physiological and
psychological factors influence tDCS effects. A study on maths

performance found that tDCS improved performance, and
decreased serum cortisol, in high “maths anxiety” participants
but had the opposite effect in those with low “maths anxiety”
(Sarkar et al., 2014). Abstinent methamphetamine users reported
decreased cravings following 10min of right DLPFC anodal
tDCS alone, but increased cravings following if the tDCS was
accompanied by the presentation of methamphetamine-related
cues (Shahbabaie et al., 2014).

Neurochemistry

Response variances depending on psychological status may
reflect different levels of neurotransmitters and receptor
sensitivity. The ability to study neurotransmitter levels with
magnetic resonance spectroscopy (MRS) has led to studies of the
relationship between the level of γ-aminobutyric acid (GABA)
and the effect of tDCS. Anodal tDCS reduces local GABA levels
(Stagg et al., 2009) and the extent of this reduction correlates
to the degree of motor learning and also to fMRI signal change
during tDCS-induced learning (Stagg et al., 2011; Kim et al.,
2014b). It should also be noted that neurochemical factors,
especially GABA, have a close relationship with the functionality
of local cortical circuits, as discussed above. Furthermore, the
influence of baseline GABA levels on tDCS outcome may be
linked to functional connectivity, as baseline GABA is indirectly
correlated to resting functional connectivity (Stagg et al., 2014).

It has thus been mooted that there exists an “optimal”
level of GABA for brain performance, similar to the idea
of frontal cortex “optimal dopamine” levels. In the case of
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dopamine, it has been hypothesized that there is a normal
range of dopamine in the prefrontal cortex, which can be
represented by an “inverted-U”-shaped relationship between
dopamine transmission and working memory performance or
motor cortex plasticity (Monte-silva et al., 2010; Cools and
D’Esposito, 2012). An animal study demonstrates that cathodal
tDCS increases striatal dopamine levels (Tanaka et al., 2013).
Additionally, the facilitatory effect of anodal tDCS on the M1
is dependent on the baseline activity of D1 receptors (Fresnoza
et al., 2014). Thus, depending on a participant’s baseline GABA
or dopamine, either anodal or cathodal tDCS could shift their
levels to the optimum, and may account for why some studies
have reported unexpected effects (Wiethoff et al., 2014) of tDCS
at a group level (Krause et al., 2013).

There have been several studies assessing how neuroactive
drugs affect the neuroplastic effect of tDCS and other non-
invasive stimulation techniques (for detailed review, see Nitsche
et al., 2012). These studies not only help to elucidate the
mechanisms of tDCS work but, in combination with studies
on neurotransmitter levels and tDCS effect, can provide
interesting insights into how interindividual variability in
neurotransmitter levels impacts on the action of tDCS. For
example, studying the contribution of local GABA, dopamine,
and other neurotransmitters from the viewpoint of their
“optimal” levels may prove a fruitful line of investigation in tDCS
studies.

Baseline Neurophysiological State
including Circadian Rhythms

Physiological states can impact response to tDCS even within
the same individual. For instance, the difference in physiological
states between “eyes open” and “eyes closed” influences the
extent to which electroencephalographic (EEG) α oscillation is
increased by occipital transcranial alternative current stimulation
(tACS) (Neuling et al., 2013). More intriguingly, an improvement
in declarative memory with tDCS was only seen when tDCS was
applied during sleep, thought to be an important brain state for
consolidating declarativememories (Marshall et al., 2004). Serum
cortisol, which shows circadian variations across the day, is
thought to have an impact on brain function and neuroplasticity
(Nader et al., 2010). It has recently been demonstrated that
cortisol levels influence TMS-induced neuroplasticity; higher
cortisol levels predict greater response to a neuroplasticity
protocol based on repetitive TMS (Clow et al., 2014). In fact, TMS
studies typically have paid particular attention to testing subjects
at similar times of day, and this may be a consideration that is
also important for tDCS-mediated plasticity.

Genetics

A study found that non-schizophrenic first-degree relatives of
schizophrenia patients had altered MEP response to cathodal
tDCS of M1, as compared with non-related healthy participants
(Hasan et al., 2013). Given the high heritability of schizophrenia,
these findings support the idea that genetic variability may be
an important reason underlying interindividual variability in
response to tDCS.

The impact of genotype on neuroplasticity was initially
demonstrated for TMS neuroplasticity protocols. The PAS25
neuroplastic TMS protocol, which may act on similar neural
circuits to tDCS, showed high heritability in a twin study (0.68
heritability) (Missitzi et al., 2011). A study comparing carriers of
the Val66Met polymorphism of the brain-derived neurotrophic
factor (BDNF) with carriers of the Val66Val polymorphism
found that only those with the Val66Val polymorphism displayed
the expected neural response to a range of TMS neuroplasticity
protocols (Cheeran et al., 2008). The BDNF polymorphism also
appears to influence response to tDCS. Healthy participants with
the Met66Val or Met66Met BDNF polymorphism showed a later
facilitation of MEP amplitude after anodal tDCS of M1 (Teo
et al., 2014). In a cognitive domain, however, a large study of
combined tDCS and sertraline (a selective serotonin reuptake
inhibitor) in depression found that BDNF polymorphism did not
predict response to treatment, but that serotonin-transporter-
linked polymorphism (5HT-TLPR) did (Brunoni et al., 2013).
The BDNF polymorphism can also interact with other factors to
produce unpredictable effects on neuroplasticity, for example, the
finding that cathodal tDCS reduced short-interval intracortical
inhibition (SICI) in Val66Met schizophrenia patients but
increased SICI in Val66Met healthy controls (Strube et al.,
2015b). In brief, SICI is thought to be mediated by the GABAA

receptors of the M1 interneurons that modulate M1 excitability
(Kujirai et al., 1993; Ziemann et al., 1996; Hanajima et al.,
1998; for review see Rothwell et al., 2009; Ziemann et al.,
2015). These studies imply that the relative impact of genetic
polymorphisms on tDCS-induced effects may be task or disease
specific. It is also possible that differences in genotype alter tDCS
effect through impact on anatomical and neurophysiological
states in individuals. For example, Met BDNF polymorphism
carriers (Val66Met or Met66Met) showed differences in
regional brain volumes and task-specific synchrony on EEG,
which predicted performance on an error-processing task
(Soltesz et al., 2014).

The Met/Val158Met/Val polymorphism of the catechol-O-
methyltransferase (COMT) gene has also been explored. When
tDCS was applied to the left dlPFC in a go-nogo task, anodal
tDCS was unexpectedly inhibitory in Met58Met carriers, whilst
cathodal tDCS was inhibitory in Val58Val carriers only (Plewnia
et al., 2012; Nieratschker et al., 2014). The authors of these
studies linked this to the aforementioned “inverted-U” theory of
cognition of frontal dopamine levels. This theory suggests that
optimal cognitive function depends on an optimal level of frontal
dopamine and both too high and too low a level results in poorer
cognitive function (Aguilera et al., 2008; Cools and D’Esposito,
2012). Therefore, the reason anodal tDCS inhibits in Met58Met
carriers is because it is further increasing the frontal dopamine
level in individuals who already have a high level, and vice versa
for cathodal tDCS in Val58Val carriers.

Development and Aging

The effect of age on response to tDCS is probably non-trivial
in both older and younger populations. Fujiyama et al. (2014)
assessed age-related modulation of M1 excitability following
anodal tDCS over the M1 in young (mean age 22.7 years)
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and elderly adults (mean age 68.3 years). They found that the
facilitatory effect of anodal tDCS was initially greater in young
adults, but that the facilitatory effect lasted much longer in
elderly adults. Heise et al. (2014) demonstrated that anodal tDCS
led to differential effects on SICI between young and elderly
adults. Specifically, elderly adults showed increased SICI after
anodal M1 tDCS, whereas young adults showed the “classical”
finding of decreased SICI. These findings indicate that age-
related variability of tDCS effects may occur through age-related
functional changes in local circuits.

Although in the literature on applications of tDCS in infants
and children are limited as compared with those to adults, tDCS
is gradually being employed as a therapeutic tool for children
with cerebral palsy, language disorder and dystonia (Andrade
et al., 2014; Grecco et al., 2014; Young et al., 2014). Moliadze
et al. (2014) reported that both anodal and cathodal tDCS at an
intensity of 1mA increased M1 excitability in healthy children
(11–16 years old). However, at a 0.5-mA intensity, cathodal
tDCS decreased M1 excitability whilst anodal tDCS had no
effect, suggesting an interaction between tDCS intensity and
developmental stage.

Several reasons may underlie the influence of age on
tDCS. The process of normal development and aging leads to
substantial changes in the structure, connectivity, and function
of the brain at both microscopic and macroscopic levels.
Accumulating evidence indicates that aging leads to modulations
of synaptic connectivity, myelination, gene expression, and
neurotransmission (Anderson and Rutledge, 1996; Zimerman
and Hummel, 2010; for review see Burke and Barnes, 2006).
Macroscopically, age-related changes are typically seen as
atrophy of the brain, resulting in dilatation of sulci and ventricles,
which would directly influence the current flow induced by
tDCS as discussed above. In particular, aging leads to an
increased distance between the skull and brain, and an increased
proportion of CSF (Beauchamp et al., 2011; Kessler et al.,
2013; Lockhart and Decarli, 2014). This is problematic because
CSF has high conductivity compared to brain substance and
may cause shunting of the current. Increases in extra-axial
CSF space may therefore decrease current intensity at the
cortical surface. Additionally, simulation of current distribution
in children suggests that changes in the skull thickness and head
circumference through childhood development affects current
density of tDCS (Kessler et al., 2013). Specifically, the thinner
skull appears to result in higher peak electrical fields in children
than adults with the same tDCS intensity.

Given these potential sources of age-related variability in
tDCS effects, studies should either seek to match ages between
experimental groups or to account for the age effect during
analysis.

Brain Lesions after Stroke and Injury

Using tDCS to improve outcomes, particularly motor and speech
deficits after stroke, has proven a popular area of exploration
(Holland and Crinion, 2012; Stagg and Johansen-Berg, 2013).
However, there has been great variability in reported benefit
(Hummel and Cohen, 2006; Tanaka et al., 2011a,b; Grefkes

and Fink, 2012; Fusco et al., 2014; Lüdemann-Podubecká et al.,
2014; O’Shea et al., 2014; de Aguiar et al., 2015). As well as
great variability in protocols used in stroke studies, such as
montage positioning and stimulation intensity, it is evident
from stroke literature that interindividual heterogeneity is also
a huge issue for using tDCS after injury. Indeed, appropriate
understanding of participant characteristics is likely to be of even
greater importance than in healthy populations studies, because
of additional variability in injury type, injury extent and initial
recovery.

Several stroke studies have attempted to elucidate the factors
predicting behavioral improvement after tDCS. Patients with
larger deficits and less surviving brain, assessed by lesion size
(Bolognini et al., 2014), white matter tract integrity (Bradnam
et al., 2012; Lindenberg et al., 2012), or level of impairment
(Bradnam et al., 2012; Marquez et al., 2013; O’Shea et al.,
2014), appear to experience less benefit with tDCS. In some
cases, it has been reported that tDCS can even worsen the
function of those with high levels of impairment (Bradnam
et al., 2012). Specifically, using inhibitory cathodal tDCS on
the contralesional hemisphere in severely impaired patients can
produce a worsening effect. A possible explanation is that, in
severely impaired patients, the contralesional hemisphere activity
is having a compensatory effect that improves function rather
than impairing recovering of the lesioned hemisphere (O’Shea
et al., 2014). Other factors, such as a longer time post-injury
(Marquez et al., 2013; O’Shea et al., 2014), greater preservation
of key white matter tracts and increased baseline functional
connectivity (Rosso et al., 2014), also appears to confer better
response to tDCS. These studies suggest that having enough
surviving brain, which is the neural substrate for tDCS-related
improvement, is a crucial factor for achieving a good response to
tDCS.

Electrode location is an especially important consideration
with lesions. If large lesion size predicts poor response to
tDCS, then this would imply that tDCS should have greatest
benefit when targeting surviving brain. Indeed, a small study
of chronic post-stroke aphasic patients demonstrated that the
greatest behavioral benefit was seen in those patients who had
peri-lesional areas closest to the tDCS electrode (Baker et al.,
2010). Another study using inhibitory cathodal tDCS of the
Broca’s area homolog only led to improvements if patients had
a Broca’s lesion (Rosso et al., 2014).

Simulations of current distribution can assist in post-injury
tDCS studies because the model can factor in the effect of a
lesion, and researchers can adjust themontage accordingly (Datta
et al., 2012b). A single-subject case study of tDCS with combined
visual rehabilitation training after stroke demonstrated that the
modeled electrical field correlated with areas of increased task-
related fMRI activation, as well as improved behavioral outcomes
(Halko et al., 2012). Post-injury MRI studies have also identified
various markers of deficit and recovery, such as task-related
fMRI activation with recovery after stroke (Grefkes and Fink,
2012; Stagg et al., 2012; Liew et al., 2014), and default mode
network disruption after traumatic brain injury (Sharp et al.,
2011). Therefore, combined neuroimaging-tDCS studies can help
identify targets for tDCS after injury.
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A unique consideration for injury studies is the interaction
of tDCS and rehabilitative training. In healthy control studies,
tDCS has been variously reported to boost or inhibit learning
and performance of motor and cognitive tasks (Reis et al., 2009;
Meinzer et al., 2014; Orban de Xivry and Shadmehr, 2014;
Bortoletto et al., 2015). There has been similar variability in
the reports of combined rehabilitative training and tDCS in
the injured population. Several studies have reported greater
behavioral improvement with combined tDCS and training,
compared with training alone, in motor function (Middleton
et al., 2014; Kasashima-shindo et al., 2015), motor function
associated electrophysiology measures (Kim and Ko, 2013),
aphasia (Wu et al., 2015), neglect (single case report) (Brem
et al., 2014), and attention (Park et al., 2013b). However, some
of the positive studies were conducted on extremely small
numbers (n < 10). There here have also been many studies
which have not found a benefit of tDCS over training alone,
whether for motor (Geroin et al., 2011; Fusco et al., 2014;
Viana et al., 2014) or cognitive effects (Leśniak et al., 2014),
after stroke and traumatic brain injury. Furthermore, because
tDCS is thought to act on the networks and brain regions
concurrently active, the type of activity is likely to also be
extremely important in determining final effect. Grossly similar
tasks can differ in subtle but meaningful ways that lead to
apparent variability in response to tDCS (McCambridge et al.,
2011; Bardi et al., 2013; Miyaguchi et al., 2013; Horvath et al.,
2014b, 2015). Other important considerations when combining
tDCS with rehabilitative training include the timing of tDCS in
relation to training, and how soon after injury to start training
and tDCS.

Apparent Variability due to Variability in
Outcome Assessment

Variability between the outcome measures used in different
studies can create apparent differences in response to tDCS.
This is certainly a problem in cognitive studies, where a wide
variety of cognitive tasks are used. This issue is reviewed in
detail elsewhere (Jacobson et al., 2012; Horvath et al., 2014b;
de Aguiar et al., 2015). Motor studies have almost exclusively
depended on change in MEP amplitude, evoked by TMS, as an
outcome measure and the MEP amplitude is generally regarded
as a reliable measurement of M1 excitability (Hallett, 2000,
2007). Indeed, changes in MEP amplitude are the only consistent
outcome reported by motor tDCS studies (Horvath et al., 2014a).

However, researchers using tDCS should recognize that MEPs
do actually exhibit high inter- and intra-individual variability.
Technical factors include coil position or orientation, number
of trials, the intertrial interval (ITI) and stimulus intensity.
Physiological and psychological factors include attention,
background muscle activity, and muscle fatigue. All these are
potential confounds in assessing MEPs and can introduce inter
and intra-individual variability that is independent of the effect
of tDCS (Kiers et al., 1993; Darling et al., 2006).

For example, longer ITIs result in greater MEP amplitudes.
Vaseghi et al. (2014) investigated effects of short- (4 s) and
long- (10 s) ITIs on MEP sizes, and showed that sizes of the

MEP amplitudes were around 1.3 times greater in the long ITI
condition than the short ITI condition. Intraclass correlation
(ICC) reflecting intra-trial reliability was 0.80–0.91 for the short
ITI and 0.79–0.96 for the long ITI condition. Inter-session
reliability was also tested by two MEP measurements with
at least 48-h inter-session intervals. ICC for the inter-session
reliability was 0.87 and 0.80 for the short and long ITI conditions,
respectively. Likewise, Julkunen et al. (2012) showed that MEP
amplitudes were greater in long ITI (5–10 s) than short ITI (1–
5 s). Moreover, high intra-individual variability of MEPs was seen
in the first 10 trials irrespective of the ITI. These findings indicate
that, although the difference in ITI affectsMEP amplitudes, intra-
trial and inter-session reliability is relatively high irrespective of
ITI. Nevertheless, we recommend using the same ITI between
sessions and subjects for MEP measurement, and including a
sufficient number of trials (>20 trials). Given that unstable
MEPs are frequently seen in the first 10 trials (Julkunen et al.,
2012), exclusion of these trials from averaged data is highly
recommended to reduce variability.

Differences in intensity of the TMS test stimulus used to
elicit an MEP may also lead to apparent variability of the
MEP response to tDCS. Researchers in the field mostly use
one of the two intensity criteria for MEP measurement: an
intensity required to produce an MEP amplitude of 1mV, or
an intensity corresponding to 1.2 times (120%) of the resting
motor threshold (RMT) that often produces MEPs <1mV.
The former method is frequently employed for assessing tDCS-
induced changes in MEPs. Wiethoff et al. (2014) demonstrated
that the size of the pre-tDCS MEP, a function of the intensity
of the TMS test stimulus, affected response of the MEP to
tDCS. M1 tDCS showed the classical anodal-excitatory/cathodal-
inhibitory effect when using a TMS intensity that produced
baseline MEP amplitudes of 1mV. However, when a TMS
intensity that produced small baseline MEPs (around 0.5mV
amplitude) was used, both anodal and cathodal tDCS increased
MEP size. Furthermore, most studies only use a single intensity
to evoke MEPs, and this convention may not always be
adequate for testing the effect of a tDCS intervention. It
may be better to employ a more refined measurement of
corticospinal tract excitability that overcomes the limitation of
the single-point sampling of stimulus intensity, for example by
recording stimulus-response (S-R) curves of MEPs, called an
MEP recruitment curve. The S-R curve is created by plotting
MEP amplitudes against test stimulus intensity ranging from
80 to 160% of RMT in steps of 20%. A sigmoid-shaped S-
R curve is obtained from healthy subjects, and is thought
to reflect net corticospinal tract excitability as a function of
stimulus intensity (Pitcher et al., 2003; Werhahn et al., 2007).
An S-R curve allows researchers to assess MEP amplitudes in
response to stimulation ranging over minimal and maximal
intensities (Groppa et al., 2012; Temesi et al., 2014), which may
serve a better measurement of the corticospinal tract excitability
overall for detecting tDCS effects than a single-point MEP
measurement. Variability in outcomemeasurements arising from
a TMS protocol is a relatively controllable factor by a researcher
to reduce inter- and individual variability in response to
the tDCS.

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 May 2015 | Volume 9 | Article 181

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Li et al. Interindividual variability in tDCS

Neural oscillations in the cortex beneath a coil may introduce
variability in the response to TMS. Romei et al. (2008a,b)
demonstrated that neural responses to TMS were dependent
on fluctuations of EEG α activity. Indeed, Bergmann et al.
(2012) developed an EEG-triggered TMS technique based on
the spontaneous neocortical slow oscillations below 1Hz from
the C3 EEG electrode (left sensorimotor area). TMS stimuli
were delivered selectively to the hand representation of M1
during either the up-states (i.e., peak of oscillations) or the
down-states of the slow oscillation (i.e., trough of oscillations).
They found that MEP amplitudes were significantly greater
during the up-states than during the down-states, and the
latency of MEP onset was significantly shorter during the up-
states than during the down-states. That is, fluctuations of
slow oscillatory brain activity appears to introduce variability
in MEP amplitude, which may introduce variance when
using MEPs as an outcome measure in tDCS motor studies,
at both intra- and interindividual levels. Using temporal
neuronavigation systems to deliver TMS based on online
EEG signals may enable more controlled studies in the
future.

Discussion

This review has provided an overview of the main interindividual
biological factors currently known to produce variability in
response to tDCS (Table 1). There are many proposed clinical
and practical applications of tDCS, one of which is to use it as
a biomarker for the neuroplastic effects of drugs acting on the
central nervous system, as a screen for drug efficacy (Nitsche
et al., 2012). However, the interpretation of such studies should
take into account that variability of results reflects not only
variability in response to the drug, but also in response to tDCS
and an interaction of drug and tDCS response. Therefore, better
understanding of how interindividual factors affect response to
tDCS is an absolute prerequisite for successful application outside
the lab.

Few studies have specifically sought to investigate the impact
of physiological factors on inter- and intra-individual variability
in tDCS response and the studies summarized in our review
(Table 1) report the effect of interindividual factors in many
different ways. For example, some studies report correlation
coefficients between a biological factor and tDCS effect whilst
other studies group participants based on a biological factor and
report an ANOVA result of the interaction between participant
groups and tDCS effects. Therefore, it is difficult to draw
conclusions on the relative impact of such factors and grade them
in order of importance. However, factors resulting in differences
in the direction of tDCS-induced change are likely to introduce
more variability at group level analyses than factors that only
affect the size of tDCS-induced change (Table 1). It is these
factors which most urgently need investigating, in order to better
quantify their effects and thus to better decide the extent to which
experimental designs need to account for them. For now, the
best practice may be to homogenize participant recruitment in
the factors that are easiest to control, such as age, handedness,
baseline ability and, for injury studies, time after injury.

Unlike TMS, tDCS does not cause immediate depolarization
of stimulated neurons. Rather, it is thought that tDCS modulates
excitability of stimulated areas by interacting selectively with
simultaneously active neuronal populations (Nitsche et al.,
2008; Stagg and Nitsche, 2011). Therefore, the state of neuron
populations during stimulation is likely to be one of the most
important factors influencing the final behavioral effect. It is
crucial to give proper consideration to these factors because
they can influence the direction, as well as the extent, of
behavioral modulation. This is likely to be especially important
for studies of higher-level cognitive functions. Unfortunately,
the pre- and post-stimulation states of participants is often
not controlled, or even reported, in previous studies. Detailed
reporting of participant characteristics, strict monitoring and
control of participant neurophysiological states and behaviors are
important first steps to teasing apart the complexity of interaction
between baseline state, task features, and stimulation.

The impact of interindividual variability is also dependent
on experimental design. In crossover designs, the assessment
of tDCS effects requires outcome assessment at least two time-
points, which introduces a within-subject factor of time. This
makes the data acquired vulnerable to confounding by learning
or order effects. For this reason, and for reasons of practicality,
many studies recruit different cohorts for different intervention
types. However, cross-section studies are particularly vulnerable
to the effects of interindividual variability because, in these
studies, a tDCS intervention (anodal, cathodal, and sham)
becomes a between-subject factor. The variance of a between-
subject factor (i.e., the variance between subject means) is largely
down to interindividual variability (Lee et al., 2002). This may
mask the effects of tDCS intervention and make the factor of
interest (i.e., time-intervention interactions) harder to detect.
However, using crossover designs, which minimize the effect of
interindividual variability, requires the researchers to seek ways
to either reduce learning and order effects (e.g., training on
the task, randomization of stimulation order) or to incorporate
learning into the study design.

Although this study has primarily discussed interindividual
variability, many methodological factors can produce substantial
variability across studies. These range from the seemingly trivial
to absolute crucial, for example, how electrodes are attached,
electrode size, amount of fluid in a sponge, montage (where,
single/ opposition), and return electrode placement. There is
little standardization in many of these parameters, especially
in the cognitive field, but they can greatly influence current
dose (Peterchev et al., 2012). Therefore, two studies aiming to
produce the same effect may produce different results because
their protocols vary. This lack of reproducibility of studies due
to inconsistent methodology in the field may be mistakenly
attributed to interindividual biological differences. The aim
should be to standardize methodology where practicable and
to promote the publication of methodology studies specifically
exploring the impact of different technical parameters (such
as montage, intensity, and duration) and protocols (such as
timing of assessment). Seeking to understand and reduce the
noise introduced by methodological variability is as important as
investigating interindividual factors.
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TABLE 1 | Summary of studies which have reported on the impact of interindividual features on tDCS effect.

Factor Study Protocol Results

Anatomical

features

Truong et al., 2013 n/a (simulation study) Fat affects current distribution

Shahid et al., 2012, 2014a,b n/a (simulation study) FA affects current distribution and variability of this

distribution

Russell et al., 2013 n/a (simulation study) MRI-derived information (blood vessel shape, FA)

affects current distribution

Arlotti et al., 2012 n/a (simulation study) Neuronal orientation in relation to tDCS current

affects neuronal electrical changes

Bikson et al., 2004 In vitro rat hippocampal stimulation Neuronal orientation in relation to tDCS current

affects neuronal electrical changes

Rahman et al., 2013 Simulation study and in vitro rat cortical

stimulation

Neuronal orientation in relation to tDCS current

affects neuronal electrical changes

Suh et al., 2012 n/a (simulation study) FA affects current distribution

Metwally et al., 2012 FA affects current distribution and variability of this

distribution

Structural and

functional

connectivity

Rosso et al., 2014 N = 24

Right Broca’s area

c-tDCS

SO reference

0.028mA/cm2, 15mins

Picture naming task

Size of white matter tract, and functional

connectivity, between right Broca’s area and SMA

predicts benefit of tDCS

Activity of

local circuits

Wiethoff et al., 2014* N = 53

Left M1

a-tDCS and c-tDCS

SO reference

0.057mA/cm2, 10mins

MEP

a-tDCS facilitatory for 50%; both facilitatory for

50% participants

MEP latency between different TMS coil

orientations predicts response to a-tDCS

Baseline level

of function

McCambridge et al., 2011 N = 13

Left M1

c-tDCS

SO reference

0.028mA/cm2, 20mins

MEPs during isometric contraction, motor

performance

Participants with poor selective muscle activation

improved more after c-tDCS

Uehara et al., 2015 N = 17

Left M1

c-tDCS

SO reference

0.04mA/cm2, 15mins

MEPs during isometric contraction in three

different movement frequencies (slow,

middle, and fast tempo)

c-tDCS improved selective muscle activation of the

ipsilateral proximal muscle in a movement

frequency manner

Participants with poor selective muscle activation

improved more after c-tDCS

Furuya et al., 2014* N = 26

Bilateral M1, oppositional montage

2mA, 15mins

Timed-sequence finger movements

c/l a-tDCS with i/l t-DCS improves performance in

non-musicians but decreases performance in

musicians

Tseng et al., 2012 N = 30

Right PPC (P4)

a-tDCS

Left cheek reference

0.094mA/cm2, 15mins

Visual working memory task

tDCS only improved performance in those

participants with initially low performance

(Continued)
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TABLE 1 | Continued

Factor Study Protocol Results

Interaction

with task

Antal et al., 2007* N = 12

Left M1

a-tDCS and c-tDCS

SO reference

0.028mA/cm2, 10mins

MEP

Performing a cognitive task during stimulation

increases M1 excitability after c-tDCS and

decreases it after a-tDCS

Performing a motor task during stimulation

decreases M1 excitability after both tDCS types

Jones and Berryhill, 2012* N = 20

Right PPC (P4)

a-tDCS and c-tDCS

Left cheek reference

0.042mA/cm2, 10mins

Working memory task

Both a-tDCS and c-tDCS improved performance in

high-performing participants

Both a-tDCS and c-tDCS impaired performance in

low-performaing participants

The effects were observed only when the task was

difficult

Berryhill and Jones, 2012 N = 25

Left (F3) and right (F4) PFC

a-tDCS

0.042mA/cm2, 10mins

Working memory task

Both F3 and F4 tDCS improved task performance,

in participants of higher education only.

Kasahara et al., 2013 N = 16

Bilateral parietal, oppositional montage

0.057mA/cm2, 10mins

Arithmetic task

Left a-tDCS with right c-tDCS improved task

performance only in participants with left parietal

lateralization of task on fMRI

Wu et al., 2014 N = 20

Right PFC (P4)

a-tDCS

Left cheek

0.06mA/cm2, 15mins

Working memory

Right PFC stimulation improves spatial working

memory span when cognitive demand was high

Sandrini et al., 2012* N = 27

Bilateral parietal, oppositional montage

0.043mA/cm2, 13mins

Working memory

Right c-tDCS with left a-tDCS impaired working

memory performance when task was easy but

right a-tDCS with left c-tDCS impaired

performance when task was difficult

Handedness Schade et al., 2012 N = 24

Right and left M1

a-tDCS and c-tDCS

SO reference

0.028mA/cm2, 5mins

MEP

a-tDCS of left M1 increased MEP more in

right-handed, than left or mixed-handed

participants

Psychological

factors

Shahbabaie et al., 2014* N = 32

Right PFC (F4)

a-tDCS

SO reference

0.057mA/cm2, 20mins

Drug craving

a-tDCS on its own decreased drug-craving, but

increased craving if drug cues simultaneously

presented

Sarkar et al., 2014* N = 50

Bilateral PFC

a-tDCS (P3) with c-tDCS (P4)

0.04mA/cm2, 30mins

Arithmetic task

tDCS improved task performance in participants

with high maths anxiety, but impaired performance

in those with low maths anxiety

Local GABA

activity

Stagg et al., 2011 N = 12

Left M1

a-tDCS

SO reference

0.028mA/cm2, 10mins

GABA MRS, motor learning task

Degree of GABA decrease induced by a-tDCS

correlated with degree of motor learning and fMRI

signal change

(Continued)
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TABLE 1 | Continued

Factor Study Protocol Results

Kim et al., 2014b N = 35

Left M1

a-tDCS and c-tDCS

SO reference

0.043mA/cm2, 15mins

GABA MRS, motor learning, and memory

Degree of GABA decrease induced by a-tDCS

correlated with degree of motor learning and

memory

No effect of c-tDCS

Local

dopamine

activity

Fresnoza et al., 2014* N = 12

Left M1

a-tDCS and c-tDCS

SO reference

0.028mA/cm2, 9mins (a-tDCS) or 7mins

(c-tDCS)

MEP

Extent and direction (facilitated or impaired) of

response to a-tDCS and c-tDCS was dependent

on baseline D1-receptor activity (manipulated

through D2 receptor block and L-DOPA)

Other

physiological

factors

Marshall et al., 2004 N = 30

Bilateral PFC

a-tDCS

0.26mA/cm2, 30mins (on-off 15 s blocks)

Declarative memory task

tDCS improves task performance only if applied

during sleep stage 4

Neuling et al., 2013 N = 24

Occipital (Oz)

Cz reference

tACS – at individualized alpha frequency

0.042mA/cm2, 20mins

EEG (alpha power)

tACS increases alpha power in eyes-open state

only (compared to eyes-closed)

Genetics Hasan et al., 2013* N = 47 (12 relatives)

Left M1

c-tDCS

SO reference

0.028mA/cm2, 9mins

MEP

First-degree relatives of schizophrenia patients

show delayed facilitation to c-tDCS

Teo et al., 2014 N = 65

Left M1

a-tDCS

SO reference

0.028mA/cm2, 9mins

MEP

BDNF Met-carriers show delayed facilitation

compared with non-Met carriers

Brunoni et al., 2013 N = 120

Bilateral PFC

a-tDCS (P3) with c-tDCS (P4)

0.80mA/cm2

Multiple sessions

Depression score

BDNF genotype did not predict response

5-HTTLPR long/long allele showed larger response

to tDCS

Plewnia et al., 2012* N = 46

Left PFC

a-tDCS

SO reference

0.028mA/cm2, 20mins

Parametric go-nogo task

Participants homozygous for the COMT Met/Met

allele showed deterioration in task (set shifting)

after tDCS

Nieratschker et al., 2014* N = 41

Left PFC

c-tDCS

SO reference

0.028mA/cm2, 20mins

Parametric go-nogo task

Participants homozygous for the COMT Val/Met

allele showed deterioration in task (response

inhibition) after tDCS

(Continued)
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TABLE 1 | Continued

Factor Study Protocol Results

Strube et al., 2015a* N = 57

Left M1

a-tDCS and c-tDCS

SO reference

0.028mA/cm2, 13mins (a-tDCS) or

9mins (c-tDCS)

MEP

The Val66Met polymorphism resulted in opposite

effects of tDCS on SICI in schizophrenic patients

versus controls

Age Fujiyama et al., 2014 N = 40

Left M1

a-tDCS

(Reference not stated)

0.04mA/cm2, 30mins

MEP

Older adults show a delayed response

Moliadze et al., 2014* N = 21

Left M1

a-tDCS and c-tDCS

SO reference

0.028mA/cm2, 10mins

MEP

In children and adolescents, both a-tDCS and

c-tDCS facilitates the MEP

Kessler et al., 2013 n/a (simulation study) Children experience higher peak current density for

a given applied current, compared to adults

Injury factors:

level of

impairment

Bradnam et al., 2012* N = 12, stroke (motor)

Contralesional M1

c-tDCS

SO reference

0.028mA/cm2, 20mins

MEP

tDCS facilitates MEP if patient: is mildly impaired

tDCS worsens MEP if patient: is spastic or

moderately-severely impaired

Marquez et al., 2013 Stroke (motor)

n/a (meta-analysis)

Statistically significant improvements after tDCS

only in: mild-moderate impairment

Injury factors:

functional

connectivity

Rosso et al., 2014 N = 25, stroke (aphasia)

Contralateral Broca’s area

c-tDCS

SO reference

0.028mA/cm2, 15mins

Picture-naming task

Patients only improved if: decreased levels of

functional balance between two hemispheres

Injury factors:

white matter

integrity

Bradnam et al., 2012 (as above) tDCS facilitates MEP if patient has good ipsilesional

corticospinal tract integrity

Lindenberg et al., 2012 N = 12, stroke (motor)

Bilateral M1

a-tDCS ipsilesional M1 with c-tDCS

contralesiona M1

1.5mA, 30mins, 5 days

Wolfson motor function test

Greater improvement in motor function in patients

with higher FA values in transcallosal and

ipsilesional corticospinal white matter tracts

Injury factors:

functional

connectivity

Rosso et al., 2014 (as above) Patients only improved if: intact arcuate fasciculus

Injury factors:

time since

injury

O’Shea et al., 2014 N = 13, stroke (motor)

Contralesional M1

a-tDCS, c-tDCS and oppositional

SO reference (for a/c-tDCS)

0.028mA/cm2, 20mins

MEP, simple reaction time task

Patients with longer time post injury showed

greater MEP facilitation and task improvement after

a-tDCS

(Continued)

Frontiers in Cellular Neuroscience | www.frontiersin.org 12 May 2015 | Volume 9 | Article 181

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Li et al. Interindividual variability in tDCS

TABLE 1 | Continued

Factor Study Protocol Results

Marquez et al., 2013 (as above) Statistically significant improvements after tDCS

only in: chronic stroke

Injury factors:

ipsilesional

GABA

O’Shea et al., 2014 (as above) Patients with higher baseline ipsilesional M1 GABA

levels had greater task improvement after a-tDCS

Injury factors:

lesion location

Rosso et al., 2014 (as above) Patients only improved if: aphasia was associated

with a Broca’s area lesion

Baker et al., 2010 N = 10, stroke (aphasia)

Left frontal (individualized)

a-tDCS

Right shoulder reference

0.04mA/cm2, 20mins, 5 days

Naming task

Patient peristimulation lesion sites showed greatest

improvement

Injury factor:

lesion size

Bolognini et al., 2014 N = 6, stroke (apraxia, left brain damage)

Left PPC and right M1

a-tDCS

SO reference

0.08mA/cm2, 10mins

Ideomotor apraxia and Jebson hand

function tasks

Left PPC tDCS improved function more in those

with smaller lesions

Injury factors:

with

rehabilitation

Fusco et al., 2014 N = 11, stroke (motor, acute <30 days)

contralesional M1

c-tDCS

Right shoulder reference

0.043mA/cm2, 10mins, 10 sessions

Rehabilitation: motor, on same day as

tDCS

Functional motor assessments

No added benefit of stimulation over rehabilitation

alone

Viana et al., 2014 N = 20, stroke (motor, subacute <6

months)

Ipsilesional M1

a-tDCS

SO reference

0.08mA/cm2, 13mins, 15 sessions

Rehabilitation: virtual reality training, with

tDCS

Functional motor assessments

Geroin et al., 2011 N = 30, stroke (motor, chronic)

Ipsilesional M1

a-tDCS

SO reference

0.071mA/cm2, 7mins, 10 sessions

Rehabilitation: robot-assisted gait training,

with tDCS

Walking assessment

Leśniak et al., 2014 N = 23, TBI (subacute-chronic)

Left PFC

a-tDCS

SO reference

0.028mA/cm2, 10mins, 15 sessions

Rehabiliation: computerized cognitive

training, with tDCS

Cognitive assessment battery

(Continued)
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TABLE 1 | Continued

Factor Study Protocol Results

Marquez et al., 2013 (as above) Statistically significant improvements after tDCS

only in: chronic stroke

Kasashima-shindo et al.,

2015

N = 18, stroke (motor, chronic)

a-tDCS

0.028mA/cm2, 10mins, 10 sessions

SO reference

Rehabilitation: brain-computer interface

training, after tDCS

Fugl-Meyer assessment, event-related

desynchronization

Additional benefit of stimulation over rehabilitation

alone

Middleton et al., 2014 N = 5, stroke/TBI (motor, chronic)

Bilateral M1, a-tDCS ipsilesional with

c-tDCS contralesional

0.06mA/cm2, 15mins, 24 sessions

Rehabiliation: physical therapy, with tDCS

Functional motor assessments

Wu et al., 2015 N = 12, stroke (aphasia, subacute 3–6

months)

Left Wernicke’s area

a-tDCS

Contralesional shoulder reference

0.048mA/cm2, 20mins, 20 sessions

Rehabilitation: speech-language therapy,

with tDCS

Picture naming, auditory word-picture

naming

Brem et al., 2014 N = 1, stroke (neglect, acute <30 days)

Bilateral PPC, a-tDCS right PPC with

c-tDCS left PPC

0.028mA/cm2, 20mins, 5 sessions

Rehabilitation: cognitive neglect therapy,

with tDCS

Attentional assessments

Park et al., 2013b N = 11, stroke (cognitive, acute)

Bilateral PFC

a-tDCS

Non-dominant arm reference

0.08mA/cm2, 30mins, mean 18 days

Rehabilitation: computerized cognitive

training

Cognitive battery

* indicates studies where results suggest that interindividual variability can alter the direction of response (e.g., cathodal becomes facilitatory), rather than simply the extent to which a

participant response. Core tDCS protocol features are reported (target area, stimulation type, reference type, intensity and duration, outcome assessment). Where the current density

is not available, the current delivered is reported instead.

Abbreviations: FA, frational anisotropy; c-tDCS, cathodal tDCS; a-tDCS, anodal tDCS; SMA, supplementary motor area; M1, primary motor cortex; SO, supraorbital (contralateral to

“active” electrode); MEP, motor-evoked potential (by TMS); PPC, posterior parietal cortex; c/l, contralateral; i/l, ipsilateral; PFC, prefrontal cortex; MRS, magnetic resonance spectroscopy

imaging; TBI, traumatic brain injury.

Several approaches can produce more useful studies.
Encouraging the publication of negative studies (providing they
are well-designed) would help reduce a publication bias that
prevents an objective assessment of tDCS effect. Developing
“biomarkers” for tDCS activity, such as MRS imaging of
neurotransmitters, EEG and fMRI measures of local network
changes, will enable more informative interpretation of results.
For example, a negative behavioral result can be explained in
physiological terms. Introducing the use of control tasks or

control stimulation sites would increase the validity of results.
Optimizing technical factors, such as using simulations based
on individual metrics to maximize current density, could make
the current density at the cortex sufficiently high such that its
effect can overcome the interindividual variability. Finally, where
practicable, sufficiently large samples should be recruited to
avoid the risk of underpowered studies and to enable sub-group
analyses that can elucidate the participant characteristics that are
best associated with response.
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Conclusion

We are all cognizant of how inter and intraindividual factors
can alter the pharmacokinetics and pharmacodynamics of a
drug, and thus its overall effect. It stands to reason that inter
and intraindividual variability will have a similar impact on
tDCS, which is an intervention that also interacts with individual
physiology. It is often stated that tDCS has huge potential
for clinical applications. We must now take more care in the
designing, performing, analyzing, and reporting of studies, if we
are to realize this potential and to not let it become consigned as
a curious blip in the annals of scientific endeavor.
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