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states
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2 Department of Physiology, University of Toronto, Toronto, ON, Canada

When microglia respond to CNS damage, they can range from pro-inflammatory
(classical, M1) to anti-inflammatory, alternative (M2) and acquired deactivation
states. It is important to determine how microglial functions are affected by these
activation states, and to identify molecules that regulate their behavior. Microglial
proliferation and migration are crucial during development and following damage
in the adult, and both functions are Ca®*-dependent. In many cell types, the
membrane potential and driving force for Ca?t influx are regulated by inward-
rectifier Kt channels, including Kir2.1, which is prevalent in microglia. However,
it is not known whether Kir2.1 expression and contributions are altered in anti-
inflammatory states. We tested the hypothesis that Kir2.1 contributes to Ca?* entry,
proliferation and migration of rat microglia. Kir2.1 (KCNJ2) transcript expression,
current amplitude, and proliferation were comparable in unstimulated microglia and
following alternative activation (IL-4 stimulated) and acquired deactivation (IL-10
stimulated). To examine functional roles of Kir2.1 in microglia, we first determined
that ML133 was more effective than the commonly used blocker, Ba?*; ie.,
ML133 was potent (ICsg = 3.5 pM) and voltage independent. Both blockers
slightly increased proliferation in unstimulated or IL-4 (but not IL-10)-stimulated
microglia. Stimulation with IL-4 or IL-10 increased migration and ATP-induced
chemotaxis, and blocking Kir2.1 greatly reduced both but ML133 was more
effective. In all three activation states, blocking Kir2.1 with  ML133 dramatically
reduced Ca®* influx through Ca®*-release-activated Ca?* (CRAC) channels. Thus,
Kir2.1 channel activity is necessary for microglial Ca?t signaling and migration
under resting and anti-inflammatory states but the channel weakly inhibits
proliferation.

Keywords: KCNJ2, ML133, alternative-activated microglia, acquired-deactivated microglia, interleukin-4
stimulation, interleukin-10 stimulation, microglial migration, microglial proliferation
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Introduction

Members of the Kir2 inward-rectifier K™ channel family (which
includes Kir2.1) are expressed in both excitable and non-
excitable cells, where their primary function is to maintain a
hyperpolarized membrane potential (Lu, 2004; Hibino et al,
2010). Kir2.1 currents have often been reported in cultured
rodent microglia (reviewed in Kettenmann et al., 1993, 2011;
Eder, 2005) in both unstimulated (often called “resting”) and
classical-activated (pro-inflammatory) states (Norenberg et al.,
1992, 1994; Visentin et al., 1995; Schlichter et al., 1996; Chung
et al., 1999; Draheim et al., 1999; Prinz et al., 1999; Franchini
et al, 2004; Newell and Schlichter, 2005; Moussaud et al.,
2009). The current has also been recorded in microglia in
brain slices (Brockhaus et al., 1993; Boucsein et al., 2000, 2003;
Lyons et al., 2000; Schilling and Eder, 2007, 2015). After CNS
damage, microglia can also enter anti-inflammatory states that
help resolve classical activation and promote repair (reviewed
in Hanisch and Kettenmann, 2007; Colton, 2009; Czeh et al,,
2011). However, it is not known if Kir2.1 is expressed in microglia
in these states; i.e., following “alternative” activation (evoked
by interleukin-4) or “acquired deactivation” (evoked by IL-
10).

After CNS injury, the population of microglia at damage
sites will depend on both proliferation and migration;
thus, it is important to compare these functions in pro-
and anti-inflammatory states. It is well known that cell
proliferation and migration are Ca’’-dependent processes.
Our early study showed that when rat microglia were
exposed to colony-stimulating factor-1 (CSF-1) to increase
proliferation; this was reduced by Ba’t (5-10 mM)
(Schlichter et al., 1996) but the microglial activation state
was not determined. Another study showed that Ba*
block of Kir2.1 reduced ATP-induced Ca®t entry in rat
microglia by prolonging membrane depolarization (Franchini
et al, 2004). While suggestive of a link between Kir2.1,
proliferation and Ca?* signaling, previous studies have not
addressed whether the microglial activation state affects Kir2.1
contributions.

We recently found that stimulation of rat microglia with IL-
4 or IL-10 increases their migration, ATP-induced chemotaxis
and invasion through extracellular matrix (ECM) while classical
activation (induced by LPS) reduces these functions (Lively and
Schlichter, 2013; Ferreira et al., 2014; Siddiqui et al., 2014).
Both their migration and chemotaxis depend on Ca?* influx
through Ca?*-release activated Ca** (CRAC/Orail) channels
(Siddiqui et al., 2012; Ferreira and Schlichter, 2013), which are
highly expressed in unstimulated rat microglia (Ohana et al,
2009; Siddiqui et al., 2012). However, CRAC-mediated Ca®*
entry has not been compared for microglia in alternative- or
acquired-deactivation states. CRAC is activated by depleting
intracellular Ca?" stores and is strongly inward-rectifying
at negative membrane potentials (reviewed in Derler et al,
2012; Shim et al., 2015); thus, Ca?* influx through CRAC is
enhanced with hyperpolarization. Kir2.1, like other classical
Kir channels, is expected to maintain a negative membrane
potential.

Based on these previous results, we hypothesized that Kir2.1
will contribute to CRAC-mediated Ca?* entry in unstimulated,
IL-4- and IL-10-stimulated rat microglia, and this will be
reflected by its contributions to proliferation and migration.
Real-time RT-PCR was used to monitor expression of Kir2.1
(encoded by the KCNJ2 gene) and patch-clamp recordings were
used to compare Kir2.1 currents. Fura-2 imaging was used to
quantify the contribution of Kir2.1 to CRAC-mediated Ca’"
signaling. Then, after demonstrating the utility of the recently
developed Kir2-family inhibitor, ML133, we used Ba?* and
ML133 to assess Kir2.1 contributions to proliferation, migration
and chemotaxis.

Methods

Rat Microglia Culture and Activation

All procedures on rats were approved by the University Health
Network Animal Care Committee, and adhered to guidelines
from the Canadian Council on Animal Care. Pure microglial
cultures were prepared from 1-2 day-old Sprague- Dawley rat
pups (Charles River, St-Constant, PQ, Canada) as described in
our many previous publications (and recently in Lively and
Schlichter, 2013; Ferreira et al., 2014; Siddiqui et al., 2014; Wong
and Schlichter, 2014). In brief, brain tissue (minus cerebellum
and meninges) was mashed in cold Minimal Essential Medium
(MEM; Invitrogen, Carlsbad, CA), strained, and centrifuged
at 300x g for 10 min. After re-suspending the cells in MEM,
they were seeded in 75 cm? flasks containing 30 ml of MEM
supplemented with 10% fetal bovine serum (FBS; Wisent St-
Bruno, PQ, Canada) and 0.05 mg/ml gentamycin (Invitrogen)
and incubated at 37°C with 5% CO,. After 48 h, the medium was
changed to remove cellular debris and non-adherent cells. Five
to six days later, microglial cells were harvested by shaking the
flasks for 5 h on an orbital shaker at 65 rpm (37°C, 5% CO,).
The supernatant containing non-adherent cells was collected
and centrifuged (300x g, 10 min) to obtain a microglia-rich
pellet, which was re-suspended in fresh MEM (with 2% FBS
with 0.05 mg/ml gentamycin). Microglia were seeded onto UV-
irradiated 15 mm glass coverslips (Fisher Scientific, Ottawa, ON,
Canada) at different densities depending on the experiment,
as noted below. Microglia were unstimulated or stimulated for
6 or 24 h with 20 ng/ml of rat recombinant IL-4 (to induce
alternative activation) or 20 ng/ml or rat recombinant IL-
10 (for acquired deactivation) (both from R&D Systems Inc.,
Minneapolis, MN).

Other Chemicals

For patch-clamp recordings, Ba?t or ML133 were used to
block Kir2.1, and agitoxin-2 was used to block Kv1.3 channels.
Stock solutions were prepared in DMSO for ML133 (Tocris
Bioscience, MO) and in double distilled water for BaCl, and
agitoxin-2, to which 0.02% BSA was added (all from Sigma).
To examine Ca?" signaling, thapsigargin and BTP2 (both from
EMD Millipore Calbiochem, San Diego, CA) were prepared
in DMSO. Inhibitor solutions were diluted to a working final
concentration of 0.01%, aliquoted and stored at —20°C until
used.
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Quantitative Real-Time Reverse-Transcriptase
Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted using TRIzol (Invitrogen) from
unstimulated or stimulated microglia that had been seeded at
1-2 x 10° cells/coverslip in 35 mm dishes. RNA was purified
using RNeasy Mini Kit (QIAGEN, Mississauga, ON, Canada).
Primers for KCNJ2 (which encodes the Kir2.1 channel) and the
housekeeping gene, HPRT1, were designed using “Primer3Tes”!
as follows. KCNJ2: forward (5'- ACCGCTACAGCATCGTCTCT
-3') and reverse (5-CTGCACTGTTGTCGGGTATG -3');
HPRT1: forward (5'- CAGTACAGCCCCAAAATGGT -3') and
reverse (5'- CAAGGGCATATCCAACAACA -3'). RNA samples
were reverse transcribed using SuperScriptll RNase reverse
transcriptase, according to the manufacturer’s instructions
(Invitrogen). cDNA was then amplified using an ABI PRISM
7700 Sequence Detection System (PEBiosystems, Foster City,
CA), with the following protocol: 50°C for 2 min, 95°C for 10
min, 40 cycles at 95°C for 15 s and 60°C for 60 s, and three
dissociation steps (95°C for 15 s, 60°C for 15 s, 95°C for 15 s).
The threshold cycle (CT) for KCNJ2 was normalized to that of
HPRTI.

Whole-Cell Patch-Clamp Recordings

Coverslips bearing unstimulated or stimulated microglia (7-8 x
10* cells/coverslip), were mounted in a 300 pl volume perfusion
chamber (Model RC-25, Warner Instruments, Hamden, CT).
Bath (external) solutions, with or without channel blockers,
were perfused into the chamber using a gravity-driven perfusion
system flowing at ~1 ml/min. Recordings were made at room
temperature. The standard bath solution consisted of (in mM):
125 NaCl, 5 KCI, 1 CaCl,, 1 MgCl,, 10 HEPES, 5 D-glucose
(pH 7.4; 290-300 mOsm/kg H,O). For all recordings, 5 nM
AgTx-2 was added to the bath solution to block Kv1.3 currents.
Recording pipettes were filled with an intracellular solution
containing: 40 KCI, 100 KAsp, 1 MgCl,, 10 HEPES, 2 MgATP
(pH 7.2; 290-300 mOsm/kg H,O), with 0.5 CaCl, and 1 EGTA
to buffer internal free Ca>* to ~120 nM. Patch pipettes (4-7 M
resistance) were made from thin wall borosilicate glass (WPI,
Sarasota, FL) pulled on a Narishige puller (Narishige Scientific,
Setagaya-Ku, Tokyo) and fire polished with a microforge
(MF 900; Narishige). The junction potential (—12.6 mV) was
calculated with the utility in pCLAMP ver 9 (Molecular Devices,
Sunnyvale, CA). Data were acquired using an Axopatch 200A
amplifier and filtered at 5 Hz with a Digidata 1322A board,
and acquisition and analysis were performed using pPCLAMP 10
software (all from Axon Instruments).

Cell Morphology, Viability and Proliferation
Assays

Microglia (6 x 10* cells/coverslip) were unstimulated or
stimulated for 24 h with a cytokine: IL-4 or IL-10. When a
Kir2.1 inhibitor (Ba*t or ML133) was used, it was added at
the same time as the cytokine. To examine viability, microglia
were incubated with propidium iodide (500 nM, Invitrogen) for
1 h (37°C, 5% CO;) before fixing with 4% paraformaldehyde

Uhttp://flypush.imgen.bcm.tmc.edu/primer/primer3_www.cgi

(Electron Microscopy Sciences, Hatfield, PA) for 10 min at room
temperature. Cells were permeabilized with 0.2% Triton X-100
for 5 min, and washed with PBS (3x, 5 min each), and stained
with FITC-conjugated tomato lectin (TL; 1:500, 15 min), and
the nuclear dye, 4/, 6-diamidino-2-phenylindole (DAPI; 1:3000,
5 min; Invitrogen). After washing (3%, 5 min each), coverslips
were mounted on glass slides using Dako mounting medium
(Dako, Glostrup, Denmark). Five random fields were imaged at
20x or 40x magnification using the deconvolution microscope
(DECON; Carl Zeiss, Jena, Germany). Counts of dead microglia
(cells double-labeled with PI and DAPI) were normalized to the
total number of DAPI-positive cells in 5 fields of view for each
treatment condition.

For proliferation, we used the CyQUANT NF assay
(Invitrogen). Microglia were seeded at 4 x 10* cells/well of a 96-
well flat-bottom plate and cultured in MEM with 2% FBS for 1-2
days (37°C, 5% CO,). Then, they were stimulated for 24 h with
IL-4 or IL-10, with or without a Kir2.1 channel inhibitor (Ba%*
or ML133). The dye-binding solution was added to the wells,
incubated for 30 min (37°C, 5% CQO,), and then the fluorescence
intensity was measured using a multi-label plate counter (Victor
1420, Perkin Elmer, Woodbridge, ON, Canada), with excitation
at 485 nm and emission at 535 nM. Readings were taken for
0.1 s at 3 mm from the bottom of the plate, in triplicate and
averaged. For analysis, the readings with each Kir2.1 blocker were
normalized to the untreated unstimulated (control) group.

Transwell Migration Assay

Microglia were seeded at 3x 10 cells/filter in 200 pl of MEM
with 2% FBS in the upper well of a Transwell migration chamber
(VWR, Mississauga, ON, Canada), as we recently described
(Lively and Schlichter, 2013; Ferreira et al., 2014; Siddiqui et al.,
2014). After 30 min, 300 l of MEM with 2% FBS was added to
the lower well, and microglia were left unstimulated or stimulated
with 20 ng/ml of IL-4 or IL-10. When used, a channel inhibitor
(Ba** or ML133) was added for a further 23 h (24 h total
incubation period at 37°C, 5% CO,), to allow time for cell
migration through the 8 pm diameter holes in the filter. For
chemotaxis, ATP (300 wM) was added to the lower well. After
incubation, the Transwell inserts were washed with PBS, fixed
in 4% paraformaldehyde for 15 min, and washed in PBS (3,
5 min each). A Q-tip was used to remove cells from the top of
the filter. Cells that had migrated to the other side were counted
after staining with 0.3% crystal violet in methanol (~1 min) and
rinsing with PBS to remove excess stain. Cells were counted from
5 random fields at 40x magnification using an Olympus CK2
inverted microscope (Olympus, Tokyo, Japan) and normalized
to random transmigration of the untreated unstimulated group.

Intracellular Ca>* Measurements

Unstimulated or stimulated microglia (7-8 x 10* cells/
coverslip), were incubated (40 min, room temperature) with
3.5 ng/ml Fura-2AM (Invitrogen) in standard bath solution
containing 2 mM CaCl,. The coverslip was mounted in a
perfusion chamber and washed to remove any residual external
Fura-2. Measurements were acquired at room temperature using
a Nikon Diaphot inverted microscope, Retiga-EX camera (Q-
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imaging, Burnaby, BC, Canada), DG-4 arc lamp with excitation
wavelength changer (Sutter Instruments, Novato, CA), and
Northern Eclipse image acquisition software (Empix Imaging,
Missisauga, ON, Canada). Cells were exposed to 340 and
380 nm excitation wavelengths, with the excitation shutter
closed between acquisitions to prevent photobleaching. Ratios
(340/380) were obtained using a 505 nm dichroic mirror and a
510 nm emission filter. For nominally Ca?*-free solution, CaCl,
was omitted. EGTA was not added because we found that it
can rapidly deplete Ca*" from immune cells (Schlichter and
Sakellaropoulos, 1994).

Statistics

Whole-cell currents and Fura-2 signals were analyzed using
Origin ver 9.0 (OriginLab, Northampton, MA). Dose response
curve-fitting and all other data were analyzed using GraphPad
ver 6.01 (GraphPad Software, San Diego). All graphical data are
presented as mean =+ standard error of the mean (SEM) for
the n values indicated. The statistical significance of results was
analyzed with a paired or unpaired Student’s ¢-test, or using a
one- or two-way analysis of variance (ANOVA). Results were
considered significant if p < 0.05.

Results

The Microglial Kir2.1 Current is Blocked by
ML133

We isolated whole-cell Kir2.1 currents from unipolar rat
microglia that had a distinct lamellum and a uropod. This
morphology corresponds with a high migratory capacity
(Siddiqui et al., 2012, 2014; Vincent et al., 2012; Lively and
Schlichter, 2013; Ferreira et al.,, 2014). Before performing cell
function assays, it was important to examine the efficacy of
the two blockers (Ba?*, ML133) that we planned to use to test
the role of Kir2.1 in microglia. ML133 is a recently identified
small molecule inhibitor of the Kir2-family, and it blocks Kir2.1
heterologously expressed in HEK cells with an ICs of 1.8 WM at
7.4 pH (less effective at lower pH; Wang et al., 2011). Very few
studies have used ML133 (Wang et al., 2011; Masia et al., 2015),
and it has not been reported for microglia.

Kir2.1 presents as a rapidly activating, strongly inward-
rectifying current, due to relief at negative potentials of block
by internal Mg?>T and polyamines (reviewed in Hibino et al,
2010; Baronas and Kurata, 2014), and time-dependent block
by external Na' at very negative potentials (Kubo et al,
1993; Norenberg et al, 1994). As illustrated in Figure 1A,
the Kir current in rat microglia shows the hallmark rapid
voltage-independent activation at negative potentials and time-
dependent relaxation at very negative potentials. ML133 (at 20
uM) fully blocked the microglial Kir2.1 current at all voltages
tested (Figures 1A-C). Importantly, ML133 blocked the small
component of outward current just above the reversal potential
(Eey; Figure 1C, inset). As expected for Kir2.1 current, there
was strong inward rectification and E,,, was about —82 mV after
junction potential correction, which is very close to the calculated
Nernst potential with the bath and pipette solutions used
(Ex = —85 mV). Although external Ba?T is commonly used to
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FIGURE 1 | The inward-rectifier Kir2.1 current in rat microglia is
blocked by Ba?* and ML133. For all recordings, the standard bath solution
contained 5 nM AgTx-2 to block the Kv1.3 current. Whole-cell currents were
then recorded in response to the voltage protocol shown in panel (A); i.e., test
pulses between —160 and +10 mV in 10-mV increments from a holding
potential of 0 mV. Note: in this, and all subsequent figures, the liquid junction
potential was not corrected; thus, all voltages are 12.6 mV more negative than
indicated. (A) Representative currents with and without the specific
Kir2.x-family inhibitor, ML133 (20 wM). (B) Summary of amplitudes of inward
current (at —120 mV) and outward current (at —50 mV) (mean &= SEM; n =5
each) with and without 20 pM ML1383. *p < 0.05, *p < 0.01; paired Student’s
t-test. (C) Current-voltage (I-V) relations from the same cell as in A, before and
after adding 20 pM ML1383. Inset: |-V relations, plotted on an expanded
Y-axis. Note the outward Kir2.1 current above the reversal potential, Er,
(arrow) before, but not after adding ML133. (D) I-V relations for a different cell
before and after adding 100 uM Ba?*. Note the incomplete block of outward
current. (E) Time course of block by 20 wM ML133, which was added to the
bath at the time indicated by the arrow. Voltage steps to —120 mV from a
holding potential of 0 mV were repeatedly applied at an interpulse interval of 5
s. (F) Dose-response curve for ML133 block of Kir2.1 current, normalized to
the value without drug and presented as a semi-logarithmic function (mean +
SEM, n = 4-7 cells for each concentration). The ICsp (3.5 wM) is indicated by
the vertical dashed line.

block Kir2.1 currents in rodent microglia (Brockhaus et al., 1993;
Norenberg et al., 1994; Schlichter et al., 1996; Chung et al., 1999;
Franchini et al., 2004), block is voltage dependent and decreases
with membrane depolarization (Schlichter et al., 1996; Franchini
et al., 2004). The outward Kir2.1 current in rat microglia
was not well blocked by 100 pM external Ba?* (Figure 1D).
Caution is needed when using higher Ba?*concentrations in
functional assays because millimolar Ba?* also inhibit some
voltage-dependent K* channels (Armstrong and Taylor, 1980;
Armstrong et al.,, 1982), and activates some SK channels (Cao
and Houamed, 1999; Soh and Park, 2001). Therefore, in several of
the following functional studies, we compared effects of ML133
with Ba?*.
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We next examined the time dependence of block by bath-
applied ML133 because it is known to act on an internal site
(Wang et al., 2011) and should thus take time to enter the cell. As
expected, full block by 20 uM ML133 required several minutes
(Figure 1E). Note that in the absence of ML133, there was some
time-dependent current rundown; i.e., to 79.4 &= 6.8% (n = 5) of
the initial current at 5 min. This rundown is expected in whole-
cell recordings due to loss of cytoplasmic components; e.g., lipid
kinases that generate phosphatidylinositol 4, 5-bisphosphate,
that are required to sustain Kir2.1 channel function (reviewed
in Hilgemann et al., 2001; Fiirst et al., 2014). Finally, a dose-
response curve for ML133 block was constructed and yielded an
ICsp of 3.5 WM (n = 4-7 cells for each point, Figure 1F). This
value is comparable to the reported values in HEK cells (Wang
et al., 2011) and murine neutrophils (Masia et al., 2015).

Kir2.1 Expression and Current in
Anti-Inflammatory Microglial Activation States
We previously found that alternative activation and acquired
deactivation are elicited by 24 h stimulation of rat microglia
with IL-4 or IL-10, respectively (Lively and Schlichter, 2013;
Ferreira et al., 2014; Siddiqui et al., 2014). However, there are
apparently no reports addressing expression of KCNJ2 mRNA
(which codes for Kir2.1) or Kir2.1 currents in microglia following
stimulation with IL-4 or IL-10. Levels of KCNJ2 mRNA did
not significantly differ at 6 or 24 h after stimulation with
IL-4 or IL-10 (Figure 2A). Nevertheless, it was important
to compare the current amplitude in the different activation
states because it can be affected by factors beyond mRNA
expression; particularly, protein expression, trafficking to the
surface membrane and post-translational modulation. We waited
until 24 h after stimulation with IL-4 or IL-10 to allow time
for such changes to occur. Representative currents are shown
in Figure 2B. Figure 2C summarizes the current densities; i.e.,
the current measured at —120 mV was normalized to the cell
capacitance, which is a measure of cell surface area. Current
densities were not different between unstimulated cells and after
IL-4 or IL-10. The capacitance did not statistically differ with
treatments; i.e., it was 25 + 2 pF (n = 18) for unstimulated
microglia vs. 24 £ 2 pF (n = 17) for IL-10-stimulated cells;
however, there was a trend toward a smaller cell size after IL-
4 stimulation (19 £ 2 pF, n = 17; p = 0.14). We previously
noted that IL-4 stimulated cells were generally smaller (Lively
and Schlichter, 2013) but did not monitor their capacitance in
that study.

Kir2.1 Contributes to Microglial Proliferation,
Migration and Chemotaxis

We previously reported that rat microglia are migratory, with
most cells having a unipolar morphology with a fan-shaped
lamellum at the leading edge and a trailing uropod whether
unstimulated or stimulated with IL-4 or IL-10 (Siddiqui et al.,
2012, 2014; Vincent et al.,, 2012; Lively and Schlichter, 2013).
This morphology was also prevalent in the present study
(Figures 3A-C). However, when classically activated by LPS,
they become non-migratory and dramatically change their
morphology to nearly spherical (Lively and Schlichter, 2013;
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FIGURE 2 | Kir2.1 expression and current is unaffected by IL-4 or IL-10
stimulation. (A) KCNJ2 (Kir2.1) mRNA levels were monitored using real-time
RT-PCR at 6 and 24 h from cells that were unstimulated or stimulated with 20
ng/ml IL-4 or IL-10. Channel expression was normalized to the housekeeping
gene, HPRT1, and shown as mean + SEM for the number of microglia
cultures indicated on the bars. Comparisons based on a two-way analysis of
variance (ANOVA) followed by Tukey’s post hoc test, indicate no significant
differences. (B) Whole-cell Kir2.1 currents were recorded in response to
voltage steps, as in Figure 1A. Representative recordings are shown for an
unstimulated microglial cell and individual cells stimulated for 24 h with 20
ng/ml IL-4 or IL-10. (C) Summarized Kir2.1 current densities recorded at
—120 mV, plotted as mean + SEM for the number of cells indicated on each
bar. A one-way ANOVA followed by a Bonferroni post hoc test indicates
non-significant differences.

Siddiqui et al, 2014). Because both Kir2.1 blockers (Ba**,
ML133) greatly reduced migration (see below), we asked
whether their morphology changed to that of LPS-stimulated
cells. It did not; and blocking Kir2.1 did not obviously affect
their unipolar morphology under any of the activation states
examined (Figures 3A-C). Time-lapse imaging for 2 h (not
shown) also showed that the blockers did not obviously affect
their morphology. In addition, their viability, monitored with
propidium-iodide, was >90% during the longest stimulation
period (24 h) and was unaffected by activation state or treatment
with ion channel blockers (not shown). However, from the
images, we noted apparent differences in cell density after
blocking Kir2.1, which we then quantified using the CyQuant
assay in a microplate reader format. As we recently showed for
IL-4 (Ferreira et al., 2014), proliferation was not affected by 24 h
stimulation with IL-4 or IL-10 alone (Figure 3D). However, the
Kir2.1 blockers significantly increased cell density (by 130-146%)
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FIGURE 3 | Blocking Kir2.1 increases proliferation of unstimulated and
IL-4-stimulated microglia. Microglial cells were left unstimulated or stimulated
with IL-4 or IL-10 for 24 h. When Kir2.1 blockers were used, they were added
to the bath after the first hour and remained for the following 23 h. (A-C)
Representative images of cells labeled with the microglia marker, tomato-lectin
(green), and the nuclear dye, DAPI (blue): untreated (left panels), 1 mM Ba?*+
(middle), 20 wM ML133 (right panels). [Note the purity of the microglial cultures,

as all cells labeled with tomato lectin.] Scale bars are 50 pm and apply to all
images. (D) For the CyQUANT proliferation assay, microglia were stimulated for
24 h with IL-4 or IL-10 in the presence or absence of Ba?* or ML133 treatment.
Results are expressed as fold change (mean 4+ SEM, n = 12 cultures per
treatment) with respect to the untreated unstimulated control (dashed lines),
and a one-way ANOVA with Bonferroni post hoc test was performed. *o <
0.05, *p < 0.01, **p < 0.001.

of both unstimulated- and IL-4-stimulated microglia. Together,
our results show that blocking Kir2.1 increased their proliferation
without affecting viability. In contrast, this proliferative effect of
blocking Kir2.1 was not seen in IL-10 stimulated microglia.

We next asked if Kir2.1 is important for their migratory
capacity. Transwell inserts were used to examine 3-dimensional
migration in the absence (random transmigration) and
presence of the chemoattractant, ATP (chemotactic migration).
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Consistent with our previous findings (Lively and Schlichter,
2013; Ferreira et al, 2014; Siddiqui et al, 2014), random
transmigration was increased by stimulation with IL-4 (by 343%;
n = 11) or IL-10 (344%; n = 8; Figure 4). Transmigration of
unstimulated cells was reduced by blocking Kir2.1 with Ba?* (by
61%) or ML133 (by 73%; Figure 4A). Similar, large reductions
were seen in IL-4-stimulated cells (76% by Ba?*, 90% by ML133;
Figure 4B) and IL-10-stimulated cells (77% by Ba*", 85% by
ML133; Figure 4C), and their migration was at or below the level
of unstimulated cells (dotted lines). ATP-induced chemotactic
migration was several-fold higher than random transmigration
for all three activation states, and was dramatically reduced
by treatment with Kir2.1 blockers; i.e., to about the same level
as random transmigration of unstimulated cells (1.0 for the
normalized data). It is important to note that these reductions
are likely underestimated for unstimulated and IL-4-stimulated
cells because the blockers increased proliferation (by 1.3-1.46
fold over 24 h; Figure 3D) and thus, increased the number of
cells available to migrate during the assay.

A unstimulated Transmigration Chemotactic migration
e 0 5
e S5+ T
.% % :% CE» K% Tk
g g 057 s wkkk 2 % 8 7
RS 2= 8
=4 OoT  Ll-2_1 iy = .
5 Alre] N8 P bl e
Confrol  +BaCly  -+ML133 Control  +BaCl, +ML133
B IL-4 stimulated
s 4
28 5 5
€SB e S5] T
EJ oo 8E
g E 22
52 1 - p=007 10 _ 58 p=0.05 **
= oz 7
0 1 9 Soll877 ]l'__';;_'r """"
IL-4 +BaCl,  +ML133 L4 BaCl, -MLI%
C IL-10 stimulated
T
S T
5 s
%-‘3 2 S 25
E % . 2 £ *k *k
§< + O3 8 6 7
F=0= T e iy I =C S et B
T
2 o | o] mim ot
Ay 4BaGy  MLIS 10 +BaCl, +ML133

FIGURE 4 | Blocking Kir2.1 reduces migration of unstimulated, IL-4-
and IL-10-stimulated microglia. (A-C) Microglial cells were seeded on
filters bearing 8 wm diameter pores in the upper wells of 3D Transwell™
chambers. We quantified random transmigration (left panels) and chemotactic
migration induced by adding 300 wM ATP to the lower well (right panels).
Microglia were unstimulated (A) or stimulated with IL-4 (B) or IL-10 (C) for 24
h, and when used, 1 mM Ba?t or 20 pM ML133 was added after the first
hour and for the remaining 23 h. All results are expressed as fold change with
respect to random transmigration of untreated (control) unstimulated cells (i.e.,
1.0 indicated by the dashed lines). Data are mean + SEM for the number of
microglial cultures indicated on each bar, and were analyzed using one-way
ANOVA with Bonferroni post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.

Blocking Kir2.1 Reduces Store-Operated Ca**
Influx

To examine whether Kir2.1 regulates CRAC-mediated Ca’*"
influx in microglia, we isolated this component in Fura-2-loaded
cells. As in our earlier study (Ohana et al., 2009), CRAC was
activated by depleting Ca>* stores using a 5-min treatment with
1 uM thapsigargin in a Ca?*-free bath solution. The baseline
Fura-2 signal was low and stable, a large rise occurred when
external Ca’™ was restored, and unstimulated microglia often
displayed Ca?* oscillations (Figure 5A). As expected for CRAC,
the Ca’" rise required influx and was rapidly eliminated by
removing external Ca?t. Further evidence that the rise was
CRAC-mediated was that it was eliminated by perfusing the
CRAC blocker, 10 WM BTP2, into the bath.

Next, we assessed contributions of CRAC and Kir2.1 to Ca?*+
influx in the different activation states (Figure 5B). To allow
time for block by ML133 (Figure 1E) and BTP2 to develop
(Figure 5A); each blocker was added to separate coverslips
of cells for the duration of the experiment. Without channel
blockers, the Ca?* response of unstimulated microglia usually
reached a plateau during the 5 min exposure to Ca®"; whereas,
in IL-4- or IL-10-stimulated cells, there was usually a rapid
rise followed by a spontaneous decline (Figure 5B). The Fura-2
signal, integrated over the 5-min exposure to external Ca?", was
~50% lower in IL-4-stimulated microglia than in unstimulated-
(p < 0.0001) or IL-10-stimulated cells (p < 0.0001; Figure 5C).
The CRAC blocker, BTP2, reduced Ca’" entry by 96% in both
unstimulated and IL-10-stimulated cells (p < 0.0001), but was
slightly less effective in IL-4-stimulated cells (reduced by 82%, p
< 0.0001). As we predicted, blocking Kir2.1 with ML133 reduced
Ca’" entry in unstimulated cells (by ~68%, p < 0.001), and to
a similar degree in IL-10-stimulated cells (~59%, p < 0.0001).
After adding ML133 to IL-4-stimulated cells, the remaining
signal was about the same as in unstimulated and stimulated cells.
The percent reduction by ML133 was lower (~38%, p < 0.01),
because the control IL-4 response was lower. Together, these
results show that Ca?" entry in microglia was mainly CRAC-
mediated under all three activation states, and required Kir2.1
activity for maximal influx.

Discussion

There are several salient findings in this study. (i) Expression
of KCNJ2 mRNA and Kir2.1 current were comparable in rat
microglia that were unstimulated or had undergone alternative
activation (with IL-4) or acquired deactivation (with IL-
10). (ii) Proliferation was comparable in all three microglial
activation states. It was slightly increased by blocking Kir2.1 in
unstimulated and IL-4-stimulated microglia, but not after IL-10
stimulation. (iii) Migration and chemotaxis were increased by
IL-4 and by IL-10, and were dramatically decreased by blocking
Kir2.1 with Ba** or ML133, regardless of activation state. (iv)
Blocking Kir2.1 with ML133 reduced Ca** influx through BTP2-
sensitive, Ca**t-release-activated Ca?>* (CRAC) channels in all
three activation states.

Reports of changes in Kir2.1 current with microglial
activation have been inconsistent, possibly species dependent,
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FIGURE 5 | Blocking Kir2.1 reduces CRAC-mediated Ca?* influx.
Microglia were unstimulated or stimulated for 24 h with 20 ng/ml IL-4 or IL-10,
and then loaded with the Ca®*-sensitive dye, Fura-2. The Ca®* levels are
reported as the ratio of the signal at 340 and 380 nm excitation wavelengths.
(A) CRAC-mediated Ca?* influx. As indicated by the horizontal bars above the
traces, microglia were exposed for 5 min to Ca®*-free bath solution containing
1 wM thapsigargin (thaps) to deplete intracellular Ca?* stores and activate
CRAC. Then, Ca®* influx was restored by perfusing in a solution containing 2
mM Ca?*. After 5 min, the dependence on external Ca2t was confirmed by
re-perfusing the bath with Ca®*-free solution. Right panel: A different cell,
showing the response to the CRAC-channel blocker, 10 wM BTP2, added to
the bath where indicated. (B) Reduction of the CRAC-mediated Ca?* rise by
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blocking CRAC or Kir2.1. Representative recordings from unstimulated and
IL-4- or IL-10 stimulated microglia, using the same protocol as in panel A. Ca®*
was monitored in separate coverslips of cells with or without 10 uM BTP2 or
the Kir blocker, 20 wM ML1383 present throughout the recording. (C) The area
under each Fura-2 trace was integrated over the 5 min period of exposure to 2
mM Ca®*, and expressed in arbitrary units as mean + SEM for the number of
cells indicated on each bar. Three independent cell cultures were used to test
each blocker (BTP2, ML133) and control cells were from the same 6 cell
cultures. Results were analyzed using one-way ANOVA with a Bonferoni post
hoc test. Statistical effects of each channel blocker within each activation state
(stimulus) are indicated as **p < 0.01, ***p < 0.0001. Statistical differences
between the blockers are indicated as *p < 0.05, #p < 0.01.

and very little is known about anti-inflammatory states. For
cultured murine microglia, several studies show that classical
activation decreases Kir2.1 current; i.e., after exposure to
lipopolysaccharide (LPS) or the pro-inflammatory cytokines,

IFNy or TNF-a (Draheim et al., 1999; Prinz et al, 1999;
Boucsein et al., 2003). In contrast, effects on the current in rat
microglia range from no change, to a small increase (LPS), to
a large increase (IFNy; Norenberg et al., 1992; Visentin et al.,
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1995). For microglia in brain slices, Kir2.1 was observed in the
murine corpus callosum and within the peri-infarct region after
ischemia (middle cerebral artery occlusion) in rats (Brockhaus
et al., 1993; Lyons et al., 2000). More recent studies have
compared Kir2.1 currents in rodent microglia under different
conditions: rat microglia in the facial nucleus before and after
facial nerve axotomy, murine microglia from acute and cultured
hippocampal slices, and murine microglia from young adult and
aged animals (Boucsein et al., 2000; Schilling and Eder, 2007,
2015). The current was initially small in microglia from rat facial
nucleus, acute murine hippocampal slices and young adult mice,
and it increased in the denervated facial nucleus, in cultured
slices, and in aged mice. However, microglial activation states
were not determined. TGFB, like IL-10, is considered a resolving
cytokine (Suzumura et al.,, 1993; Pratt and McPherson, 1997),
and in primary murine microglia or cell lines (BV-2, C8-B4) the
current density was not affected by stimulation with TGFB1 or
TGEPB2 (Schilling et al., 2000; Moussaud et al., 2009). Here, we
found that neither KCNJ2 mRNA nor the Kir2.1 current differed
under any of the activation states examined: unstimulated, IL-4-
or IL-10-stimulated.

After comparing the Kir2.1 current in the different activation
states, it was important to assess its contributions to microglial
functions, for several reasons. The Kir2.1 current amplitude
represents a snapshot in time, and changes in other currents
could affect its relative contribution to the membrane potential
and microglia functions over a longer period. In addition, Kir2.1
is subject to post-translational modulation (Hilgemann et al.,
2001; Hibino et al., 2010; Fiirst et al., 2014), which might differ
in intact cells, with time, and with activation state. Results of
functional studies using the common blocker, Ba?*, have been
inconsistent; thus, it is important to consider its limitations, in
particular that block is voltage dependent. The present study
shows that Ba?* is a poor blocker of outward Kir2.1 current
in microglia. The reported bi-stable distribution of microglial
membrane potentials (about —35 and —70 mV) (Norenberg
et al.,, 1994; Visentin et al., 1995; Boucsein et al.,, 2003) might
explain why Ba?" depolarized some rat microglial cells but
did not affect others (Chung et al., 1999), and reduced the
ATP-induced Ca?* signal in some microglia but not others
(Franchini et al., 2004). Here, we found that a higher Ba?t
concentration (1 mM) affected all the functions that were
examined (proliferation, migration, chemotaxis) but relevant
off-target effects have been reported. For instance, KCa2.3 and
KCa3.1 channels are expressed in rat microglia (Kaushal et al.,
2007; Schlichter et al., 2010; Siddiqui et al., 2012, 2014; Ferreira
et al, 2014); 1 mM Ba?T blocks cloned KCa3.1 channels (by
88%; Joiner et al., 1997), and sub-millimolar Ba** moderately
activates cloned KCa2 and KCa3.1 channels (Cao and Houamed,
1999; Soh and Park, 2001). We previously showed that migration
of rat microglia depends on KCa3.1 (Ferreira and Schlichter,
2013; Ferreira et al, 2014); thus, its block by Ba?* could
contribute to inhibition of migration and chemotaxis in the
present study. Therefore, rather than relying only on Ba?*, we
determined that the selective inhibitor, ML133 (Wang et al,
2011) blocked in a voltage-independent manner, with essentially
complete block of both inward and outward Kir2.1 currents

at 20 WM. Most importantly, ML133 greatly reduced CRAC-
mediated Ca?>" entry and had the same effects as Ba** in
increasing proliferation and reducing migration and chemotaxis.
Each of these functional outcomes will be discussed in light of the
literature.

The prevailing view is that Kir2.1 channel activity helps
maintain a negative membrane potential in many cell types,
and thereby regulates the driving force for ion fluxes, including
Ca*" influx. In rat microglia, Ca*™ can enter through several
pathways, including Ca®* -release activated Ca*" (CRAC/Orail)
and TRPM7 channels (Jiang et al., 2003; Ohana et al.,, 2009;
Siddiqui et al., 2014), ionotropic purinergic receptors (Inoue,
2008), and reversed Nat/Ca’** exchange (Newell et al., 2007).
Here, we focussed on CRAC-mediated Ca®" entry because the
channel is highly Ca?*-selective and strongly inward-rectifying
and thus, Ca?" entry will be facilitated by hyperpolarization.
CRAC accounted for essentially all of the store-operated Ca?*
entry (i.e., it was fully blocked by BTP2) in unstimulated and
IL-10-stimulated microglia, and most of the Ca?* entry in IL-
4-stimulated cells. Blocking Kir2.1 with ML133 substantially
reduced Ca’>" entry in all three microglial activation states,
which provides the first evidence that Kir2.1 regulates microglia
functions by promoting CRAC-mediated Ca?* influx. Although
beyond the scope of the present study, several observations
regarding store-operated Ca?t entry would be worth following
up in future; ie., differences in the shape of the Ca?*
signal in unstimulated vs. IL-4- or IL-10-stimulated microglia
after Ca?" was restored to the bath; and the lower Ca?"
response and BTP2-insensitive component in IL-4-stimulated
cells.

Microglia must migrate and invade through ECM to reach
damage sites, and this is stimulated by ATP release from damaged
cells (Davalos et al., 2005; Farber and Kettenmann, 2006; Inoue,
2008; Tozaki-Saitoh et al., 2012). Cultured rat microglia are
highly migratory (Siddiqui et al., 2012, 2014; Vincent et al.,
2012; Ferreira and Schlichter, 2013; Lively and Schlichter, 2013;
Ferreira et al, 2014), and both migration and invasion are
increased in IL-4 and in IL-10 stimulated microglia (Lively and
Schlichter, 2013; Ferreira et al., 2014; Siddiqui et al., 2014).
Microglial migration is a Ca?* dependent process involving
CRAC channels (Siddiqui et al., 2012; Ferreira and Schlichter,
2013; Michaelis et al., 2015), as well as Ca?>*-permeable TRPM7
channels in IL-4- and IL-10-stimulated cells (Siddiqui et al.,
2014). In migrating rat microglia, CRAC/Orail is enriched
in podosomes, which are tiny multi-molecular structures used
for adhesion and ECM degradation during migration and
invasion (Siddiqui et al., 2012; Vincent et al, 2012); and
blocking CRAC reduced podosome expression, invasion and
transmigration (Siddiqui et al., 2012). Consistent with the role
of Kir2.1 in CRAC-mediated Ca** entry, we found that blocking
Kir2.1 greatly reduced migration and ATP-induced chemotaxis
in unstimulated, IL-4 or IL-10 stimulated microglia. Previous
studies did not directly assess the role of Kir2.1 in migration.
However, in murine microglia the Kir2.1 current and cell
spreading were increased by activated Rac and decreased by
activated Rho, which are small GTPases that regulate actin and
facilitate cell migration (Muessel et al., 2013).

Frontiers in Cellular Neuroscience | www.frontiersin.org

9 May 2015 | Volume 9 | Article 185


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Lam and Schlichter

Roles of inward rectifier K channel in microglia

Neonatal rat microglia proliferate in culture (Schlichter et al.,
1996). Consistent with our recent IL-4 study (Ferreira et al,
2014); proliferation was not altered by 24 h stimulation with IL-
4 or IL-10. However, in unstimulated or IL-4-stimulated cells
(but not after IL-10), proliferation was increased 40-46% by 1
mM Ba?* and 30-46% by ML133. In our early study using the
mitogen, CSF-1, 1 mM Ba?" increased proliferation by 25%,
while higher concentrations decreased it with an apparent ICsq
of 1.5 mM (Schlichter et al., 1996). We now think that the
inhibition at 5 and 10 mM Ba?* was an off-target effect, possibly
on KCa3.1, as noted above. Some studies have used targeted
knockdown of Kir2.1 to avoid the problems associated with
Ba*". Consistent with our results using ML133 (and 1 mM
Ba?t), proliferation of endothelial progenitor cells was increased
after silencing Kir2.1 with siRNA or blocking it with Ba?"
(Jang et al., 2011) but the mechanism was not identified. The
contribution of Kir2.1 to proliferation is somewhat controversial
and might also depend on cell type. There was no effect or
even reduced proliferation in Schwann cells, mesenchymal stem
cells, smooth muscle cells, and fibroblasts after treatment with
Ba** (10-500 wM) or dominant-negative suppression of Kir2.1
(Sobko et al., 1998; Karkanis et al., 2003; Zhang et al., 2012a,b;
Qi et al, 2015). The mechanism by which Kir2.1 inhibition
affects cell proliferation is not known. Numerous studies show
that Ca?* entry is important for cell proliferation (Capiod,
2011; Borowiec et al,, 2014), and that cell cycle progression
correlates with changes in KT channel activity (reviewed in
Pardo, 2004; Blackiston et al., 2009; Urrego et al., 2014), which
is expected to affect the membrane potential. Unfortunately,
detailed studies of membrane potential during the cell cycle
are lacking for microglia and other cells. What is known is
that the membrane K permeability is generally higher during
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