
MINI REVIEW
published: 14 July 2015

doi: 10.3389/fncel.2015.00266

Edited by:
Rakez Kayed,

University of Texas Medical Branch,
USA

Reviewed by:
James Howard Eubanks,

University of Toronto, Canada
Angus John Clarke,

Cardiff University, UK
Bruria Ben-Zeev,

Safra Pediatric Hospital, Israel

*Correspondence:
John Christodoulou,

Western Sydney Genetics Program,
Children’s Hospital at Westmead,

Locked Bag 4001, Westmead,
Sydney, NSW 2145, Australia

john.christodoulou@health.nsw.gov.au

Received: 10 May 2015
Accepted: 29 June 2015
Published: 14 July 2015

Citation:
Gold WA and Christodoulou J (2015)

The utility of next-generation
sequencing in gene discovery

for mutation-negative patients with
Rett syndrome.

Front. Cell. Neurosci. 9:266.
doi: 10.3389/fncel.2015.00266

The utility of next-generation
sequencing in gene discovery
for mutation-negative patients with
Rett syndrome
Wendy Anne Gold1,2 and John Christodoulou1,2,3*

1Western Sydney Genetics Program, New South Wales Centre for Rett Syndrome Research, Children’s Hospital at Westmead,
Sydney, NSW, Australia, 2 Discipline of Paediatrics and Child Health, University of Sydney, Sydney, NSW, Australia, 3 Discipline
of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia

Rett syndrome (RTT) is a rare, severe disorder of neuronal plasticity that predominantly
affects girls. Girls with RTT usually appear asymptomatic in the first 6–18months of
life, but gradually develop severe motor, cognitive, and behavioral abnormalities that
persist for life. A predominance of neuronal and synaptic dysfunction, with altered
excitatory–inhibitory neuronal synaptic transmission and synaptic plasticity, are overar-
ching features of RTT in children and in mouse models. Over 90% of patients with
classical RTT have mutations in the X-linked methyl-CpG-binding (MECP2) gene, while
other genes, including cyclin-dependent kinase-like 5 (CDKL5), Forkhead box protein
G1 (FOXG1), myocyte-specific enhancer factor 2C (MEF2C), and transcription factor
4 (TCF4), have been associated with phenotypes overlapping with RTT. However,
there remain a proportion of patients who carry a clinical diagnosis of RTT, but who
are mutation negative. In recent years, next-generation sequencing technologies have
revolutionized approaches to genetic studies, making whole-exome and even whole-
genome sequencing possible strategies for the detection of rare and de novo mutations,
aiding the discovery of novel disease genes. Here, we review the recent progress that is
emerging in identifying pathogenic variations, specifically from exome sequencing in RTT
patients, and emphasize the need for the use of this technology to identify known and
new disease genes in RTT patients.

Keywords: Rett syndrome, mutation, massively parallel sequencing, next-generation sequencing, intellectual
disability

Introduction

Rett syndrome (RTT) is a pervasive disorder of neuronal plasticity, characterized by an apparent
normal early development, followed by a stagnation and regression of development, leading to loss
of purposeful hand movements, reduced brain and head growth, physical disabilities, language and
learning deficits, seizures, and intellectual disability (Rett, 1966; Hagberg et al., 1983). Most patients
first exhibit symptoms between 6 and 18months of age and display the hallmark clinical course of
progressive loss of cognitive function and fine and gross motor skills, and abnormal social-cognitive
development (Williamson and Christodoulou, 2006).

Inmost cases, RTT is caused by de novomutations in the X-linkedmethyl-CpG-binding (MECP2)
gene (Christodoulou and Weaving, 2003), resulting in the disruption of the molecular functions of
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MeCP2. MeCP2 is predominantly expressed in the brain and par-
ticularly in post-mitotic neurons, where its level of expression cor-
relates with the maturation of the central nervous system (Pelka
et al., 2005). The distinct neurological phenotype of RTT patients
demonstrates that MeCP2 regulation is essential for normal neu-
ronal and brain development and function (Swanberg et al., 2009).
The broad clinical phenotype of RTT may make clinical diagno-
sis a challenge, particularly in mutation-negative patients where
a definitive genetic result cannot be used. However, consensus
criteria have been established that distinguish RTT patients into
the individual classifications of “classic” or “typical” RTT and the
“atypical” or “variant” forms of RTT (Neul et al., 2010).

Despite severe neurological and associated behavioral abnor-
malities observed in RTT, there are no overt differences in the
gross structure of the brains in RTT patients (Chahrour and
Zoghbi, 2007). However, the number of studies showing structural
andmorphological synaptic defects (Armstrong et al., 1995, 1998;
Bauman et al., 1995; Kishi and Macklis, 2004; Belichenko et al.,
2009), reduced synapse number (Belichenko et al., 2009), and
synaptic and circuitry deficits (Fukuda et al., 2005; Asaka et al.,
2006; Moretti et al., 2006; Guy et al., 2007; Zhang et al., 2008;
Lonetti et al., 2010) highlights the synaptic dysfunction associated
with RTT.

To date, over 800 pathogenic mutations have been detected
within the MECP2 gene (RettBASE; Christodoulou et al.,
2003)1. These mutations include a range of missense, nonsense,
frameshift, and in-frame insertions or deletions, as well as large
deletions spanning whole exons or even the entire gene. Approx-
imately 80–85% of the known MECP2 mutations are localized
within the methyl-binding domain (MBD), transcription repres-
sion domain (TRD), and C-terminal domain, creating “hot-spot”
areas of mutations (Figure 1).

The MECP2 gene is alternatively spliced, generating two iso-
formsMECP2E1 (previously referred to asMECP2B orMECP2α)
and MECP2E2 (previously referred to as MeCP2A or MECP2β)
(Kriaucionis and Bird, 2004; Mnatzakanian et al., 2004). The
MeCP2E1 isoform uses the translation start site (ATG) in exon 1
and comprises exons 1, 3, and 4, and is the predominant isoform
in the central nervous system, whereas the MeCP2E2 isoform
uses a translation start site in exon 2 and comprises exons 2, 3,
and 4. Both isoforms share MBD, TRD, and C-terminal domains,
characteristic ofMECP2.

Although the majority of RTT patients have mutations in the
MECP2 gene (Neul et al., 2008), approximately 8% of classical
RTT and 42% of variant RTT patients are MECP2 mutation
negative (Percy, 2008). Of this latter group of individuals,
some have mutations in other genes, such as cyclin-dependent
kinase-like 5 (CDKL5), Forkhead box protein G1 (FOXG1),
myocyte-specific enhancer factor 2C (MEF2C), and transcription
factor 4 (TF4) (Evans et al., 2005a; Philippe et al., 2010; Armani
et al., 2012). Interestingly, known RTT-causingMECP2mutations
are found in patients who do not show classical RTT phenotypes
(Suter et al., 2014), as well as in patients with PPM-X syndrome
(Klauck et al., 2002), and an “Angelman-like syndrome” clinical
picture (Watson et al., 2001). Of note, there still remain a subset

1http://mecp2.chw.edu.au

FIGURE 1 | Distribution of known mutations along the MECP2 gene.
The red lines indicate the frequency of the mutations. The numbers 1–487
refer to the amino acids along the MeCP2 polypeptide. MDB, methyl-binding
domain; TRD, transcription repression domain (RettBASE:
http://mecp2.chw.edu.au) (Williamson and Christodoulou, 2006).

of patients with a clinical diagnosis of RTT that are mutation
negative.

Implications in Screening RTT Patients for
MECP2 Mutations

Historically, exon 1 of the MECP2E1 isoform was excluded from
sequencing and mutation analysis in RTT patients as it was
thought to be a non-coding exon. However, since the discovery
of the MECP2E1 isoform, mutation analysis of exon 1 has been
included and to date, a number ofmutations involving exon 1 have
been reported in RTT patients (Ravn et al., 2005; Bartholdi et al.,
2006; Chunshu et al., 2006; Quenard et al., 2006; Saxena et al.,
2006; Saunders et al., 2009; Gianakopoulos et al., 2012). Initially,
mutations in exon 1 were suggested to be rare in RTT patients as
detection rates were found to be between 0.03 and 1% of tested
RTT patients (Amir et al., 2005; Evans et al., 2005b; Quenard et al.,
2006). It has also been suggested that RTT patients withmutations
in exon 1 have a more severe phenotype than patients without
exon 1 mutations (Bartholdi et al., 2006).

To date, no mutations have been reported in exon 2 encoding
for theMeCP2E2 isoform. Mouse studies showing the maternally
transferred Mecp2e2 null allele resulted in reduced embryonic
viability, suggesting a likely explanation for the absence of
exon 2-specific mutations in RTT patients. Interestingly, some
patients with atypical RTT phenotypes, who areMECP2mutation
negative, show abnormal expression of both MECP2 isoforms
(Petel-Galil et al., 2006), suggesting that other genes may regulate
MECP2 expression.

Recent developments in massively parallel DNA sequencing
(also known as next-generation sequencing; NGS) now allow
for cost-efficient sequencing of entire exomes (whole-exome
sequence; WES) or even the complete genome (whole-genome
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sequencing; WGS), enabling the efficient identification of novel
variants in known disease genes, as well as facilitating the dis-
covery of novel disease genes. NGS is emerging as a new tool
for the identification of novel genes in complex genetic disorders,
such as RTT. To date, a small number of studies have emerged
identifying new disease genes associated with RTT. These studies
are discussed below and highlight the utility of NGS in identifying
new disease genes in RTT patients.

Recent Studies Using NGS in “RTT”
Patients

In 2014, WES unveiled a variation in the gamma-aminobutyric
acid receptor delta gene (GABRD) in a 12-year-old female patient
diagnosed with an RTT-like clinical picture (Okamoto et al.,
2014b). The patient had severe intellectual disability, hypotonia,
and a stereotypic behavior, “hand gripping,” described as being
typical of RTT, bruxism, and exhibited no purposeful hand skills,
was unable to walk independently, and could not articulate any
meaningful words. She also had short stature, was underweight,
and had microcephaly. Her EEG showed bilateral occipital dom-
inant high-voltage slow spike and wave complexes. Her brain
CT and MRI were normal. To determine the underlying genetic
cause in this patient, WES was performed, which revealed two de
novo missense variations in adjacent amino acids in the GABRD
gene (c.498G>A: p.Met166Ile and c.499G>A: p.Asp167Asn)
(Okamoto et al., 2014b), making this the first report of a muta-
tion in the GABRD gene in a patient with an RTT-like disorder.
GABRD is located on chromosome 1p36, encodes a subunit of
the ligand-gated chloride channel for the major inhibitory neuro-
transmitter gamma-aminobutyric acid (GABA) (Windpassinger
et al., 2002), and is highly expressed in the brain. Based on
the knowledge that mutations in GABAA receptor subunit genes
and in GABRD are associated with genetic epilepsy syndromes
(Emberger et al., 2000), and the observation that patients with
1p36 deletion syndrome often have seizures (Rosenfeld et al.,
2010), this suggests that the variation observed in the GABRD
gene is likely to cause increased neuronal excitability. However,
these authors did not provide any in silico evidence to support
pathogenicity of these variations. From our in silico predictions,
MutationTaster2 predicts these mutations to be “disease causing”
with a probability of 0.9999 due to amino acid sequence changes
in a highly conserved region, which is predicted to affect splicing.
In addition, Polyphen3 predicts both of them to be “probably
damaging” with a score of 0.969 and PROVEAN4 predicts them
to be “deleterious” with scores of −3.670 and −4.576, respectively
(where the cut-off score is −2.5). Regardless of these predictions,
it was not determined whether these two variations were in cis
or trans and no functional studies to support the pathogenicity
of RTT were reported. Moreover, our interrogation of the lit-
erature failed to identify other GABRD mutation-positive cases
exhibiting phenotypic overlap with RTT. Accordingly for now, the

2http://www.mutationtaster.org/
3http://genetics.bwh.harvard.edu/pph2/
4http://provean.jcvi.org/index.php

contention of these authors that mutations inGABRD could cause
RTT must be cast in doubt.

In another recent case report of a 6-year-old Japanese girl
initially reported to have an RTT-like phenotype, WES identified
a variation in theWD repeat domain 45 (WDR45) gene (Okamoto
et al., 2014a). The patient’s development was reported to be nor-
mal for the first 10months, after which she developed stereo-
typic hand-wringing and finger-sucking behavior typical of RTT,
and poor eye contact (which is not typical of MECP2 mutation-
positive “classic” RTT patients). She subsequently developed
seizures and her EEG showed diffuse spike-wave and polyspike-
wave bursts. Her MRI showed delayed myelination and enlarged
lateral ventricles. At 5 years of age, shewas noted to be dysmorphic
(including hypertelorism, epicanthal folds, flat nasal bridge, bilat-
eral low-set ears, downslanting palpebral fissures, short philtrum,
high palate, downturned mouth, and micrognathia), had spastic-
ity of lower limbs and bruxism, was unable to walk independently,
had intellectual disability, and had no meaningful speech. Array
CGH was normal as was molecular testing for RTT, although
it was not stipulated which genes were screened or how. WES
revealed a heterozygous de novo nonsense mutation causing an
early termination in the X-linkedWD repeat domain 45 (WDR45)
gene (c.868C>T: p.Gln290*). Mutations of WDR45 have been
reported to cause β-propeller protein-associated neurodegener-
ation (BPAN), characterized by early intellectual disability, fol-
lowed by progressivemotor and cognitive deteriorationwith onset
in the second to third decade. This particular variation has not
been previously reported in the WDR45 gene and our in silico
analysis reveals it to be “disease causing” with a high proba-
bility of 1, according to MutationTaster and even “deleterious”
according to PROVEAN with a score of −5.656, highlighting the
severity of this variation and its impact on pathogenicity. Patients
with BPAN show a typical picture of brain iron accumulation
on MRI, and indeed a subsequent MRI in this patient showed
such abnormalities. Stereotypic hand movements, including hand
wringing and flapping, have been reported in patients with BPAN
(Saitsu et al., 2013) and in fact in another study, 23 BPAN patients
were suspected to have atypical RTT (Hayflick et al., 2013), sug-
gesting an overlap in symptoms between these disorders. Again,
the authors did not show any functional data to confirm the
pathogenicity of this variation and it could be speculated that
this variation may not necessarily be contributing to the RTT
phenotype of the patient. The careful evaluation of all available
clinical and laboratory data inMECP2mutation-negative patients
with RTT-like symptoms in interpreting genomic sequencing data
is essential. In both these cases, a definitive classification of RTT
was not noted. Neither girl was reported to demonstrate a period
of developmental regression, and thus we can conclude that they
did not have the classical form of RTT, but rather an RTT-like
phenotype overlapping with BPAN. It can only be assumed that
the dysmorphic features are a consequence of the primary genetic
disorder, as facial dysmorphism is not a feature of RTT.

Whole-exome sequence has also been used to recently identify
a variation in the CDKL5 gene in a 5-year-old Japanese boy
with intractable epilepsy, severe developmental delay, and RTT-
like features (Kato et al., 2015). Variations in CDKL5 are asso-
ciated with epileptic encephalopathy (Bahi-Buisson et al., 2008).
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At the age of 2months, he contracted a respiratory-syncytial virus
and developed non-febrile cluster clonic convulsions. Computed
tomography and MRI of the brain and EEG were all normal at
that time. He continued to have tonic seizures several times a day
and EEG showed sporadic single polyspikes and diffuse irregular
polyspikes. At 17months, motor and developmental delay was
evident: he could sit unaided but could not crawl, could not follow
with his eyes, speak any meaningful words, or stand unaided. He
continued to have intractable seizures and an abnormal EEG.
WES revealed variations in the two genes, CDKL5 and KCNQ2.
The variation in CDKL5 was a de novo hemizygous mutation in
(c.119C>T, p.Ala40Val), which has been previously reported to
be responsible for early infantile epileptic encephalopathy (Rosas-
Vargas et al., 2008). He was also heterozygous for a paternally
inherited previously reported variation in the potassium voltage-
gated channel, KQT-like subfamily, member 2 gene (KCNQ2)
(c.1545G>C, p.Glu515Asp). Mutations in this gene cause benign
familial neonatal seizures, and so it seems unlikely that this
variation has contributed to this child’s epileptic encephalopathy,
but this is not easily testable. CDKL5-related encephalopathy
is an X-linked dominant disorder that is characterized by early
infantile epileptic encephalopathy that is clinically distinct from
RTT (Fehr et al., 2013). These findings highlight the utility of
WES in identifying the etiology of the complex infantile seizure
disorder in this patient.

Another study, by Grillo and colleagues, explored the prospect
of RTT being a complex genetic disorder using WES. They stud-
ied two pairs of sisters with pathogenic MECP2 mutations (the
c.1157del32 mutation inherited from their mother in one pair
of sisters, and an apparently de novo MECP2 deletion includ-
ing exon 3 and part of exon 4, respectively, in the other pair
of sisters) (Grillo et al., 2013). Although the sisters shared the
same MECP2 mutation, they were discordant in their clinical
severity, which could be explained by differences in skewing of
X-chromosome inactivation. Whole-exome sequencing revealed
variations in a number of genes involved in oxidative stress,
muscle impairment, and intellectual disability and/or autism in
the more severely affected individuals, whereas their sisters with
a milder RTT phenotype had variations in genes related to the
regulation of the immune system. Whether these variants were
of functional relevance in these sisters remains an open question,
but this study raises the interesting prospect that NGS strategies
could potentially unmask geneticmodifiers of phenotypic severity
in MECP2 mutation-positive RTT patients, which could in turn
point to potential novel therapeutic targets.

Gilissen and colleagues usedWGS to identify large deletions in
patients with RTT (Gilissen et al., 2014). In one girl with a clinical
diagnosis of RTT, an intra-exonic deletion within exon 4 of the
MECP2 gene was identified, which for technical reasons had been
missed by Sanger sequencing and MLPA analysis performed in

a diagnostic laboratory. In the same study, another patient with
RTT-like symptoms was identified to have a single exon deletion
in the structural maintenance of chromosomes 1A (SMC1A) gene.
This patient had some features seen in RTT (severe intellectual
disability, microcephaly, stereotypic movements, short stature,
and scoliosis), but also had features not at all typical of RTT
(facial dysmorphism, cleft palate, cataracts, tapered fingers, and
brain MRI abnormalities). Mutations in SMC1A cause Cornelia
de Lange syndrome, and in retrospect this child’s clinical picture
was a good fit for this disorder. These cases highlight the power of
WGS to identify sub-exonic deletions in patients with RTT or dis-
orders that may share some features with RTT, and emphasize the
potential utility of NGS, in particular WGS, to efficiently identify
existing disease genes in patients with complex phenotypes.

Challenges of NGS and Moving Beyond
the Exome

Whole-exome sequence is emerging as an effective approach to
identify known and even novel causative genes in patients with
RTT or RTT-like phenotypes, offering comprehensive coverage of
the majority of the coding regions of the genome. However, there
are some limitations in the technology. These include potentially
poor coverage of GC rich or repetitive regions, the fact that the
target enrichment strategies do not include non-coding regions,
such as introns, 3′-UTR and 5′-UTR regions, and the inability to
easily detect structural variations, such as inversions, copy number
variations, and translocations, although bioinformatics resources
are improving the capacity to identify such structural variations
(Bellos and Coin, 2014). As WGS costs fall and the analysis of
massive genomic sequencing data files improve with time, WGS
mayprove to be amore efficient and cost-effective option to screen
for variations in RTT patients.

This report highlights the emerging utility of NGS for the
identification of known and novel genes in patients with RTT
and overlapping clinical phenotypes. The real utility in NGS
lies particularly in the differential genetic diagnosis for the
variant forms of the disorder and the discovery of potential
genetic modifiers of phenotypic severity. The utilization of this
technology will allow for the definitive diagnosis of RTT patients
who are mutation negative and will reveal avenues for future
translational research targeting new disease genes. WES may
open doors for the discovery of new disease genes in RTT and
related phenotypes. However, caution must be exercised to ensure
that a clinical diagnosis of classical or variant RTT is robust,
and care must be taken to prevent overinterpretation of genomic
sequencing data. Before such discoveries could be considered to
be genuinely pathogenic in RTT patients robust bioinformatic
analyses must be performed, supported by clear in vitro and/or
in vivo evidence of functional perturbation.
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