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Unraveling the mechanisms that control the differentiation of oligodendrocyte precursor cells
(OPCs) into mature myelinating oligodendrocytes (OLs) is central to improve the current
treatments for demyelinating diseases such as multiple sclerosis (MS) (Franklin and ffrench-
Constant, 2008). OPCs express functional receptors for glutamate, GABA, ATP, acetylcholine
(AChR), and others (Butt et al., 2014; Hill and Nishiyama, 2014). Many studies have focused on
the rodent OPC maturation, but less is known about human OPCs (hOPCs). Recently, Abiraman
et al. (2015) demonstrated that treatment of forebrain hOPCs with a muscarinic AChR (mAChR)
antagonist induces hOPCs differentiation into mature OLs in vitro and in vivo.

Abiraman et al. (2015) characterized human oligodendroglial cells by several techniques (i.e.,
FACS-based clustering, studies of phenotypic fate in cultured cells, immunohistochemical and
mRNA expression profiles), defining three clear populations: (i) a progenitor population or
authentic OPCs, (ii) a stable intermediate cell type betweenOPCs andOLs, a “pre-oligodendrocyte”
population (preOL), and (iii) mature OLs. It is worth noting that in rodents, preOLs have been
defined mostly by immunostaining profiles and it is not clear if they have a fleeting lifetime or
they actually contribute as a stable subpopulation to the entire oligodendroglia lineage (Zuchero
and Barres, 2013; Barateiro and Fernandes, 2014). Similar characterization should be conducted on
rodent OPCs in vivo, to elucidate whether or not preOLs are a non-transient population in murines
and also, until which extent rodent preOLs are comparable to their human counterparts.

Later, by using microarray analysis the authors found that M3mAChR was a well-
suited candidate to control hOPC differentiation into OLs. Application of muscarinic-agonist
oxotremorine to hOPC cultures reduced the proportion of resultant OLs (Abiraman et al., 2015).
Moreover, when co-cultures of hOPCs and human cholinergic neurons were treated with a selective
M3mAChR antagonist, the proportion of hOPCs-derived OLs increased. These results suggested
that activation of M3mAChRs inhibits OPC differentiation into OLs. To test this hypothesis
in vivo, authors performed subcutaneous injections of solifenacin, a selective blood brain barrier-
permeable M3mAChR antagonist in both wild type mice and hypomyelinated transgenic mice
shiverer/rag2, previously xenografted with hOPCs. They reported a premature induction of
callosal OLs along with an increase in the myelin content, and a higher conduction velocity
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of xenografted fibers. Altogether these results suggest that (i)
OPCs receive a tonic muscarinic input capable to inhibit their
differentiation into mature OLs and that (ii) disruption of
this muscarinic-dependent pathway can increase the number of
differentiated OLs, which improve myelin repair.

A crucial unanswered point, however, is whether the
muscarinic antagonist effect in vivo is mediated by direct action
of mAChRs expressed by hOPCs. Experiments performed by
subcutaneous solifenacin injections cannot entirely rule out the
indirect activation of other cell types such as white matter
astrocytes (Butt et al., 2014; Hill and Nishiyama, 2014) or
interneurons (von Engelhardt et al., 2011) since the drug most
likely reaches the entire brain. New directions must be defined to
solve this fundamental question. If the reported effect is mediated
by direct inhibition on M3mAChR expressed in hOPCs, two
main questions emerge. First, what is the endogenous source
of acetylcholine in the corpus callosum? In the study reviewed
here, experiments performed in wild type mice showed similar
results to those using the xenografted hOPCs paradigm: an
increased number of callosal OLs after solifenacin treatment. A
similar result was reported in mice treated with benztropine, an
anticholinergic M1/M3mAChR agent (Deshmukh et al., 2013).
Although enzymatic activity suggests cholinergic transmission
in the pig white matter tracts (Hassel et al., 2008), to our
knowledge there are no studies demonstrating acetylcholine
release from human or rodent callosal fibers. Moreover, in
rodents the great majority of axons constituting the corpus
callosum are glutamatergic (Restani et al., 2009) and are capable
of releasing glutamate in bona fide axon-OPC synapses in both
control and demyelinating lesions (Ziskin et al., 2007; Sahel
et al., 2015). In physiological conditions, a putative endogenous
source of acetylcholine could be cortical and/or striatal axon
terminals reaching the corpus callosum boundaries, as well as

astrocytes present in white matter (Butt et al., 2014; Hill and
Nishiyama, 2014). On the other hand, it is not known whether
an inflammatory environment, such as in MS lesions, might
favor a cholinergic transmission (Deshmukh et al., 2013). Further
exploration is needed to determine these possibilities. The second
question concerns the subcellular mechanism underlying the
muscarinic-dependent effect. Stimulation ofM3mAChR initiates
a signaling cascade resulting in the activation of the MAP kinase
ERK1/2 pathway (Luo et al., 2008), which has been recently
revealed as a key step in remyelination of the mouse corpus
callosum, as it is involved in the correct transition from preOL
to myelinating OLs (Michel et al., 2015). Thus, instead of
improving myelin repair by promoting differentiation of OPCs
into mature OLs, a disruption of a M3 muscarinic signaling
could impair or delay the remyelination process, probably by
inducing a cell arrest into preOL stage (Michel et al., 2015).
This apparent paradoxical phenomenon deserves additional
investigations.

In conclusion, Abiraman et al. (2015) shed light on the role
of acetylcholine as a modulator of hOPCs differentiation, and
more importantly, its potential implication on myelin repair.
These results comewhen increasing interest onmAChRs emerges
as a potential therapeutic target in MS, as proposed on rodent
models (Deshmukh et al., 2013). How acetylcholine transmission

occurs in human or rodent white matter, either in physiological
or pathological conditions, remains an open question. Further
studies are necessary to better characterize their cellular and
subcellular mechanisms.
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