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Microtubules form important cytoskeletal structures that play a role in establishing

and maintaining neuronal polarity, regulating neuronal morphology, transporting cargo,

and scaffolding signaling molecules to form signaling hubs. Within a neuronal cell,

microtubules are found to have variable lengths and can be both stable and dynamic.

Microtubule associated proteins, post-translational modifications of tubulin subunits,

microtubule severing enzymes, and signaling molecules are all known to influence

both stable and dynamic pools of microtubules. Microtubule dynamics, the process

of interconversion between stable and dynamic pools, and the proportions of these

two pools have the potential to influence a wide variety of cellular processes. Reduced

microtubule stability has been observed in several neurodegenerative diseases such as

Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS),

and tauopathies like Progressive Supranuclear Palsy. Hyperstable microtubules, as seen

in Hereditary Spastic Paraplegia (HSP), also lead to neurodegeneration. Therefore, the

ratio of stable and dynamic microtubules is likely to be important for neuronal function

and perturbation in microtubule dynamics might contribute to disease progression.

Keywords: microtuble stability, Alzheimer’s disease, Parkinson disease, dying back, hyperstable microtubules,

microtubule signaling hubs

Introduction

Neurons receive information and relay it along axons, to other neurons or muscles, through
structures known as synapses. Neurodegeneration refers to the progressive loss of structure and/or
function of neurons, often beginning at the synaptic distal ends of axons, a phenomenon termed
as “dying-back neuropathy” (Goto et al., 2009; Dadon-Nachum et al., 2010). Neurodegeneration in
humans can cause a variety of symptoms depending on the class of neurons affected and can lead to
fatal outcomes. Some widely studied neurodegenerative diseases include Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis (ALS).
These, and other less well studied neurodegenerative diseases, exhibit a broad range of clinical
symptoms, which nonetheless share several common pathological features (Skovronsky et al., 2006;
Glass et al., 2010; Arnold et al., 2013; Baird and Bennett, 2013). One prominent cellular feature
is the toxic aggregation of proteins that inhibit the protein quality control and the ubiquitin-
proteasome machinery of the neuron (Skovronsky et al., 2006; Arnold et al., 2013; Takalo et al.,
2013). Other common characteristics include inflammatory responses (Glass et al., 2010), impaired
ER calcium homeostasis (Paschen andMengesdorf, 2005), increased oxidative stress (Ischiropoulos
and Beckman, 2003), and microtubule defects (Baird and Bennett, 2013). It is essential to recognize
common underlying features that permit degeneration of neurons to understand the most frequent
mechanisms contributing to disease progression. Such an understanding can potentially lead to
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FIGURE 1 | Proteins and modifications associated with unstable and stable microtubules. (A) Shrinking microtubules disassemble from their plus ends, lose

their MAPs, are not acetylated but are tyrosinated. LRRK2 binds to the luminal side of β-Tubulin and prevents acetylation of microtubules. (B) Stable microtubules

have a large complement of proteins associated with them, are not tyrosinated, are acetylated and have GTP-capped ends with multiple proteins. (C) Plus-ends of

microtubules have several +TIP proteins. Several bind to the plus end binding EB proteins and GTP bound β-Tubulin. The precise location of DLK binding on

microtubules is unknown. α-Tubulin ( ), β-Tubulin ( ), GTP bound β-Tubulin ( ), α/β heterodimer ( ), Kinesin motor ( ), Dynein motor ( ). Present on

less stable microtubules: Tyrosination ( ), Gαs ( ), LRRK2 ( ). Present on stable microtubules: MAP1 (axon and dendrites) ( ), TAU (axon) ( ), MAP2 ( ),

Acetylation ( ), Gβγ ( ), +end binding proteins ( ). Proteins present on the +end or fast growing end of microtubules (+TIPs): EBP1/2/3 ( ), CLIP170 ( ),

CLASPS ( ), APC ( ), RHO GEF2 ( ), MACF ( ).

better therapeutic agents that can retard progression of the most
debilitating symptoms associated with neurodegeneration.

Microtubules have often been thought to participate in
neurodegenerative diseases through their well-established
role in long-distance cargo transport. Examples include
neurodegenerative diseases such as AD, HD, and several
tauopathies that show compromised microtubule-dependent
axonal transport in disease models (extensively reviewed in
Garcia and Cleveland, 2001; Goedert and Jakes, 2005; De Vos
et al., 2008; Baird and Bennett, 2013; Franker and Hoogenraad,
2013; Hinckelmann et al., 2013; Millecamps and Julien, 2013;
Beharry et al., 2014; Encalada and Goldstein, 2014). However,
these polymers play important roles in many aspects of neuronal
cell biology that include establishing and conserving neuronal
polarity (Baas et al., 1988, 1989; Craig and Banker, 1994; Witte
et al., 2008), maintaining neuronal morphology (Jacobs and
Stevens, 1986; Jaworski et al., 2009; Liu and Dwyer, 2014)
and modulating signaling events (Janmey, 1998; Wittmann
and Waterman-Storer, 2001; Bounoutas et al., 2011; Dent
and Baas, 2014). In several neurodegenerative diseases, that
include sporadic rather than familial cases, we know little about
the causes of disease onset. We propose that disruption of

microtubule dynamics may be a key mechanism contributing to
neurodegeneration, since an alteration in dynamics can affect a
number of the roles mentioned above. Therefore, modulating
microtubule dynamics might help in retarding the progress of
neurodegenerative diseases.

Microtubules Contribute to Neuronal
Polarity

A critical aspect of neuronal function depends on establishing the
polarity between the axonal and somatodendritic domains of the
neuron (Craig and Banker, 1994). Microtubules are inherently
polarized structures, with the α-tubulin subunits present at the
slow growing “minus end” and the β-tubulin subunits at the
fast growing “plus end” of the tube (Allen and Borisy, 1974)
(Figure 1). Microtubules in the axon of a neuron display uniform
polarity, with their plus ends oriented toward synapses, whereas
those in the dendrites display mixed polarity (Burton and Paige,
1981; Baas et al., 1988, 1989; Dombeck et al., 2003; Stepanova
et al., 2003, 2010). Microtubules contribute to the overall polarity
by being involved in axon specification, an important early
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event in establishing neuronal polarity (Burton and Paige, 1981;
Heidemann et al., 1981; Witte et al., 2008; Hoogenraad and
Bradke, 2009). During this process, microtubules in a single
neurite reorganize their mixed polarity orientation to exclusively
plus-end distal microtubules, thus breaking cellular symmetry
and marking distinct axonal and dendritic domains (Baas et al.,
1989; Horton and Ehlers, 2003). This intrinsic polarity of
microtubules plays a critical role in the precise trafficking of
a variety of cargo within a neuron (Zheng et al., 2008; Maday
et al., 2014). Disorganization of microtubule polarity can result
in incorrect localization of cargo. For example, in Drosophila,
loss of the Dynein motor or microtubule associated LIS1
(both implicated in lissencephaly), results in axons containing
both plus- and minus end-distal microtubules, leading to
mis-trafficking of dendritic proteins into axons (Liu et al.,
2000; Vallee and Tsai, 2006; Zheng et al., 2008; Reiner, 2013).
Similarly, in C. elegans, disruption of microtubule polarity causes
mislocalization of an axonal Kinesin-3 motor, synaptic vesicles
(Maniar et al., 2012), and dense core vesicles (Goodwin et al.,
2012) to dendrites, leading to non-specific targeting of axonal
proteins. Recovery from complete axon loss after axotomy,
in cultured neurons, requires microtubule reorganization and
polarity reversal in one of the remaining neurites to re-specify
the axon (Gomis-Rüth et al., 2008). An in vivo study using
Drosophila shows that this change in microtubule polarity, and
consequent re-specification of the axon, is preceded by an
increase in the polymerization of microtubules (Stone et al.,
2010). In contrast, axon specification is preceded by an increase
in stability of microtubules in a single neurite (Witte et al., 2008).
Additionally, increasing microtubule stability by Taxol treatment
can result in the formation of multiple neuronal processes that
exhibit characteristics of a typical axon, viz. localization of
axonal markers Tau and synapsin-1 (Witte et al., 2008). These
studies show that microtubule dynamics contribute to changes
in microtubule orientation and consequently some aspects of
neuronal polarity. Altered protein distribution arising from the
changes in polarity can be detrimental for the neuron, thereby
contributing to disease symptoms.

Microtubule Dynamics Maintain Neuronal
Morphology

Neuronal morphology and formation of specific connections
to both its pre-and post-synaptic partner cells are critical for
neuron function (Morales et al., 2002; Chen et al., 2006; Lewcock
et al., 2007). Several studies also show that the morphology of
the neuron can be influenced by microtubules. For instance,
specific mutations in the C. elegans mec-7 β-tubulin lead to
ectopic neurite outgrowth that is suppressed upon treatment with
the microtubule-destabilizing drug colchicine (Kirszenblat et al.,
2013). Hyperactivation of the Notch signaling pathway is also
able to regulate axonal morphology, resulting in thicker neurites,
fewer branches, and loss of synaptic varicosity, thought to arise
from the observed hyperstabilization of microtubules (Ferrari-
Toninelli et al., 2008; Bonini et al., 2013). Such hyperstabilization
likely arises from the Notch-induced increase in acetylation and

polyglutamylation of α-tubulins, both of which are markers of
stable microtubules (Ferrari-Toninelli et al., 2008). Notch is
also thought to increase microtubule stability by reducing the
expression of the microtubule severing enzyme Spastin (Ferrari-
Toninelli et al., 2008). The downstream effectors that mediate
such effects of Notch signaling have not been identified. However,
a downstream kinase Abl known to interact with microtubules
(Miller et al., 2004) and required for axon growth (Giniger, 1998),
is a potential candidate that could mediate Notch dependent
microtubule effects. These studies suggest that hyper-stable
microtubules might be detrimental to neuronal morphology.

Likewise, unstable microtubules also influence neuronal
morphology. Unstable microtubules and microtubule-actin
interactions are essential for formation of neuronal branches
(Dent and Kalil, 2001). Plus-end-binding proteins (+TIPs),
such as CLASPs, APC, and MACF that bind to polymerizing
microtubules and stabilize it, are required for the microtubule-
actin interactions that promote axon elongation or branching
(Leung et al., 1999; Zhou et al., 2004; Kornack and Giger,
2005; Watanabe et al., 2009). Therefore, circumstances that
elevate dynamic microtubule pools promote axon branching.
For example, inhibition of microtubule stabilizing proteins
such as Tau result in increased axonal branching (Yu et al.,
2008). In addition, the microtubule-associated ubiquitin ligase
Phr1 mutants, in mouse, and zebrafish, have axons with
sharp kinks, abnormally bent growth cones and mistargeting
of motor neurons to inappropriate tissues (Lewcock et al.,
2007; Hendricks and Jesuthasan, 2009). One of these studies
shows that these axonal abnormalities were greatly reduced
by taxol-induced stabilization of microtubules, suggesting that
axonal morphology itself might depend on microtubule stability
(Lewcock et al., 2007). This hypothesis is also supported by the
observed change in dendrite morphology from spine-like tomore
filopodia-like structures upon destabilization of microtubules in
hippocampal CA1 neurons using nocadazole (Jaworski et al.,
2009).

All of the above studies also describe cellular processes that
are disrupted when microtubule stability is altered; such as axon
path-finding and innervation (Lewcock et al., 2007), synaptic
plasticity (Jaworski et al., 2009) and regenerative capacity
after injury (Kirszenblat et al., 2013). These studies suggest
that disproportionate levels of hyper-stable or very unstable
microtubules are both detrimental to neuronal morphology.

Microtubules are Highways for Cargo
Transport

Microtubules serve as the sub-cellular roads for long-distance
transport where they act as “tracks” on which motor proteins
such as kinesin and dynein transport multiple organelles and
macromolecules (Gunawardena and Goldstein, 2004; Hirokawa
and Noda, 2008). The Kinesin family of motors move toward the
plus ends of microtubules while Dynein motors walk toward the
minus end (Vale et al., 1985a,b; Paschal and Vallee, 1987; Wade,
2009) (Figure 1). Microtubule-mediated fast axonal transport
occurs at a speed of ∼50–200mm/day and delivers axonal cargo
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such as Amyloid Precursor Protein (APP), synaptic proteins,
synaptic vesicles, and dense core vesicles (Maday et al., 2014).
Microtubule-dependent slow axonal transport occurs at a speed
of ∼0.2–10mm/day and carries cytoskeletal proteins such as
Tubulin and cytosolic proteins such as Synapsin (Maday et al.,
2014; Roy, 2014). Lack of fast axonal transport is known to cause
developmental and functional defects in the motor neurons of
Drosophila (Hurd and Saxton, 1996), in PLL axons of zebrafish
(Lyons et al., 2008), in the spinal nerves and peripheral axons in
mice (Warita et al., 1999), and in multiple neurons of C. elegans
(Hall and Hedgecock, 1991).

Stable microtubules are an integral part of
maintaining axonal transport. When cultured neurons

are treated with Parkinsonism-inducing neurotoxin
1-methyl-4-phenylpiridinium (MPP+), there is reduction
in microtubule dynamics, perhaps accounting, in part, for the
observed mitochondrial accumulation along axons (Cartelli
et al., 2010). Another study showed that hyper-dynamic
microtubules occur very early, before observable impairment of
axonal transport, in a mouse disease model of ALS (Fanara et al.,
2007). Further, drug-induced stabilization of microtubules was
able to restore normal axonal transport, suggesting that axonal
transport defects in this model are a consequence of increased
microtubule dynamics (Fanara et al., 2007) (Figures 2A,B).
These examples suggest that altered microtubule dynamics
are detrimental to axonal transport. This raises the intriguing

FIGURE 2 | Ratios of stable and dynamic microtubule alter neuronal structure and function. (A) Healthy neurons have short and long, stable, and dynamic

microtubules (B) Increased numbers of dynamic microtubules lead to increased neuronal branching, synapse retraction, and reduced axonal transport. This eventually

can lead to dying-back neuropathy. (C) Hyperstable microtubules increase the diameter of the neuron, inhibit neurite outgrowth, and inhibit neuronal branching. Stable

microtubule ( ), depolymerzing microtubule ( ), microtubule associated proteins ( ), microtubule plus end binding proteins ( ),

mitochondria ( ), membranous cargo ( ), non-membranous cargo ( ), Kinesin motor ( ), Dynein motor ( ), Actin filaments ( ), Actin bundles

( ), neurotransmitters ( ), channels ( ), neurotransmitter receptors ( ).
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possibility that several of the observed transport defects, in
neurodegenerative diseases (De Vos et al., 2008; Millecamps and
Julien, 2013), might arise at least in some instances from altered
microtubule dynamics.

Microtubules as Regulators of Signaling
and Gene Expression

It has been suggested recently that neuronal microtubules,
through their interactions with G-proteins (Wittmann and
Waterman-Storer, 2001), plus-end-tracking proteins (+TIPs)
(Akhmanova and Steinmetz, 2008) and minus-end-targeting
proteins (-TIPs) (Akhmanova and Hoogenraad, 2015), might
act as carriers of information (Dent and Baas, 2014) (Figure 1).
For example, disruption of microtubules leads to activation
of microtubule-bound RHGF-1, a PDZ Rho GEF, and causes
retraction of a collateral neuronal branch in C. elegans (Chen
et al., 2014). This RHGF-1 dependent remodeling of neuronal
morphology was shown to depend on the MAPKKK, DLK-1
(Chen et al., 2014). This finding is consistent with localization
of DLK at the tips of microtubules in cultured cortical neurons
(Hirai et al., 2002). DLK activity is also necessary to initiate
repair processes after axonal injury (Yan et al., 2009; Ghosh-
Roy et al., 2010; Xiong et al., 2010; Chen and Chisholm,
2011), and it has been suggested that cytoskeletal damage
alone is potentially sufficient to trigger DLK activity, perhaps
following DLK’s release from microtubules (Valakh et al.,
2013, 2015). Depolymerization of microtubules by chemical
treatment, as well as decrease in microtubule number through
mutations in mec-12 α-tubulin and mec-7 β-tubulin, cause
reduction in expression of proteins through the DLK/p38
MAPK pathway in the touch receptor neurons of C. elegans
(Bounoutas et al., 2011). Thus, microtubule numbers and
dynamics appear to regulate DLK-dependent signaling in
neurons.

Other signaling molecules, such as the heterotrimeric
Gsα, strongly interact with α-tubulin (Layden et al., 2008).
Gsα activates tubulin GTPase, leading to destabilization of
microtubules (Roychowdhury et al., 1999; Schappi et al., 2014).
Likewise, binding of Leucine-rich repeat kinase 2 (LRRK2)
also regulates stability of microtubules by modulating tubulin
acetylation (Gandhi et al., 2008; Law et al., 2014). LRRK2

is known to participate in several signaling cascades that
modulate neurite growth, vesicle trafficking, endocytosis, and
autophagy, although it is unclear whether all these functions
require the microtubule-bound form of LRRK2 (Berwick and
Harvey, 2011). Thus, signaling and scaffolding molecules can
control microtubule dynamics; and microtubules themselves
could function as signaling hubs by sequestering kinases such as
DLK and LRRK2.

Microtubule Assembly, Stability, and
Dynamics

Despite the importance of microtubules, their assembly within
neurons is poorly understood. Two models have been proposed
for the origin of axonalmicrotubules: (i) microtubules are clipped
off from the centrosome by the severing enzyme, Katanin, before
entering the axon (Baas et al., 2005) and (ii) multiple nucleation
centers are created along the neuronal process from the severing
of existing axonal microtubules (Roll-Mecak and Vale, 2006).
Tubulin oligomers transported along the axon via slow transport
(Terada et al., 2000; Wang and Brown, 2002) are eventually
likely to be incorporated into microtubules. Once assembled,
microtubules are dynamic, with cyclic phases of both growth
and shrinkage. This behavior of microtubules has been termed
“dynamic instability” (Box 1). The plus ends of microtubules
are much more dynamic than their minus ends (Walker et al.,
1988).

Neurons possess more stable microtubules compared to other
cell types (Okabe and Hirokawa, 1988; Seitz-Tutter et al., 1988;
Stepanova et al., 2003). These stable microtubules have half-
lives of several hours and co-exist with dynamic microtubules
with half-lives of several minutes (Li and Black, 1996; Conde
and Cáceres, 2009). A cap of non-hydrolyzed GTP Tubulin
subunits at the growing end of a microtubule (Figures 1B,C)
is thought to protect against depolymerization and stabilize
the plus ends of microtubules (Carlier and Pantaloni, 1981;
Mitchison and Kirschner, 1988). Another group of proteins that
interacts with the fast growing ends of microtubules are the “plus
end-tracking proteins” or +TIPs which include the cytoplasmic
linker proteins (CLIPs), the CLIP-associated proteins (CLASPs),
Adenomatous polyposis coli protein (APC), the Microtubule-
actin crosslinking factor (MACF) and the end-binding (EB)

BOX 1 | Experimental Methods to Monitor Dynamic Microtubules

A key insight into microtubule polymerization came in the 1980s when coexistence of growing as well as shrinking populations of microtubules were observed in vitro

by combining biochemical methods, immunofluorescence, and electron microscopy. This process was termed “dynamic instability” and was further confirmed in cells

using similar methods (Cassimeris et al., 1988; Mitchison and Kirschner, 1988; Okabe and Hirokawa, 1988; Sammak and Borisy, 1988).

After these early studies, imaging techniques carried out at the time scales of 2 s or faster have been critical in observing microtubule dynamics in vivo (Shelden

and Wadsworth, 1993). A major advance in the field was the development of fluorescent speckle microscopy (FSM). Here low concentrations of fluorescently labeled

tubulin subunits were incorporated into a microtubule (Waterman-Storer and Salmon, 1998). The speckles provided markers along microtubules whose positions did

not change unless they grew or shrunk. This technique unambiguously permitted tracking assembly and disassembly of microtubules.

The identification of microtubule end binding EB proteins now conveniently allows investigators to track the growing ends of microtubules using EB-GFP fusions

(Stepanova et al., 2003). However, this method only assesses growth of +ends and does not provide the detailed information obtained using FSM and hence gives an

incomplete understanding of microtubule dynamics.

A recent advance combined an electrically tunable lens with fluorescent microscopy thus providing rapid focusing (Nakai et al., 2015) which allows temporal resolution

within 10ms and a spatial resolution of 40 nm making it an attractive tool to assess microtubule dynamics in vivo. Such newer technologies may allow us to effectively

monitor microtubule dynamics in healthy and diseased neurons.
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proteins (Akhmanova and Steinmetz, 2010) (Figure 1C). The
EB proteins are now widely used to track growing ends of
microtubules (Stepanova et al., 2003; Akhmanova and Steinmetz,
2010) (Box 1). Further, several +TIP proteins regulate different
aspects of microtubule dynamics (Table 1), including promoting
interaction of microtubule ends with actin and other cellular
structures (Akhmanova and Steinmetz, 2010).

Lengths of neuronal microtubules are also known to vary and
are controlled by the severing enzymes Spastin and Katanin, that
can cut microtubules throughout their length (McNally and Vale,
1993; Karabay et al., 2004; Yu et al., 2005, 2008). Katanin levels
are higher throughout the axon during neuronal development
but the enzyme is mostly restricted to the cell body once axons
reach their targets (Karabay et al., 2004; Yu et al., 2005). Katanin
is therefore likely to sever microtubules, generating nucleating
centers or tubulin subunits required for the process of axon
extension during neuronal development. On the other hand,
Spastin is concentrated at sites where axons branch (Yu et al.,
2008), consistent with the presence of shorter microtubules
at such locations (Yu et al., 1994). Further, certain MAPs
may regulate the severing properties of enzymes, for example
microtubule-bound Tau renders the microtubules more resistant
to severing by Katanin but not Spastin (Qiang et al., 2006; Yu
et al., 2008). Together these processes lead to axonal microtubules
of various lengths. In several organisms these lengths vary from
one micrometer to over hundred micrometers long, averaging
around 100µm in vertebrate neurons (Bray and Bunge, 1981;
Chalfie and Thomson, 1982; Letourneau, 1982; Yu et al., 2007).
An increased proportion of unstable and short microtubules
might lead to varied neuronal defects such as impaired axonal
transport and increased branching (Figure 2B) (Dent et al., 2003;
Yu et al., 2008).

Role of Tubulin Subunits in Microtubule
Dynamics

Mutations in α- and β-Tubulin subunits can themselves influence
the stability and dynamics of microtubules. Both α and β-
Tubulins have an N-terminal domain, an intermediate domain
and a C-terminal domain. Residues of the N-terminal domain
are important for protein folding and conformation and contain
the guanine nucleotide binding region (Downing and Nogales,
1998; Löwe et al., 2001). The residues in the C-terminal domain
bind both MAPs and motor proteins (Littauer et al., 1986; Löwe
et al., 2001). In C. elegans, approximately fifty mutations have
been mapped to themec-7 β-tubulin gene and several to themec-
12 α-tubulin gene (Savage et al., 1989, 1994; Fukushige et al.,
1999; Baran et al., 2010; Bounoutas et al., 2011; Kirszenblat et al.,
2013; Hsu et al., 2014). A missense mutation in the intermediate
domain ofMEC-7 induces ectopic neurite outgrowth, causesmis-
localization of synaptic vesicles and reduces regeneration after
injury (Kirszenblat et al., 2013). A recent study in C. elegans
has also shown that a missense mutation in the C-terminal
of MEC-12 α-tubulin leads to unbundling of microtubules
and an increased affinity to Dynein that likely leads to the
observed cargo mis-trafficking defects (Hsu et al., 2014). In
both the above studies, lesions in distinct tubulin domains share
similar cellular phenotypes. Several mutations in tubulin genes
of C. elegans and other model systems map to many different
locations along the proteins and lead to a multiplicity of neuronal
phenotypes (Table 2). As yet it is unclear whether mutations in
specific tubulin domains are associated with a single or specific
constellation of phenotypes. Nonetheless, since mutations in all
three domains of the tubulins have been associated with neuronal
defects (Table 2), each protein domains appears to be critical

TABLE 1 | Function of microtubule (MT) associated plus-end tracking proteins (+TIPs).

TIPs Interacting molecule(s) Function Plus end association References

EB-1/2/3 MT, ER, other +TIPs MT polymerization, MT stabilization Plus end directed transport Akhmanova and Hoogenraad, 2005;

Honnappa et al., 2006

CLASPS EB1, CLIP-170, MT, F-actin MT stabilization, axon guidance Recognize other +TIP proteins Kodama et al., 2003; Lee et al., 2004;

Lansbergen et al., 2006

CLIP-115/CLIP-170 MT, EB1 CLIP-170 interacts

with vesicles, F-actin

MT stabilization Recognize other +TIPs, co-assembly

with Tubulin dimers

Diamantopoulos et al., 1999;

Akhmanova and Hoogenraad, 2005

APC EB1, F-actin MT stabilization Kinesin based transport Groden et al., 1991; Shi et al., 2004;

Mimori-Kiyosue et al., 2005; Chazaud

and Rossant, 2006

MACF F-actin, EB1 MT stabilization Recognize other +TIPs, directly bind

Tubulin

Sun et al., 2001

RHOGEF2/RHGF F-actin, EB1 MT polymerization EB1 dependent binding Rogers et al., 2004

Dynein MT MT stabilization Plus end directed transport,

recognize other +TIPs

Valetti et al., 1999; Akhmanova and

Hoogenraad, 2005

STIM EB1, ER, MT MT stabilization Recognize other +TIPs, directly bind

Tubulin

Grigoriev et al., 2008

MCAK EB1 and MT MT catastrophe, depolymerization Recognize other +TIPs, directly bind

Tubulin

Kline-Smith and Walczak, 2002

LIS1 Dynein, CLIP-170 MT stabilization Recognizes dynein Tanaka et al., 2004; Vallee and Tsai,

2006
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TABLE 2 | Effect of Tubulin mutations on neuronal function.

Gene Mutation Mutation location Model system Phenotype References

TUBB3 R262H, R262C Intermediate Mouse Defects in axon guidance Tischfield et al., 2010

TUBB2B E421K C-terminal Mouse Axonal dysinnervation Cederquist et al., 2012

TUBB2B S172P N-terminal Rat Impaired microtubule assembly, defective

migration of cortical neurons

Jaglin et al., 2009

TUBB2B F265L Intermediate Rat Impaired microtubule assembly, defective

migration of cortical neurons

Jaglin et al., 2009

MEC-7 M1I, P171L N-terminal C. elegans Defective neuronal morphology and behavioral

defects

Savage et al., 1994

MEC-7 F317I, V286D Intermediate C. elegans Defective neuronal morphology and behavioral

defects

Savage et al., 1994

MEC-7 P220S Intermediate C. elegans Defective neuronal morphology Kirszenblat et al., 2013

MEC-7 W101X N-terminal C. elegans Reduced neuronal gene expression Savage et al., 1994; Bounoutas et al., 2011

MEC-7 P243L Intermediate C. elegans Reduced neuronal gene expression Savage et al., 1994; Bounoutas et al., 2011

MEC-7 A393T C-terminal C. elegans Reduced neuronal gene expression Savage et al., 1994; Bounoutas et al., 2011

MEC-12 K40R N-terminal C. elegans Reduced protofilament number and behavioral

defects

Cueva et al., 2012

for microtubule function. The aspect of microtubule structure or
function altered in these cases is not uniformly well documented.

Specific mutations in a human β-tubulin, TUBB3, have been
shown in vitro and in cultured cells to impair α/β heterodimer
formation leading to lower stability ofmicrotubules (Poirier et al.,
2010). These and other β-tubulin mutations have been associated
with malformations in cortical development (MCD) in human
patients and cortical neuron migration and axonal guidance
defects in mouse models (Poirier et al., 2007, 2010; Jaglin et al.,
2009). Such studies show that mutations in α- and β-tubulin
that alter microtubule dynamics can lead to neurodevelopmental
defects. Mutations in tubulin genes have also been documented in
patients with many types of neurodegenerative diseases, although
their relationship to microtubule dynamics or stability is yet
unclear (Table 3).

Post-translation Modifications as Markers
of Microtubule Stability

The α and β-Tubulin subunits themselves are modified by
tyrosination, acetylation, and polyamination (Hammond et al.,
2008; Fukushima et al., 2009; Janke and Chloë Bulinski, 2011).
Some of these post-translational modifications mark stable
microtubules (Westermann and Weber, 2003; Peris et al., 2006,
2009; Ikegami and Setou, 2010). For instance, stable microtubules
are usually detyrosinated and acetylated (Fukushima et al., 2009).
Detyrosination reduces microtubule depolymerisation (Peris
et al., 2009) and detyrosinated microtubules are enriched in
axons suggesting that axons contain more stable microtubules
compared to dendrites (Witte et al., 2008; Hammond et al., 2010).
Studies performed in cultured rat sympathetic neurons show
that tyrosinated microtubules are enriched in the most proximal
and distal regions of growing axons (Baas and Black, 1990;
Brown et al., 1992). Further, a single microtubule can contain
both stable and labile domains differing in their tyrosinated
and acetylated Tubulin content (Baas and Black, 1990; Brown

et al., 1992, 1993). Recently, polyamination of α- and β-
Tubulins by a transglutaminase was also shown to promote
axonal microtubule stabilization (Song et al., 2013). Such studies
suggest that Tubulin modifications can affect both local stability
within a microtubule and stability of microtubules along the
axon. These islands of modifications within a microtubule may
act as local disassembly brakes when microtubules undergo
depolymerization. Additionally, the stable and dynamic regions
of a microtubule could act as binding hotspots for specific
microtubule-associated proteins such as LRRK2 to less stable
microtubules (Law et al., 2014) and the motor Kinesin-1 to stable
microtubules (Reed et al., 2006).

Effect of MAPs on Microtubule Dynamics

Much of the increased stability of microtubules in neurons
is due to the presence of a large number of MAPs that
shift the dynamics toward assembly and promote stability
(Figure 1B). These include classical MAPs such as Tau (MAPT),
MAP1a, MAP1b, and MAP2 as well as STOP (Stable Tubule
Only Protein), Doublecortin, and the microtubule crosslinking
proteins Plakins/Plectins (Chapin and Bulinski, 1992; Matus,
1994; Bosc et al., 1996; Horesh et al., 1999; Leung et al., 2002).

MAP2 and Tau are present exclusively on stable microtubules,
with the former being found in dendrites and the latter largely
in axons (Bernhardt and Matus, 1984; Dehmelt and Halpain,
2005). The well-studied AD-associated Tau protein in healthy
neurons binds to and promotes microtubule polymerization and
stability (Weingarten et al., 1975; Cleveland et al., 1977; Panda
et al., 2003). A recent study reported a novel function of Tau
as a recruiter of EB proteins to microtubule plus-ends, further
suggesting, that Tau might contribute to microtubule stability
at the +end via EB proteins (Sayas et al., 2015). Mutational
studies have shown that MAPs are important for maintaining
neuronal morphology. For example, loss of MAP1A shows
decreased density of microtubules, abnormal focal swellings in
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TABLE 3 | Tubulin mutations associated with neurodegenerative diseases.

Gene Mutation Mutation location Disease References

TUBB2A N247K Intermediate Cortical dysplasia Cushion et al., 2014

TUBB3 T178M, E205K N-terminal Malformation of cortical development and neuronal migration defect Poirier et al., 2010

TUBB3 A302V, M323V Intermediate Malformation of cortical development and neuronal migration defect Poirier et al., 2010

TUBB4A D249N Intermediate Leukodystrophy Simons et al., 2013

TUBB4A R2Q, T178R N-terminal Leukodystrophy Miyatake et al., 2014

TUBB4A R53Q N-terminal Hypomyelinating leukoencephalopathies Miyatake et al., 2014

TUBA4A W407X C-terminal ALS Smith et al., 2014

TUBB4A R2G, R53G N-terminal DYT4 dystonia dysphonia Lohmann et al., 2013

dendrites and degeneration of Purkinje neurons in mice (Liu
et al., 2015). MAP1B deficient mice neurons show that this
protein sequestersmicrotubule end-binding proteins EB1 or EB3.
This sequestration prevents hyper-stabilization of microtubules
and halts axon growth (Tortosa et al., 2013). Thus, interaction
of MAPs with microtubules modulates its dynamics and thereby,
neuronal function.

Unstable Microtubules in
Neurodegenerative Diseases

Cytoskeletal dysfunctions have been proposed as an underlying
mechanism in many neurodegenerative diseases. AD, a widely
studied neurodegenerative disease, has been associated with
altered microtubule dynamics (Matsuyama and Jarvik, 1989).
AD and other tauopathies are characterized by the presence
of neurofibrillary tangles (NFTs), composed mainly of hyper-
phosphorylated or modified Tau protein (Avila et al., 2004; Iqbal
et al., 2010; Serrano-Pozo et al., 2011). Tau also contributes to
neuronal morphology and axon outgrowth (Weingarten et al.,
1975; Cleveland et al., 1977; Harada et al., 1994; Dawson et al.,
2001; Panda et al., 2003; Yu et al., 2008; Sayas et al., 2015). Tau-
mediated neurodegeneration could occur via defective axonal
transport, faulty signaling or altered gene regulation and may
not occur exclusively throughmicrotubule effects (Trinczek et al.,
1999; Shulman and Feany, 2003; Blard et al., 2007; Guthrie
et al., 2009; Ambegaokar and Jackson, 2011; Morris et al., 2011;
McCormick et al., 2013). Nonetheless, some pathological features
in Tau-associated diseases could be a consequence of decreased
microtubule stability.

A characteristic feature associated with AD is the
accumulation of aluminum (Matsuyama and Jarvik, 1989;
Walton, 2013) which, when incorporated in microtubules,
make them more sensitive to depolymerization (Walton, 2006,
2009). The late onset of AD symptoms can also be attributed to
the gradual accumulation of aluminum to levels toxic enough
to tip the balance toward microtubule depolymerization and
thus possibly neuron degeneration. Similarly, Parkin, an E3
ubiquitin ligase linked to PD, strongly binds to α/β Tubulin
heterodimers and stabilizes microtubules (Ren et al., 2003; Yang
et al., 2005). Reduction in neurite length, number of neurite
branches and synaptic terminals, seen in PD patients, has been
attributed to increased microtubule depolymerization in the

absence of functional Parkin (Ren et al., 2015). Early loss of
neurites, with delayed damage to the soma or “dying back
axonopathy,” is a common feature of several neurodegenerative
diseases (Stokin et al., 2005; Goto et al., 2009; Dadon-Nachum
et al., 2010). Studies in vertebrates and invertebrates show
that disruption of pre-synaptic microtubules precedes synapse
retraction and degeneration (Zhai et al., 2003; Luo and O’Leary,
2005; Pielage et al., 2005; Stephan et al., 2015). Neurotoxins
that lead to Parkinsonism, such as MPP+ (Cappelletti et al.,
2005) and 6-hydroxydopamine (Patel and Chu, 2014), also
alter microtubule dynamics, causing a decrease in length and
number of microtubules and shortening of neurite. Reduction
in microtubule stability also underlies the behavioral and axonal
transport defects seen in PD-associated mutations in Leucine
Rich Repeat Kinase 2 (LRRK2) (Godena et al., 2014). These
examples suggest, that decreased stability of microtubules is a
common feature in many neurodegenerative diseases and could
initiate “dying-back” of the axon (Figure 2B).

Hyper-stabilized Microtubules in
Neurodegeneration

Although a major fraction of microtubules in differentiated
neurons is stable, pools of dynamic microtubules undergoing
polymerization and depolymerization are also present (Hu
et al., 2008). Stable microtubule pools may be important
for maintaining neuronal morphology and synaptic integrity
(Lewcock et al., 2007; Jaworski et al., 2009); however, dynamic
pools within a neuron are important for turnover of microtubules
as well as regeneration of neurons after injury (Stone et al., 2010;
Chen and Chisholm, 2011; Ghosh-Roy et al., 2012). Microtubules
stabilized using taxol, in healthy neurons, are known to increase
the axonal diameter, enlarge growth cones and reduce neurite
extension (Letourneau et al., 1986; Chuckowree and Vickers,
2003; Ferrari-Toninelli et al., 2008) (Figure 2C). Taxol stabilizes
microtubules and can arrestmitosis and induce apoptosis (Jordan
and Wilson, 1998). Therefore, it has been used as an effective
treatment against cancer cells (Klauber et al., 1997; Jordan and
Wilson, 1998; Dumontet and Sikic, 1999). However, taxol and
other microtubule-stabilizing agents used as anti-cancer drugs
show adverse effects on the peripheral nervous system in clinical
studies. Such drugs have been shown to induce degeneration and
fragmentation of sensory axons, reduce axonal length and also
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reduce axonal transport in animal models (Cavaletti et al., 1995;
Lee and Swain, 2006; Scripture et al., 2006; Scuteri et al., 2006;
Gornstein and Schwarz, 2014).

Genetic mutations in the microtubule-severing enzyme
Spastin, is most commonly associated with hereditary spastic
paraplegia (HSP) (Hazan et al., 1999). Spastin loss of function
results in local accumulation of detyrosinated microtubules
(Tarrade et al., 2006) and reduced number of dynamic plus-
ends marked by EB3 along the axon shaft (Fassier et al., 2013).
These mutations also results in axonal swellings which can
be rescued by treatment with microtubule-destabilizing drugs
such as Nocodazole (Fassier et al., 2013). This hyper-stability
of microtubules likely triggers the progressive degeneration of
corticospinal tracts in the Spastin-dependent HSP cases (Hazan
et al., 1999; Evans et al., 2005). Collectively these studies
demonstrate that reduced dynamics of microtubules is also
detrimental to neuronal health.

Microtubule Dynamics is Necessary for
Neuronal Function

Many neurodegenerative diseases are also associated with
memory loss (Sagar et al., 1988; Levy et al., 2002; Walsh
and Selkoe, 2004; Yamasaki et al., 2007; Shankar et al., 2008).
Behavioral paradigms that lead to memory formation also show
increase in dynamic microtubules that allows for the necessary
synaptic plasticity (Gu et al., 2008; Jaworski et al., 2009; Fanara
et al., 2010). Likewise, stabilizing microtubules using taxol
prevents memory formation in mice (Atarod et al., 2015). One
early symptom in AD is impairment in memory formation while
loss of long-termmemory appears in more advanced stages of the
disease (Selkoe, 2002; Celone et al., 2006). These studies suggest
that disruption of microtubule dynamics could be an important
parameter, leading to an inability to form new memories as seen
in the early stages of some neurodegenerative diseases.

Perspective: Microtubule Dynamics and
Cellular Lingchi?

Given the critical role of microtubules in a variety of cellular
processes in the neuron, several of which have been described
above, it is not very surprising that this polymer shows changes
in multiple neurodegenerative diseases such as AD, PD, Charcot
Marie Tooth (CMT) etc. (Evans et al., 2005; Bunker et al.,
2006; Gillardon, 2009; Tanabe and Takei, 2009; Cartelli et al.,
2010; Tischfield et al., 2010). Amongst the many changes
in microtubules that can occur, we think that change in
dynamics is a significant “intermediate” phenotype that should
be investigated. Microtubule dynamics, and conversely their
stability, probably result from the sum of multiple microtubule
binding proteins and modifications of α and β-Tubulins. The
number of stable and dynamic microtubules has the potential

to change a variety of steps (hence Lingchi) including the
number of signaling hubs, morphology of the neuron as well
as transport rates (Figure 2). Such changes could cumulatively
lead to irreversible effects over the time scales of years, often
the typical progression time scales in several neurodegenerative
diseases.

Recognizing the importance of microtubule dynamics as an
intermediate step in disease progression, some studies have
focused on increasing stability of microtubules as a therapeutic
target in treating neurodegenerative diseases. Axonal transport
has been improved by stabilizing or destabilizing microtubules in
some models of neurodegenerative disease (Fanara et al., 2007;
Cartelli et al., 2010; Zhang et al., 2012; Fassier et al., 2013)
and has been suggested as a therapeutic intervention (Ballatore
et al., 2012; Brunden et al., 2014). Additionally, targeting Notch
signaling as a microtubule stabilizer has also been proposed as
therapeutic treatment for neurodegenerative conditions (Bonini
et al., 2013). These studies suggest that stabilizing microtubules
will improve disrupted axonal transport that could be critical in
neurodegenerative disease progression.

However, what appears essential for neuronal function, is not
merely stable microtubules but the right balance between stable
and dynamicmicrotubules. This likely impacts numerous cellular
processes, not restricted merely to axonal transport (Figure 2).
For example, during neuronal polarization, a single neurite,
which would be the future axonal process, shows increased
microtubule stability (Witte et al., 2008). Moreover, shifting the
dynamics toward greater stability by application of taxol results in
multiple axons (Witte et al., 2008). The ratio of stable to dynamic
microtubules also appears to be critical in allowing neurons
to maintain their synaptic plasticity and form new memories
(Jaworski et al., 2009; Fanara et al., 2010). In mouse models
of neurodegenerative diseases like CMT, it was shown that the
disease pathology has two distinct temporal phases, with an
early pre-symptomatic phase showing hyper-stable microtubules
followed by a later symptomatic phase, where microtubules are
unstable (Almeida-Souza et al., 2011a,b; d’Ydewalle et al., 2011).
This suggests that one way to slow down disease progression
could be to provide temporally defined, correct dosage of agents
that control the balance of stable and dynamic microtubules
in a disease-specific manner. Additionally, systematic temporal
studies examining microtubule dynamics in both cell and animal
models, combined with behavioral assays in animal models,
may allow investigators to gain a deeper understanding of
how the complex cellular roles of microtubules contribute to
neurodegenerative disease progression.
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