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Infants who suffer perinatal brain injury, including those with encephalopathy of prema-
turity, are prone to chronic neurological deficits, including epilepsy, cognitive impairment,
and behavioral problems, such as anxiety, inattention, and poor social interaction.
These deficits, especially in combination, pose the greatest hindrance to these children
becoming independent adults. Cerebral function depends on adequate development of
essential inhibitory neural circuits and the appropriate amount of excitation and inhibition
at specific stages of maturation. Early neuronal synaptic responses to γ-amino butyric
acid (GABA) are initially excitatory. During the early postnatal period, GABAAR responses
switch to inhibitory with the upregulation of potassium-chloride co-transporter KCC2.
With extrusion of chloride by KCC2, the Cl− reversal potential shifts and GABA and
glycine responses become inhibitory. We hypothesized that prenatal hypoxic–ischemic
brain injury chronically impairs the developmental upregulation of KCC2 that is essential
for cerebral circuit formation. Following late gestation hypoxia–ischemia (HI), diffusion
tensor imaging in juvenile rats shows poor microstructural integrity in the hippocampal
CA3 subfield, with reduced fractional anisotropy and elevated radial diffusivity. The
loss of microstructure correlates with early reduced KCC2 expression on NeuN-positive
pyramidal neurons, and decreased monomeric and oligomeric KCC2 protein expression
in the CA3 subfield. Together with decreased inhibitory post-synaptic currents during a
critical window of development, we document for the first time that prenatal transient
systemic HI in rats impairs hippocampal CA3 inhibitory tone. Failure of timely development
of inhibitory tone likely contributes to a lower seizure threshold and impaired cognitive
function in children who suffer perinatal brain injury.
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Introduction

Although improved obstetrical and neonatal intensive care prac-
tices have led to increased survival, infants born very preterm are
prone to disorders of cerebral development, including impaired
cognition and behavior, epilepsy, and cerebral palsy (Marin-
Padilla, 2000; Robinson et al., 2005; Volpe, 2009). Similarly, infants
who suffer brain injury from hypoxia–ischemia (HI) during criti-
cal developmental periods of cerebral circuit formation are also
at increased risk for seizures, neuropsychiatric conditions, and
cognitive disorders (Martinez-Biarge et al., 2010). Altered intrin-
sic neuronal network activity, including formation of aberrant
or excess local connections, and significant disruption of the
excitatory–inhibitory developmental program, are among the the-
ories proposed to explain the predisposition to hyperexcitability
following preterm birth and perinatal HI (Marin-Padilla, 2000;
Robinson, 2005).

Improper levels of cerebral excitatory and inhibitory tone likely
contribute to spasticity, epilepsy, and other neurological deficits
associated with prematurity. Inhibition and excitation are inex-
tricably interwoven during development and in the mature CNS
(Isaacson and Scanziani, 2011), and KCC2 appears to synchronize
this balance (Li et al., 2007). During postnatal development KCC2
regulates maturation of inhibitory neurotransmission and tone
(Rivera et al., 1999; Hubner et al., 2001; Payne et al., 2003; Dzhala
et al., 2005; Kanold and Shatz, 2006; Daw et al., 2007; Farrant
and Kaila, 2007). KCC2 extrudes chloride, and maintains the Cl−
gradient responsible for hyperpolarization observed following γ-
amino butyric acid (GABA)A and glycine receptor activation
(Rivera et al., 1999; Kaila et al., 2014a). Immature neurons typi-
cally have higher intracellular Cl− compared to mature neurons,
as a result of low KCC2 membrane expression (Rivera et al.,
1999; Dzhala et al., 2005). Increased KCC2 expression promotes
membrane hyperpolarization and enhanced inhibitory responses
from GABAA receptor activation, thus supporting the generation
of inhibitory post-synaptic currents (IPSCs) (Farrant and Kaila,
2007), and formation of inhibitory cerebral circuits (Daw et al.,
2007). Indeed, inhibitory tone alters action potential propagation.
Spontaneous IPSCs suggest activation of post-synaptic GABAA
receptors following action potential-dependent vesicular trans-
mitter release (Alvarez-Dolado et al., 2006). Notably, increases
in spontaneous IPSC frequency often reflect increased inhibitory
tone (Alvarez-Dolado et al., 2006). KCC2 and GABAAR matura-
tion are linked in models of CNS injury and repair (Papp et al.,
2008; Jantzie et al., 2015; Tian et al., 2015).

Numerous factors regulate the rapid increase in cerebral KCC2
expression during the perinatal period, including subplate neu-
rons (Kanold and Shatz, 2006; Jantzie et al., 2015). Subplate neu-
ronal loss is a central component of CNS injury from preterm
birth (Volpe, 1996; Kinney et al., 2012; Pogledic et al., 2014).
Indeed, post-mortem specimens from preterm infants with white
matter injury have reduced KCC2 cerebral expression (Robin-
son et al., 2010), consistent with the hypothesis that inadequate
KCC2 expression during the critical period of cerebral circuit
development contributes in part to impaired inhibitory tone in
preterm infants. Prenatal transient systemic hypoxia–ischemia
(TSHI) on embryonic day 18 (E18) in Sprague-Dawley ratsmodels

CNS injury associated with extreme preterm birth (Robinson
et al., 2005). Following this injury, adult rats have a lower seizure
threshold induced by the GABAergic antagonist pentylenetetrazol
(Mazur et al., 2010). Given that prenatal TSHI mimics multiple
components of CNS injury from very preterm birth (Robinson
et al., 2005;Mazur et al., 2010; Jantzie et al., 2015), we hypothesized
that TSHI would impair developmental KCC2 upregulation in
CA3, reduce IPSCs during a critical period of circuit formation,
and lead to chronic abnormalities in CA3 microstructure. Specif-
ically, we predicted that prenatal TSHI would lower inhibitory
tone during the first two postnatal weeks and that this functional
impairment would correlate with reduced KCC2 expression and
abnormalities on diffusion tensor imaging (DTI).

Materials and Methods

All procedures were performed in accordancewith theNIHGuide
for the Care andUse of Laboratory Animals and with the approval
of the Animal Care and Use Committees at CaseWestern Reserve
University, Boston Children’s Hospital and the University of New
Mexico.

Prenatal Transient Systemic Hypoxia–Ischemia
The neurodevelopmental pattern of expression of neurotrans-
mitters, receptors, and co-transporters is staggered in rodents
and humans. In general, full-term in the Sprague-Dawley rat is
approximately equivalent to 30weeks gestation in humans, while
postnatal day 7 (P7) in rats is similar to full-term in humans. The
period of rapid increase in KCC2 expression in the early postna-
tal rat corresponds to the third trimester in humans (Robinson
et al., 2010; Hyde et al., 2011; Kaila et al., 2014a), a period of
vulnerability of cerebral circuit development in preterm infants
(Robinson, 2005). Here, an established model of prenatal TSHI
injury was used (Robinson et al., 2005; Jantzie et al., 2013, 2014,
2015). Briefly, on embryonic day 18 (E18) Sprague-Dawley rats
were anesthetized with isoflurane. A laparotomy was performed,
uterine arteries were clamped for 60min, and the laparotomy was
closed. Sham control dams underwent anesthesia and laparotomy
for 60min but uterine arteries were not clamped. All pups were
born at term and matured with their respective dams. Both sexes
were used in all experiments.

Diffusion Tensor Imaging
By measuring tissue integrity at the micron level, ex vivo DTI
allows quantification ofmicrostructural injury (Aung et al., 2013).
Observed patterns of abnormalities vary with type of insult (Sierra
et al., 2015), and recovery intervals following injury (Mac Donald
et al., 2007). To assess long-term abnormalities in CA3 hippocam-
pal microstructure, rats at P35–40 were deeply anesthetized with
sodium pentobarbital and perfused with 4% paraformaldehyde.
Brains were then removed and after post-fixation, embedded in
2% agarose containing 3mM sodium azide for ex vivo mag-
netic resonance imaging (MRI). MRI was performed on a Bruker
4.7-T BioSpec 47/40 Ultra-Shielded Refrigerated nuclear system
equipped with a 72mm I.D. quadrature RF coil and a small-bore
(12 cm I.D.) gradient set with a maximum gradient strength of
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50Gauss/cm. MR protocols consisted of echo-planar diffusion
tensor imaging (EP-DTI) sequences. Images of 12 contiguous
coronal 1mm slices were obtained with a field-of-view (FOV) of
3.00 cm, a TR of 3000ms, TE of 40ms, and b-value 2000mm2/s
with 30 gradient directions. CA3 was analyzed using Bruker’s
Paravision 5.1 imaging software. Diffusion-weighted images and
fractional anisotropy (FA) maps were generated. Axial (λ1) and
Radial [(λ2+ λ3)/2] diffusivity eigenvectors were also measured
by observers blinded to the injury status.

Immunohistochemistry
Double-labeling immunohistochemistry was performed at P11 to
assess KCC2 loss on neurons in the CA3 subfield. After perfusion
with 4%paraformaldehyde, brainswere immersed in 30% sucrose.
Coronal 20µm frozen sections were cut on a cryostat. Sections
were thawed, and incubated with block consisting of 10% goat
serum and 0.5% Triton in phosphate-buffered saline (PBS) for 1 h.
Antibodies were diluted in 2% NGS/0.5% Triton/PBS. Sections
were incubated sequentially with anti-KCC2 antibodies (1:500,
Millipore, Billerica, MA, USA) overnight at 4°C, PBS rinse, anti-
rabbit biotinylated IgG antibodies (Vector Labs, Burlingame, CA,
USA), fluorescein-conjugated avidin, mouse anti-NeuN antibod-
ies (1:1000, Millipore, Billerica, MA, USA), and AlexaFluor-568
antibodies (Life Technologies, Grand Island, NY, USA). Sections
were mounted with Vectashield (Vector Labs, Burlingame, CA,
USA). Images were photographed using a Leica DMi8 confocal
microscope by observers blinded to the injury group. Images were
obtained at 63×, zoom 0.89, with the following laser settings used
for all images: seq 1 – 495@ 6.23, gain= 123.75%; seq 2 – 581@
13.1, gain= 106.25%.

Western Blot
Western blotting for KCC2 was performed on micro-dissected
CA3 at P15 (n= 8/group). Previously, we have reported the
developmental time course of oligomeric and monomeric KCC2
expression from P7 to young adulthood in Sprague-Dawley rats
(Jantzie et al., 2014). Briefly, membrane proteins were isolated
using a sucrose-containing homogenization buffer, sonication,
and differential centrifugation (Jantzie et al., 2014). Protein
amount was determined via Bradford protein assay, after which
15µg was loaded on to 4–20% Tris HCl gels (BioRad Hercules,
CA, USA). Following transfer, membrane s were blocked and
incubated in anti-KCC2 (1:500, Millipore) overnight at 4°C.
The following day, membranes were washed, incubated in anti-
rabbit HRP-conjugated secondary antibodies, and developed in
Femto-West ECL. Digital images were captured on GE LAS 4000
image reader and resultant bands quantified with ImageQuant
software and standardized to beta-tubulin to confirm equal
protein among lanes.

Electrophysiology
Acute tissue slices containing the hippocampus were prepared
from P10 to P11 TSHI or sham pups, as described previously
(Calcagnotto et al., 2002). Slices were continuously perfused with
oxygenated artificial cerebrospinal fluid (ACSF) consisting of (in
millimolar), 124 NaCl, 3 KCl, 1.5 CaCl2·2H2O, 1.0 MgSO4·7H2O,

0.5 NaH2PO4·H2O, 25 NaHCO3, and 30 -Glucose, pH 7.4
(295–305mOsm) at 27°C. Coronal (400µm thick) slices were
cut on a VT1000 vibratome (Vibratome Instruments, St. Louis,
MO, USA), while continuously perfusing the tissue with chilled
(3–6°C) oxygenated (95%O2–5% CO2) sodium-containing ACSF
slicing medium. Final slices were cut to contain the hippocampus
for recording from visualized CA3 pyramidal neurons. Following
sectioning, the resulting slices were immediately transferred to a
holding chamber where they remained submerged in oxygenated
(95% O2–5% CO2) room temperature recording medium
(ACSF). For each experiment, a single slice was transferred from
the holding chamber to a polycarbonate recording chamber
(26GLP, Warner instruments, Hamden, CT, USA) and held in
place with a platinum ring overlain with nylon threads. The slice
was continually perfused with ACSF bubbled with carbogen
gas at room temperature for up to 6 h. Approximately 30min
before whole-cell recordings were performed on CA3 pyramidal
neurons, the slice was left undisturbed to equilibrate with the
surrounding recording medium.

Intracellular Recording
Whole-cell voltage-clamp (Axoclamp, 700A, Molecular Devices,
Sunnyvale, CA, USA) recordings were obtained from CA3
pyramidal neurons. Patch pipettes (Borosilicate glass BF150,
Sutter Instruments, Novato, CA, USA), pulled to a 1.5–2µm
tip diameter (Sutter Instruments P-97) to give a resistance of
4–6MΩ, were used to record from individual neurons in the CA3
region of the hippocampus (sampled at 10 kHz, bandpass filtered
at 10–1000Hz). Intracellular patch pipette solution used to study
IPSCs contained (in millimolar): 120 Cs-gluconate, 10 HEPES, 11
EGTA, 11 CsCl, 1 MgCl2, 1.25 QX-314, 2 Na2ATP, 0.5 Na2GTP,
and pH 7.25 with KOH. Cells exhibiting large leak currents
(>100 pA) were excluded from analysis. Cesium can influence
KCC2 cation transport (Payne et al., 2003; Williams and Payne,
2004), however, because sham and TSHI slices were evaluated
using the same solution, the impact was the same for all slices.
In addition, Cs+ has been used in recording solutions in prior
studies of co-transporter function (Sipila et al., 2009; Zonouzi
et al., 2015). IPSCs were recorded for 10min at a holding potential
of 20mV to correct for the liquid junction potential (Calcagnotto
et al., 2002). IPSC V-clamp recordings were recorded using
Clampfit software (Molecular Devices), and IPSCs exported and
analyzed using time-to-peak and time-to-decay parameters in
Mini Analysis 5.6.28 software (Synaptosoft, Decatur, GA, USA).
Briefly, each spontaneous event was manually selected based
on the IPSC waveform and rise time, amplitude, and decay
properties. Between 100 and 500 individual IPSC events were
recorded and analyzed for each cell. Data are presented as the
mean± SEM. Cumulative probability plots and histograms were
constructed using Python (http://python.org) scripts and Excel
(Microsoft, Redmond, WA, USA).

Statistical Analyses
Data are presented asmeanwith SEM.Differences were compared
using a two-sample two-tailed Student’s t-test assuming unequal
variance, with a significance level of p< 0.05.
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Results

Microstructural and Diffusion Abnormalities in
the CA3 Subfield Following Prenatal TSHI
Diffusion tensor imaging of microstructural abnormalities
measures structural damage at the micron level, particularly
related to the integrity of axons and myelin (Aung et al., 2013).
DTI color maps from juvenile brains (P35–40) following prenatal
TSHIdemonstratemarked loss of directional diffusion in the three
primary directions and integrity compared to shams (Figure 1A).
Microstructural abnormalities were quantified. Following
prenatal injury, juvenile TSHI animals show significantly reduced
FA compared to shams (n= 7–8/group, p< 0.001, Figure 1B),
suggesting loss of structural integrity from early injury persists
into the mature CNS. In agreement with the loss of structural
integrity observed with FA, axial diffusivity and radial diffusivity
are both increased in TSHI rats compared to shams, consistent
with injury to axons and myelin, respectively (AD: p= 0.04 and
RD: p= 0.02, Figures 1C,D). These data show that prenatal TSHI
causes sustained DTI microstructural abnormalities in the CA3
subfield.

Prenatal TSHI Reduces KCC2 Expression in the
CA3 Subfield
KCC2 expression is susceptible to CNS injury (Galeffi et al., 2004;
Bonislawski et al., 2007; Papp et al., 2008; Boulenguez et al., 2010;
Jaenisch et al., 2010; Ma et al., 2014; Tian et al., 2015), and reduced
KCC2 has been reported in CA3 pyramidal neurons resected from

humanswith epilepsy (Huberfeld et al., 2007), and in peri-tumoral
cortex (Pallud et al., 2014; Campbell et al., 2015). To determine
if prenatal TSHI altered CA3 KCC2 expression on CA3 neurons
in our model, we performed double-labeling immunohistochem-
istry. Marked reduction of KCC2 expression on NeuN+ neurons
is present in the CA3 subfield of P11 TSHI rats, compared to
shams (Figure 2A). Western blotting was performed on CA3
membrane fractions to quantify KCC2 expression at P15. In the
TSHI CA3 subfield, monomeric and oligomeric KCC2 expres-
sion is reduced by 29 and 28%, respectively, compared to shams
(n= 8/group, p= 0.002 and p= 0.03, respectively, Figures 2B,C).
Together, these results demonstrate that prenatal TSHI diminishes
expression of KCC2 in the CA3 subfield, consistent with our
prior investigations that reported sustained reductions in KCC2
expression resulting from calpain-mediated degradation (Jantzie
et al., 2014).

Prenatal TSHI Decreases IPSC Frequency
Given the contribution of KCC2 to inhibitory tone (Sivakumaran
et al., 2015), the reduced KCC2 protein expression in CA3 we
observed during a period of rapid and critical circuit develop-
ment in the first two postnatal weeks (P11–P15), and the lower
seizure threshold observed in adult rats following prenatal TSHI
(Mazur et al., 2010), we sought to determine if prenatal TSHI
affects inhibitory tone. Charge transfer and frequency of IPSCs
were measured in hippocampal CA3 pyramidal cells on P10–11
(Figures 3A,B), a period of rapid KCC2 upregulation in the CA3
of Sprague-Dawley rats (Jantzie et al., 2014).Mean IPSC frequency
decreased by 60%after TSHI compared to shams (11–12 cells from

FIGURE 1 | Diffusion tensor imaging of young mature rats following
prenatal TSHI shows microstructural abnormalities. (A) DTI directional
diffusion color maps show differences in hippocampal structure in TSHI rats
compared to shams. Red color indicates transverse tracts, blue color indicates
anterior–posterior tracts, and green color indicates vertical tracts. (B) Fractional

anisotropy (FA) is reduced in the CA3 subfield of P35–40 TSHI animals
compared to shams. (C) Axial diffusivity (AD) is increased in CA3 of TSHI brains
compared to shams, consistent with axonal injury. (D) Radial diffusivity is
increased in CA3 of TSHI brains compared to shams in young mature CNS,
consistent with impaired myelin integrity. *p<0.05, ***p≤0.001.
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FIGURE 2 | Prenatal TSHI diminishes KCC2 expression during postnatal
development in the CA3. (A) NeuN-KCC2 double-labeling at P11 shows
reduced KCC2 expression. Bar= 20µm. (B) Western blot at P15 shows

reduced monomeric KCC2 expression (140 kDa) in CA3 from TSHI brains
compared to shams. (C) Similarly, oligomeric KCC2 (~270 kDa) expression is
also reduced at P15 compared to shams (*p<0.05, **p<0.01).

6 to 7 rats/group; p= 0.006, Figure 3C). Similarly, charge trans-
fer (area) dropped by 28% following TSHI compared to shams
(p= 0.019, Figures 3C,D), concomitant with a 14% reduction
in the time constant of decay after TSHI (p< 0.05, Figure 3D).
IPSC amplitude also trended down in TSHI animals compared
to shams, but did not reach significance (TSHI: 46 pA vs. sham:
56 pA). Concomitant with the mean data, distribution histograms
and cumulative distribution plots demonstrate a clear leftward
shift in the population of IPSCs from TSHI rats compared to
shams (Figures 3D,E). Together, diminished IPSC frequency and
charge transfer (Alvarez-Dolado et al., 2006) indicate that CA3
pyramidal neurons were depolarized following prenatal TSHI
when compared to sham CA3 neurons, leading to a loss of
inhibitory tone and impaired functional refinement of developing
circuits.

Discussion

In the present study, we demonstrate chronic loss of CA3
microstructure, and loss of KCC2 protein expression and IPSCs
during a crucial window of postnatal circuit development. Given
loss of expression of GABA signaling and KCC2 in premature

infants (Robinson et al., 2006, 2010), and the relationship
between chloride transporter expression and GABAAR mat-
uration (Kanold and Shatz, 2006; Jantzie et al., 2015; Tian
et al., 2015), these data emphasize that the multifaceted nature
of inhibitory changes in the developing hippocampus follow-
ing in utero injury defined, in part, by alterations in KCC2
expression.

Here, we show for the first time that functional impair-
ment in hippocampal slices, defined by lower inhibitory tone, is
present in pyramidal neurons following prenatal injury. Indeed,
one facet of inhibitory strength is the chloride electrochemical
gradient, which drives the hyperpolarizing action of synaptic
inhibition and is determined by intracellular chloride concen-
tration (Yassin et al., 2014). Early in development, inhibitory
synapses generate excitatory post-synaptic potentials that stabi-
lize synapse formation, and as neurons mature there is upreg-
ulation of KCC2 that drives low intracellular chloride and sup-
ports hyperpolarizing IPSCs (Kandler and Gillespie, 2005; Yassin
et al., 2014). Notably, the trafficking, cell surface expression,
and transport activity of KCC2 are controlled by neuronal activ-
ity, with increased KCC2 activity caused by protein oligomer-
ization and changes in phosphorylation (Blaesse et al., 2006;
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FIGURE 3 | Transient systemic hypoxia–ischemia (TSHI) decreases
inhibitory post-synaptic currents (IPSCs). (A) Tracing showing
decreased frequency of post-synaptic events in TSHI CA3 regions
compared to sham; (B) biocytin-filled CA3 P10–P11 pyramidal neuron in
hippocampal slice. Bar= 50µm. (C) Frequency, charge transfer, and
decay of IPSCs are significantly different in TSHI animals compared to

shams (two-tailed t-test, p<0.05, p= 0.006, and p= 0.019, respectively).
(D) Consistent with the mean data, the cumulative distribution plots
demonstrate a leftward shift in the population of TSHI IPSCs, and
decreased inter-event intervals compared to shams. (E) Event distribution
histograms confirm the leftward shift in decay and charge transfer following
TSHI compared to shams.

Chamma et al., 2013). Thus, as intracellular chloride declines,
the driving force favors influx of chloride ions, which strength-
ens IPSCs and synaptic inhibition (Ben-Ari et al., 2012; Yassin
et al., 2014). In the present study, we demonstrate that prena-
tal TSHI decreases IPSC frequency, and reduces oligomeric and
monomeric KCC2 protein expression during this critical period
of maturation. Additionally, we show reduced KCC2 expres-
sion on CA3 neurons. Previously, we have shown KCC2 loss
following TSHI is caused in part by calpain-mediated degrada-
tion rather than overt changes in phosphorylation (Jantzie et al.,

2014). Together, these data support the relationship between
KCC2 expression and inhibitory activity, and are consistent with
the reduced seizure threshold in adult rats following prenatal
injury (Mazur et al., 2010). Indeed, calpain-mediated KCC2 loss
is consistent with recent reports of reduced KCC2 levels in
the chronic period following neonatal seizures (Puskarjov et al.,
2015), and excess calpain activity in human epilepsy resections
(Feng et al., 2011; Das et al., 2012).

Plasticity in neural circuitry can be due to changes in ion
transporters activity, including KCC2 (Kaila et al., 2014b). In
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addition to controlling the intracellular chloride concentration,
KCC2 regulates multiple other components of neurodevelopment
and mature CNS function. Indeed, the broad multi-tasking spec-
trum of KCC2 functions has earned the KCC2 co-transporter
the designation of a multi-functional “moon-lighting” protein
(Blaesse and Schmidt, 2015). Ion-independent functions include
regulating neural tube formation (Horn et al., 2010), synapse for-
mation (Tanis et al., 2009; Blaesse and Schmidt, 2015), interneu-
ron migration (Bortone and Polleux, 2009), neuronal survival
(Pellegrino et al., 2011; Winkelmann et al., 2015), and dendritic
spine formation (Li et al., 2007; Fiumelli et al., 2013; Llano et al.,
2015). Cortical KCC2 expression is also tightly linked with mat-
uration of GABAA receptors (Chudotvorova et al., 2005; Kanold
and Shatz, 2006; Jantzie et al., 2015).

Functional regulation of KCC2 expression and activity is com-
plex (Medina et al., 2014). KCC2 activity is modulated by tran-
scription (Uvarov et al., 2006; Markkanen et al., 2008; Ludwig
et al., 2011), post-translational modification via phosphorylation
(Lee et al., 2010; Kahle et al., 2013), and calpain degradation
(Puskarjov et al., 2012; Zhou et al., 2012; Jantzie et al., 2014).
Numerous factors contribute to the regulation ofKCC2 expression
and function. For example, neuroligin-2, a cell adhesion molecule
that regulates GABAergic synaptogenesis, also regulates KCC2
expression. Neuroligin-2 expression precedes KCC2 expression
during development, and loss of neuroligin-2 delays the GABAer-
gic switch from depolarizing to hyperpolarizing during devel-
opment (Sun et al., 2013). Interestingly, loss of neuroligin-2 is
linked to social dysfunction (van der Kooij et al., 2014) and
cognitive impairment (Liang et al., 2015), deficits often found in
preterm infants (Anderson, 2014). Likewise, thyroxin is important
for BDNF-induced survival of injured neurons (Shulga et al.,
2009), and early hypothyroidism prevents upregulation of KCC2
expression from P10 to P15 in Wistar rats (Sawano et al., 2013).
Lack of adequate KCC2 expression during the critical period
of neurodevelopment may contribute to the profound impact
hypothyroidism has on neurodevelopment. Moreover, preterm
infants are prone to various types of hypothyroidism (Vigone et al.,
2014). Indeed, preventing hypothyroidism may modulate KCC2
expression in preterm infants.

Given the importance of KCC2 to neurodevelopment, particu-
larly cerebral circuit formation, and the multitude of neurolog-
ical deficits suffered by preterm infants, modulation of KCC2
expression in the critical neonatal period is appealing as a poten-
tial therapeutic intervention. Neonatal EPO treatment admin-
istered after prenatal TSHI restores the seizure threshold and
functional deficits in adults, and promotes neuronal and oligo-
dendroglial survival and maturation (Mazur et al., 2010; Jantzie
et al., 2013). Neonatal EPO treatment also limits loss of calpain-
mediated KCC2 loss in the CA3 after prenatal injury (Jantzie
et al., 2014). In clinical trials of human preterm infants, EPO
derivatives improved cognitive outcomes at 2 years (Ohls et al.,
2014), and reduced white and gray matter MRI abnormalities at
term (Leuchter et al., 2014). A KCC2 enhancer has been described
(Gagnon et al., 2013), but its efficacy, and most importantly,
safety in the developing brain after injury has yet to be inves-
tigated. The premise that we can reverse the consequences of
KCC2 loss and its functional deficits is exciting, but the use of

such agents relies on the appropriate testing in clinically relevant
injury models, and thoughtful interpretation and integration of
the findings.

A limitation of this study is that we did not have an ade-
quate sample size to clarify sex differences in inhibitory tone.
Developmental upregulation of KCC2 expression varies between
male and female Wistar rats (Murguia-Castillo et al., 2013), and
neonatal allopregnanolone promotes KCC2 expression in male
rats (Modol et al., 2014); however, sex differences in KCC2 have
not been studied in Sprague-Dawley rats. In this model, males
tended to show a lower seizure threshold than females, although
both males and females were significantly lower than shams
(Mazur et al., 2010). These findings are consistent with human
preterm infants, where being male is a risk factor for a worse
neurodevelopmental outcome (Ambalavanan et al., 2012; Kent
et al., 2012). Second, regional variation in KCC2 expression and
activity likely dictates functional outcomes (Kovacs et al., 2014;
Yang et al., 2015). Encephalopathy of prematurity affects the entire
developing CNS (Volpe, 2009). Indeed, widespread loss of KCC2
expression was found in post-mortem samples from preterm
infants with white matter lesions (Robinson et al., 2010), and in
rats following prenatal TSHI (Jantzie et al., 2015). Here, investiga-
tion of inhibitory tone and its relationship to KCC2 expression
and microstructural abnormalities was confined to only in the
CA3 subfield. Despite these limitations, our study demonstrates
loss of KCC2 expression and inhibitory tone in CA3 in the injured
developing brain and persistent injury with CA3 microstructural
abnormalities in the mature CNS. Given the global prevalence
and impact of perinatal brain injury, the findings reported here
demonstrate sustained alterations in the developing brain follow-
ing prenatal HI that provide insight into impaired cerebral circuit
formation.
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