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Neural stem cells (NSCs) persist in the adult mammalian brain through life. The
subventricular zone (SVZ) is the largest source of stem cells in the nervous system,
and continuously generates new neuronal and glial cells involved in brain regeneration.
During aging, the germinal potential of the SVZ suffers a widespread decline, but the
causes of this turn down are not fully understood. This review provides a compilation of
the current knowledge about the age-related changes in the NSC population, as well as
the fate of the newly generated cells in the aged brain. It is known that the neurogenic
capacity is clearly disrupted during aging, while the production of oligodendroglial cells is
not compromised. Interestingly, the human brain seems to primarily preserve the ability
to produce new oligodendrocytes instead of neurons, which could be related to the
development of neurological disorders. Further studies in this matter are required to
improve our understanding and the current strategies for fighting neurological diseases
associated with senescence.
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Introduction

Neural stem cells (NSCs) persist in two specific regions of the adult mammalian brain: the
dentate gyrus of the hippocampus, and the subventricular zone (SVZ) of the lateral ventricles
(Doetsch et al., 1997; Seri et al., 2001; Garcia-Verdugo et al., 2002; Alvarez-Buylla and Lim, 2004;
Quinones-Hinojosa et al., 2006). In both regions, NSCs are identified as a subpopulation of
astrocytes that are able to produce the main lineages of the central nervous system (CNS), i.e.,
neurons, oligodendrocytes, and astrocytes (Doetsch et al., 1999a; Seri et al., 2001; Alvarez-Buylla
and Garcia-Verdugo, 2002; Abrous et al., 2005; Ming and Song, 2005; Menn et al., 2006; Ihrie and
Alvarez-Buylla, 2008; van den Berge et al., 2010). The production of new cells can be modulated
by multiple extrinsic factors, such as an enriched environment, physical activity, stress, exposure
to toxics, or drugs (van Praag et al., 1999; Brown et al., 2003; Capilla-Gonzalez et al., 2010; Ivy
et al., 2010; Capilla-Gonzalez and Hernandez-Rabaza, 2011; Korosi et al., 2012), and intrinsic
factors, such as growth factors, hormones, or gender (Cameron and Gould, 1994; Ohshima
et al., 1996; Hirota et al., 2007). In this context, aging acts as an intrinsic factor that affects the
germinal potential of the SVZ (Maslov et al., 2004; Sanai et al., 2004, 2011; Luo et al., 2006;
Bouab et al., 2011; Guerrero-Cazares et al., 2011; McGinn et al., 2012; Capilla-Gonzalez et al.,
2014a). Concretely, the production of new neurons is reduced with age, while the generation of
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oligodendroglial cells is not compromised (Bergmann et al.,
2012; Capilla-Gonzalez et al., 2013). These modifications on
neurogenesis may be associated with aging diseases. Here, we
provide a compilation of the current knowledge about the age-
related changes in the NSCs population, as well as the fate of the
newly generated cells in the aged brain.

The Subventricular Zone: A Principal
Reservoir of NSCs

The SVZ is the main neurogenic niche in the adult mammalian
brain. It is known that NSCs within the SVZ derive from
embryonic radial glia cells (Merkle et al., 2004; Kriegstein and
Alvarez-Buylla, 2009; Morrens et al., 2012; Fuentealba et al.,
2015). During the final stages of development, radial glia cells
retract their apical processes but preserve the ventricle contact,
turning into the ependymal cells and NSCs of the future SVZ
(Merkle et al., 2004; Spassky et al., 2005). In the adult brain,
ependymal cells constitute the postmitotic population of cells
within the SVZ (Spassky et al., 2005). They are cubical cells
containing lipid droplets in their cytoplasm and displaying
cilia and microvilli in their apical surface. Ependymal cells
form interdigitations, tight junctions and adherens junctions
with each other to separate the SVZ from the cerebrospinal
fluid of the ventricle cavity. On the other hand, NSCs are
identified as a subpopulation of astrocytes called B1 astrocytes
that differ from another subpopulation of non-neurogenic
astrocytes (B2 astrocytes) (Doetsch et al., 1997, 1999a; Han
et al., 2008; Ihrie and Alvarez-Buylla, 2008; Mirzadeh et al.,
2008; Gil-Perotin et al., 2009; Morrens et al., 2012). Briefly,
astrocytes present bundles of intermediate filaments and light
cytoplasm. B1 astrocytes are located next to the ependymal layer,
displaying chromatin clumps close to the nuclear membrane,
and a primary cilium in the apical surface that extends into the
ventricle cavity. In contrast, B2 astrocytes do not contact the
ventricle. B1 astrocytes proliferate and give rise to intermediate
progenitor cells (type C cells), which have very large, irregular
nuclei with frequent invaginations and many mitochondria
in their cytoplasm. Subsequently, intermediate progenitor cells
differentiate into neuroblasts (type A cells), which are small,
elongated cells with a reduced dark cytoplasm, containing
numerous ribosomes and microtubules (Doetsch et al., 1997,
1999a; Peretto et al., 1999; Ponti et al., 2013). Neuroblasts form
large chains ensheathed by gliotubes of astrocytes that emerge
from the SVZ to coalesce into the rostral migratory stream
(RMS) (Lois et al., 1996; Peretto et al., 1997; Alvarez-Buylla
and Garcia-Verdugo, 2002) (Figure 1A). Through the gliotubes,
neuroblasts migrate tangentially long distance before they reach
their final destination, the olfactory bulb (OB). Then, neuroblasts
move radially and mature into interneurons that integrate in
preexisting functional circuits (Lois and Alvarez-Buylla, 1994;
Lois et al., 1996; Luskin et al., 1997; Carleton et al., 2003; Alvarez-
Buylla and Lim, 2004; Imayoshi et al., 2008; Kelsch et al., 2010;
Lazarini and Lledo, 2011). In rodents, most SVZ precursor cells
become neuroblasts to support OB neurogenesis, while a small
subpopulation of new cells migrates to periventricular areas
such as the corpus callosum or striatum, where they give rise

FIGURE 1 | Schematic representation of the subventricular zone (SVZ)
and rostral migratory stream (RMS) in the young and aged rodent
brain. (A) In the young brain, ependymal cells with cubical morphology
integrate the barrier that separates the SVZ neurogenic cells from the lateral
ventricle. Neuroblasts form large chains ensheathed by gliotubes of
astrocytes. Thus, neuroblasts migrate through these migratory structures,
which emerge from the SVZ and coalesce into the RMS that ends in the
olfactory bulb (OB). (B) During aging, ependymal cells are flattened and their
cilia scatter. Both ependymal cells and astrocytes accumulate dense bodies
and intermediate filaments in their cytoplasm. There is a decrease in the
number of neural stem cells (NSCs) identified as astrocytes contacting the
ventricle, intermediate progenitor cells, and neuroblasts. As a result, the RMS
tends to disappear in the aged brain.

to myelinating oligodendrocytes, both in the normal brain and
after demyelinating lesion (Nait-Oumesmar et al., 1999; Menn
et al., 2006; Gonzalez-Perez et al., 2009; Capilla-Gonzalez et al.,
2014b).

Aging Disrupts the SVZ-RMS Axis

Aging is known to impact on the SVZ-RMS system, altering
the ultrastructure and organization of its cells (Luo et al.,
2006; Bouab et al., 2011; Capilla-Gonzalez et al., 2013, 2014a;
Mobley et al., 2013). Reports have shown that the aged SVZ
mostly retains ependymal cells and astrocytes. The intermediate
progenitor cells are rarely found, and neuroblasts appear isolated
or forming small chains. Consequently, a reduction in the
neuroblast population is also observed along the RMS, which
tends to disappear with age (Figure 1B). All these age-related
changes are the consequence of a reduced stem cell activity
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(Enwere et al., 2004;Maslov et al., 2004; Luo et al., 2006;Molofsky
et al., 2006; Bouab et al., 2011; Conover and Shook, 2011;McGinn
et al., 2012; Capilla-Gonzalez et al., 2013).

During aging, remaining ependymal and astrocytic cells
accumulate dense bodies and intermediate filaments in their
cytoplasm (Figures 2A,A′,B,B′), resembling reactive cells (Bouab
et al., 2011; Capilla-Gonzalez et al., 2014a). The acquisition of a
reactive phenotype in astrocytes may imply a reduction in their
stemness. In fact, most of the astrocytic cells found in the aged
SVZ were identified as non-neurogenic astrocytes, since they
showed a lack of ventricular contact (Capilla-Gonzalez et al.,
2014a). Thus, the major characteristic of aging is the reduction
in proliferation that occurs in the germinal niche. Furthermore,
ependymal cells in the aged SVZ present larger lipid droplets
than those from young mice (Figure 2C,C′), as well as they
are more flattened, which results in more dispersed cilia tufts
(Luo et al., 2008; Bouab et al., 2011; Capilla-Gonzalez et al.,
2014a) (Figure 2D,D′). Reports have indicated that the network
of axons presented in the ventricle surface can influence the
morphology of the ependymal cells. As consequence, changes in
this axonal network during aging may result in the flattening
of the ependymal layer. Although it has been found that the
network of axons presented in the ventricle surface increases
with age (Lorez and Richards, 1982; Capilla-Gonzalez et al.,
2014a; Tong et al., 2014) (Figure 2E), its role in modifying
ependymal cell morphology needs to be clarified. Ependymal
cilia are required for normal cerebrospinal fluid flow that allows
neuroblast migration based on guidance cues (Sawamoto et al.,
2006; Mirzadeh et al., 2010; Young et al., 2012). Thus, the
age-related changes in ependymal cilia could contribute to the
reduced migration observed in old mice. In line with this idea,
a similar cilia organization was observed in mice exposed to
the environmental toxic N-ethyl-N-nitrosourea (ENU). Under
scanning electron microscopy, the ventricle surface of these
animals displayed a disorganized cilia orientation and frequent
patches devoid of cilia following ENU-exposure. This ependymal
ciliary dysfunction was associated with declined incorporation of
SVZ-derived neuroblasts to the OB and a subsequent impairment
in odor discrimination (Capilla-Gonzalez et al., 2010, 2012).
Another structure that plays an important role in the adult SVZ
are fractones, which are composed of ubiquitous extracellular
matrix components, including heparin sulfate proteoglycans
such as perlecan and agrin. Fractones can regulate neurogenesis
by capturing different growth factors (Douet et al., 2012, 2013).
It has been reported that aging gradually affects the number,
size, and composition of these structures suggesting that, through
their interaction with NSCs, fractons could be related to the loss
of neurogenesis during aging (Kerever et al., 2015). According to
this, changes in fractone ultrastructure have been described in an
experimental obstructionmodel of hydrocephalus inmice, which
showed decreased NSCs proliferation in the SVZ (Campos-
Ordoñez et al., 2014). Future studies will provide a more
comprehensive understanding on the function of fractones in the
neurogenic niche. The direct consequence of aging impact on the
SVZ neurogenic niche is the progressive reduction of migrating
neuroblasts toward the OB (Figures 2F,G). Indeed, several
studies reported how RMS is notably reduced in elderly rodent

(Bouab et al., 2011; Capilla-Gonzalez et al., 2013), resulting in a
severe disruption of the SVZ-RMS axis.

Quiescence of the NSCs During Aging

Besides the decline in proliferative and neurogenic capacities
of the SVZ during aging, NSCs are still found in the aged
brain. However, their mitotic activity is a matter of controversy.
While some studies suggest that NSCs are highly proliferative
during aging (Stoll et al., 2011; Shook et al., 2012), increasing
evidences indicate that the remaining actively proliferating NSCs
decrease over time (Ahlenius et al., 2009; Lugert et al., 2010;
Bouab et al., 2011; Encinas et al., 2011; Walter et al., 2011;
Encinas and Sierra, 2012; Capilla-Gonzalez et al., 2014a). The
discrepancies found in the literature could be due to the use of
different strains of mice and different strategies in the analysis
of proliferating cells (Schauwecker, 2006; Leuner et al., 2009;
Waldron et al., 2010; Tatar et al., 2013). Most reports rely on
the use of immunostaining to draw their conclusions, but aging
can alter the molecular patterns expressed by the cells (McGinn
et al., 2012). For instance, doublecortin (DCX) and polysialylated
neuronal adhesion molecule NCAM (PSA-NCAM) expression
have been used as markers of immature neurons, but they have
also been presented in some populations of mature neurons,
where are related to structural plasticity (Nacher et al., 2001;
Bonfanti, 2006; Bloch et al., 2011). Hence, techniques based
on non-molecular cues, such as retroviral-labeling or electron
microscopy, couldmore accurately identify the nature of dividing
cells. After a detailed ultrastructural analysis, a recent study
revealed that most astrocytes remaining in the aged SVZ
pertain to the pool of non-neurogenic astrocytes, since they
did not present contact with the ventricle. In addition, the
presence of abundant dense bodies and intermediate filaments
in these astrocytes indicate that they acquired a reactive
phenotype during aging (Capilla-Gonzalez et al., 2014a). This
new phenotype may suggest that astrocytes lose their stemness
over time. The proliferative ability of remaining NSCs in the
aged SVZ was further assessed by incorporation of tritiated
thymidine (3H-thymidine) and results revealed that they were
able to proliferate. However, aged NSCs presented a strong
intensity of the radioactive marker 6 weeks after 3H-thymidine
injection, suggesting that they proliferate less frequently than
those from the young brain, where the labeling was more diluted
(Capilla-Gonzalez et al., 2014a). These data indicate that NSCs
within the aged SVZ may differentiate over time, transforming
into non-neurogenic astrocytes and contributing to the declined
proliferation observed with age. A similar model was proposed
in the aged dentate gyrus, where NSCs tend to disappear by
converting into mature astrocytes (Encinas et al., 2011). At
this time, further analyses are required to fully clarify this
issue.

Age-Related Changes in the Fate of Newly
Generated Cells

In addition to changes in the proliferation rate, the fate of
the newly generated cells is modified during aging, altering the
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FIGURE 2 | Age-related changes in the ultrastructure of the neurogenic niches. (A,A′) Astrocytes accumulate dense bodies (box) in their cytoplasm during
aging. Scale bar: 2 micra. (B,B′) Detail of intermediate filaments (arrows) in astrocytic cells. Note that they are more abundant in aged cells. Scale bar: 500 nm.
(C,C′) Detail of lipid droplets in ependymal cells, displaying a larger size during aging. Scale bar: 5 micra. (D,D′) Ependymal cells are flattened in the aged brain,
resulting in large gaps between ciliary tufts (arrows). Scale bar: 2 micra. (E) Under scanning electron microscopy, whole-mount preparation of the lateral ventricle
shows a deep network of axons (arrows) in the aged brain. Scale bar: 5 micra. (F) DAPI (4′,6-diamidino-2-phenylindole) fluorescent staining shows a remarkable
RMS (arrows) from the lateral ventricle to the OB in the young brain. Scale bar: 1 mm. (G) Conversely, the RMS is not evident in the aged brain. Scale bar: 1 mm. b,
astrocyte; e, ependymal cell; Cb, cerebellum; Ctx, cerebral cortex; Lp, lipid droplets; Lv, lateral ventricle; OB, olfactory bulb. Images (F,G) have been adapted with
permission from Capilla-Gonzalez et al. (2013).

balance between neurogenesis and gliogenesis (Luo et al., 2008;
Capilla-Gonzalez et al., 2013, 2014a) (Figure 3).

Neurogenesis
The replacement of old neurons in the OB is still active
in the aged brain, but it occurs to a lesser rate compared
to young animals (Enwere et al., 2004; Bouab et al., 2011;

Capilla-Gonzalez et al., 2013; Mobley et al., 2013). Using
different techniques, previous studies have associated the
alteration of the SVZ niche with an impaired neuroblast
migration. For instance, localized radiation of the lateral
ventricles reduces the population of precursor cells and
impedes the incorporation of SVZ-derived cells into the OB
(Lazarini et al., 2009; Achanta et al., 2012; Capilla-Gonzalez
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et al., 2014b). Similarly, the exposure to chemical agents
interfering with the DNA of proliferating cells, such as
ENU or cytosine-beta-D-arabinofuranoside, depleted the highly
proliferative cells within the SVZ and diminished the population
of migrating neuroblasts (Doetsch et al., 1999b; Capilla-Gonzalez
et al., 2010, 2012). During aging, the number of active NSCs
is also decreased and the production of neuroblasts declines.
Hence, the impact of aging in the SVZ could be considered a
cause of the reduced incorporation of new immature neurons
into the OB.

Gliogenesis
Glial cells constitute the most important cellular component of
the SVZ niche. Typically, glial cells have been considered as
support cells, but they also play other important roles, such
as those related to the regulation of cerebral blood flow, the
synaptic transmission, maintenance of cerebral metabolism, and
inflammatory reactivity after injury (Sofroniew and Vinters,
2010). Astroglial cells, oligodendroglial cells, and ependymal cells
are the main glial cells in the adult germinal niche.

Astroglial Cells
Astrocytes are the most important glial cell subtype in the
SVZ (Morrens et al., 2012). Apart of their role as NSCs,
astrocytes play other functions, such as supporting neuroblast
migration, synaptic integration, and functional maturation of
newborn neurons (Hatten et al., 1991; Song et al., 2002).
Astrocytes have long been considered a homogeneous population
in different brain regions based on their electrophysiological
properties, markers expression, and morphology. Nonetheless,
increasing evidence supports a spatiotemporal heterogeneity
of astroglial populations in the brain and similarly, different
spatial and temporal programs appear to diversify the progeny
of SVZ astrocytes and adult NSCs (reviewed in Bayraktar
et al., 2015). On the other hand, astrogenesis is essential
to support the NSC population, but also to generate new
astrocytes in response to brain injuries, such as stroke or
traumatic lesions (Saha et al., 2013; Abeysinghe et al., 2014;
Susarla et al., 2014). However, aging reduces the number of
astrocytes present in the SVZ and alters the ultrastructure of
these cells, i.e., increasing the presence of intermediate filaments
and dense bodies in the cytoplasm (Capilla-Gonzalez et al.,
2014a). It has been reported that these changes can affect
the neurogenic ability of NSCs (Lim et al., 2000; Shen et al.,
2008; Tavazoie et al., 2008; Kazanis et al., 2010; Ihrie and
Alvarez-Buylla, 2011), thus astrogenesis property could be also
compromised.

Oligodendroglial Cells
Oligodendrocytes have gained great significance in the last
decade. This glial subtype corresponds to the myelinating cells of
the CNS and is beneficial for the correct function of other neural
cells. Following myelin damage, NSCs are able to produce new
oligodendrocytes that participate in tissue regeneration (Nait-
Oumesmar et al., 1999; Jablonska et al., 2010; Gonzalez-Perez and
Alvarez-Buylla, 2011; Capilla-Gonzalez et al., 2014b). Contrary to
the decline observed in OB neurogenesis during aging, increasing

evidence suggests that oligodendrogenesis is maintained in the
aged brain. First, SVZ NSCs of young and middle-aged mice
were found to present similar ability to produce oligodendrocytes
in vitro when they were differentiated in absence of exogenous
growth factors (Bouab et al., 2011). Second, the few new
cells generated in the aged mouse brain seems to change
from neuronal to oligodendroglial fate in the SVZ-OB system,
as revealed their tracking using different exogenous markers
for dividing cells, i.e., 5-bromo-2′-deoxyuridine (BrdU) and
3H-thymidine (Capilla-Gonzalez et al., 2013). This age-related
phenomenon has also been observed in other regions of the
CNS, such as the spinal cord and neocortex of rodents (Levison
et al., 1999; Lasiene et al., 2009), and the fornix of monkeys
(Peters et al., 2010). The enhancement of the oligodendroglial
fate with age is likely associated with a regeneration of
myelin.

Ependymal Cells
The role of the ependymal cells in the process of neurogenesis
has been controversial (Johansson et al., 1999; Spassky et al.,
2005; Del Carmen Gómez-Roldán et al., 2008; Gleason et al.,
2008). Although the non-neurogenic properties of the ependymal
cells in the healthy brain are commonly accepted, Luo
et al. (2008) suggested that ependymogenesis occurs during
aging. According to this study, B1 astrocytes modify their
traditional B-C-A path to generate new ependymal cells in the
aged SVZ. By tracking labeled astrocytes with BrdU, it was
observed that astrocytes incorporated into the ependymal layer
and expressed antigenic and morphological characteristics of
ependymal cells 6 weeks after BrdU administration. The new
ependymal-like cells exhibited a loss of apical processes and
formed adherens junctions with neighboring ependymal cells
(Luo et al., 2008). This ependymal replacement was suggested
to respond to damages in the integrity of the ependymal
layer due to changes in the ventricle cavity (Luo et al.,
2006; Conover and Shook, 2011; Shook et al., 2014). More
recently, other study used 3H-thymidine to track astrocytes
in the aged brain, but authors failed in finding astrocytes
integrated into the ependymal layer that had transformed into
ependymal cells (Capilla-Gonzalez et al., 2014a). In contrast,
they observed that ependymal cells accumulated intermediate
filaments in their cytoplasm, resembling the ependymal-like cells
described by Luo et al. (2008). Supporting previous studies
(Capela and Temple, 2002; Spassky et al., 2005; Young et al.,
2012), authors associated these ultrastructural changes with a
reactive phenotype gained by the aged cells and ruled out the
possibility of the existence of proliferative ependymal cells or
newly generated ependymal cells in the aged SVZ (Capilla-
Gonzalez et al., 2014a). Further studies are needed to investigate
the specific mechanisms altered by aging in each cell type
population.

Factors Modulating the Aged Neurogenic
Niche

As mentioned above, the different cellular components of the
SVZ interact with each other and with their microenvironment
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FIGURE 3 | Schematic representation of the fate of newly generated cells in the young and aged SVZ. In the young SVZ, an important number of NSCs
differentiate into neurons, while they generate oligodendrocytes and astrocytes to a lesser extent. Aging alters the balance between neurogenesis and gliogenesis.
As consequence, neurogenesis is reduced in the aged SVZ, while oligodrendrogenesis is maintained. It is still under debate whether ependymogenesis occurs in the
aged SVZ.

to regulate the neurogenic process (Lim et al., 2000; Shen
et al., 2008; Tavazoie et al., 2008; Kazanis et al., 2010;
Ihrie and Alvarez-Buylla, 2011; Girard et al., 2014; Capilla-
Gonzalez et al., 2015). For instance, gliogenesis is induced
by the bone morphogenetic protein (BMP) expression in
SVZ astrocytes, while neurogenesis is promoted by Noggin,
which is expressed in ependymal cells (Lim et al., 2000;
Mekki-Dauriac et al., 2002; Bilican et al., 2008). Thus, the
balance between neurogenesis and gliogenesis in the germinal
niche is controlled by SVZ cells. Based on this observation,
the modifications found in the population of astrocytes and
ependymal cells during aging (Bouab et al., 2011; Capilla-
Gonzalez et al., 2014a) may affect the BMP-noggin signaling,
altering cell production. Other proteins, as the cellular prion
protein (PrPc) and N-cadherin, have also been involved in the
regulation of new cells’ fate during aging (Williams et al., 2004;
Yagita et al., 2009; Bribian et al., 2012). It is known that PrPc
expression is reduced during aging (Williams et al., 2004) and
its suppression increases the proliferation and differentiation of
oligodendrocytes (Bribian et al., 2012). Similarly, N-cadherin
regulates the differentiation of glial cells in the SVZ and its
blockage increases oligodendrocyte generation (Yagita et al.,
2009). Considering that N-cadherin is expressed by neuroblasts,
the loss of this cell type in the SVZ-OB system of aged
mice could contribute to the production of oligodendrocytes,
helping to maintain oligodendrogenesis. Finally, cytokines also
play a key role in regulating the function of NSCs and can
influence both the migration and fate of SVZ-derived cells
(Yan et al., 2006; Pluchino et al., 2008; Kokovay et al., 2010;
Gonzalez-Perez et al., 2012; Kang et al., 2012; Logan et al.,
2013). However, this modulatory effect can be compromised
during aging since cytokine expression changes (Werry et al.,
2010; Gordon et al., 2012; Pineda et al., 2013). For instance,
increased levels of the transforming growth factor beta (TGF-β)
correlates with a decrease in neurogenesis by blocking the
proliferation of SVZ precursor cells during aging (Buckwalter
et al., 2006; Pineda et al., 2013; Daynac et al., 2014). This
effect may be due to the fact that TGF-β is upregulated in

the brain during aging (Doyle et al., 2010; Werry et al., 2010;
Pineda et al., 2013). On the other hand, TGF-β1 administration
promotes neuronal differentiation and survival in the SVZ
(Mathieu et al., 2010), and it also increases the number of
immature neurons after stroke (Ma et al., 2008). These discrepant
results indicate that the TGF-β family members might regulate
different mechanisms such as cell cycle, and neuronal and glial
maturation. For instance, it has been proposed that TGF-β
might be responsible for maintaining NSCs quiescence while
promoting survival and differentiation of newly generated
neurons (Kandasamy et al., 2014). Further studies are required to
fully understand the mechanisms responsible of these age-related
changes.

Aging in the Human SVZ Niche

The organization of the adult human SVZ shows some
divergences from the classical SVZ described for other
mammalian species. In humans, the SVZ is composed by
an ependymal layer (Layer I) that is in contact with the
ventricular lumen. Next to this layer, there is a gap or
hypocellular layer (Layer II), which is formed during postnatal
development as a consequence of neuroblast depletion in
this region. It is mostly populated by GFAP immunopositive
cell expansions, although ependymal cells also send basal
processes into this area. Adjacent to the hypocellular layer,
there is a dense ribbon of cell bodies (Layer III) that contains
astrocytes with a variable morphology, and is continued by
a transition region (Layer IV) with few cells and similar
to the underlying brain parenchyma (Figure 4). The human
SVZ also acts as a NSCs niche capable of generating new
neurons (Quinones-Hinojosa et al., 2006). During fetal and
pediatric stages, SVZ-derived neuroblasts migrate via RMS into
the OB (Sanai et al., 2004, 2011; van den Berge et al., 2010;
Guerrero-Cazares et al., 2011). However, when the migration
of neuroblasts to the OB was being studied in infants, it
was unexpectedly found that there is another major migratory
pathway of immature neurons destined for the prefrontal cortex
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FIGURE 4 | Organization of the adult human SVZ. (A) Diagram representing the adult human SVZ. A monolayer of ependymal cells (Layer I) separates the lateral
ventricle from the SVZ. Adjacent to it, a gap or hypocellular layer is mostly composed of GFAP+ cellular expansions (Layer II). Next to the gap layer, the astrocyte
ribbon is represented (Layer III), continued by a transition zone to the brain parenchyma (Layer IV). (B) Electron microscopy coronal image of the human SVZ
obtained from a 53-year-old female donor. Note the typical organization of this human neurogenic niche (Layers I to IV). b, astrocyte; e, ependymal cell; m, microglia.
Scale bar: 4 µm.

(Sanai et al., 2011), suggesting that OB neurogenesis is less
relevant in the human brain. In fact, the incorporation of new
neurons into the human OB is nearly extinct by adulthood,
as revealed by the measurement of 14C concentrations in the
genomic DNA of these cells, which corresponded to the levels
of atmospheric 14C at the time of birth of the examined
individuals (Bergmann et al., 2012). Using the same birth
dating approach, a recent study demonstrated that there is a
postnatal cell turnover in the striatum of adult humans. This
was corroborated by the incorporation of thymidine analog
iododeoxyuridine (IdU) in striatal cells of cancer patients
subjected to radiosensitization. Assessment of the expression of
specific markers led these investigators to conclude that, new
cells in the striatum correspond to neuronal and oligodendrocyte
lineage cells (Ernst et al., 2014). Although authors suggested
that these neurons likely derive from the SVZ, other origins
cannot be excluded. In this regard, the production of new
neurons in the adult human SVZ is still subject to debate.
Most studies point to a dramatic decrease in DCX positive
cells in the RMS and the OB from fetal to adult stages
(Sanai et al., 2004; Wang et al., 2011). Moreover, other
study demonstrated that most of the newly generated cells
during adulthood correspond to non-neuronal cells, such as
oligodendrocytes (Bergmann et al., 2012), suggesting that the
oligodendrogenic process acquires more significance in the
human brain.

Working on the human brain entails important difficulties
due to the great variability present in samples (e.g., age, genetics,
lifestyle. . .) and in their preservation quality. Discordant results
among different studies could, thereby, be attributed to these
causes. Therefore, it is crucial to further investigate the unique
key features of adult humanNSCs, which could lead us to a better
understanding of neurodevelopmental and neurodegenerative
pathologies.

Concluding Remarks and Future
Perspectives

Several studies on aging have established that the neurogenic
niches become severely disrupted with age. The number of NSCs
within the SVZ decreases over time and the generation and fate
of newly generated cells is altered. Specifically, the production
of neurons decreases during aging, while the generation of
oligodendroglial cells seems to be preserved in the aged brain.
This preservation of oligodendrogenesis in the adult brain could
be crucial for the maintaining of brain functions, primarily
in humans, where the production of new neurons is less
relevant. On the other hand, the fact that oligodendrogenesis
is unaltered over neurogenesis during aging, could indicate the
importance of myelin maintenance in the aged brain, probably
preventing degenerative diseases. Thus, a thorough knowledge
of the events occurring during senescence becomes essential to
understand the development of neurological diseases. Currently,
the consequences of aging are clearly determined, but the real
causes of the age-related changes are still unknown. Future
studies need to be re-orientated in order to clarify this issue.
The new information may potentially benefit to develop future
therapeutic strategies helping to preserve the neurogenic niche,
as well as its ability to participate in tissue regeneration.
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