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The dorsolateral prefrontal cortex (DLPFC) is often targeted with non-invasive brain

stimulation (NIBS) to modulate in vivo human behaviors. This brain region plays a key

role in mood, emotional processing, and attentional processing of emotional information.

In this article, we ask the question: whenwe target the DLPFCwith NIBS, dowemodulate

these processes altogether, non-specifically, or can we modulate them selectively?

We thus review articles investigating the effects of NIBS applied over the DLPFC on

mood, emotional processing, and attentional processing of emotional stimuli in healthy

subjects. We discuss that NIBS over the DLPFC can modulate emotional processing and

attentional processing of emotional stimuli, without specifically influencing mood. Indeed,

there seems to be a lack of evidence that NIBS over the DLPFC influences mood in

healthy individuals. Finally, there appears to be a hemispheric lateralization: when applied

over the left DLPFC, NIBS improved processing of positive stimuli and reduced selective

attention for stimuli expressing anger, whereas when applied over the right DLPFC, it

increased selective attention for stimuli expressing anger.

Keywords: repetitive transcranial magnetic stimulation, rTMS, transcranial direct current stimulation, tDCS,mood,

emotion, attentional processing, dorsolateral prefrontal cortex

Introduction

Non-invasive brain stimulation techniques (NIBS) such as repetitive transcranial magnetic
stimulation (rTMS) and transcranial direct current stimulation (tDCS) can modulate human brain
activity and connectivity (Shafi et al., 2012) and selectively improve or disrupt behaviors (Bikson
and Rahman, 2013). They are increasingly used and one region that is often targeted with NIBS to
modulate human behaviors in vivo is the dorsolateral prefrontal cortex (DLPFC).

Neuroimaging literature reports that the DLPFC plays a key role in mood (Davidson and Irwin,
1999), emotional processing (Herrington et al., 2005) and attentional processing of emotional
information (Jacob et al., 2014). A meta-analysis however indicated that mood predominantly
elicits activity in the medial inferior PFC, whereas attentional processing of emotional information
mainly evokes activity in the DLPFC (Steele and Lawrie, 2004). Hemispherical specialization of
emotional processing has also been proposed: activation in the left DLPFC has been associated
with positive mood and processing positive stimuli, whereas activation in the right DLPFC has
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been linked to negative mood and processing negative stimuli
(Canli et al., 1998).

Importantly, behavioral studies showed that mood, emotional
processing, and attention can influence one another in healthy
individuals. Experimentally induced depressed mood impaired
identification of facial expressions and retrieving negative stimuli
(Chepenik et al., 2007) and influenced rating of facial expressions
as more negative (Bouhuys et al., 1995). Elevating mood
improved implicit processing of happy faces (Quarto et al.,
2014). Also, inducing negative attentional bias increased sadness
(MacLeod et al., 2002).

Considering the importance of the DLPFC in mood,
emotional processing, and attention and the interplay between
these processes, when modulating its activity and connectivity
with NIBS, one may wonder whether we are influencing
these processes altogether non-specifically or whether we can
modify them selectively depending on the targeted hemisphere
and/or stimulation parameters. Here we aim at reviewing
studies applying NIBS over the DLPFC of healthy subjects
to modulate (1) mood, (2) emotional processing, and (3)
attentional processing of emotional stimuli to decipher these in
the interplay between these processes. Here, mood is defined as
the emotional state. Emotional processing refers to processing
the emotional content of stimuli (e.g., identification of facial
expressions, perception of valence, and retrieval of emotional
information). Attentional processing of emotional information
refers to the attentional processes selecting and prioritizing
relevant emotional stimuli.

Can NIBS Applied Over the DLPFC
Modulate Mood in Healthy Individuals?

Studies investigated whether NIBS applied over the DLPFC can
modulate mood in healthy individuals (Table 1A). Pascual-Leone
et al. (1996) reported that subjects rated higher anxiety and
sadness levels and lower happiness level, as assessed with a
5-item visual analog scale (VAS), after receiving 10Hz rTMS
over the left DLPFC. Similarly, George et al. (1996) found that
subjects rated lower happiness level after 5Hz rTMS over the
left DLPFC and lower sadness level after rTMS over the right
DLPFC.Mood was assessed with amodified version of the NIMH
mood scale. Schaller et al. (2011) found elevated mood after
delivering nine sessions of 25Hz rTMS over the left DLPFCwhen
measured with the Beck Depression Inventory (BDI), but not
with a 6-item VAS. Contrarily to these studies, others reported
no significant mood change with high-frequency rTMS over the
DLPFC. Mood assessed with 5-item VAS was not modulated
with 20Hz over the left DLPFC (Mosimann et al., 2000) or
10Hz rTMS over the left or right DLPFC (De Raedt et al.,
2010). Similarly, mood was not changed with 10Hz over the
left DLPFC as assessed with VAS and the Profile of Mood Scale
(POMS) (Baeken et al., 2006) or 10Hz over the right DLPFC
as tested with the POMS (Baeken et al., 2010; Vanderhasselt
et al., 2011), VAS or the Positive and Negative Affect Schedule
(PANAS) (Baeken et al., 2008). Padberg et al. (2001) reported
that 10Hz rTMS over the left or right DLPFC had no impact on

mood assessed by an 8-item VAS, however when targeting the
left DLPFC subjects displayed increased frequency and shorter
reaction times of laughing reactions when presented with funny
stimuli. Hoy et al. (2010) combined 5Hz rTMS over the left
DLPFC with exposition of positive stimuli to modulate mood.
This combination or either method alone (rTMS or exposition)
had no impact on mood assessed by a 5-item VAS and an
affective go-no-go task. Some studies used low-frequency rTMS
to investigate mood. Mood was not influenced with 1Hz over
the left or right DLPFC as assessed with a 4-item VAS (Grisaru
et al., 2001) or 0.6Hz rTMS over the left or right DLPFC as
tested with the POMS (d’Alfonso et al., 2000). Anxiety measured
by the State-Trait Anxiety Inventory was reduced after subjects
received 1Hz rTMS over the right DLPFC (Schutter et al.,
2001).

In regards to tDCS, anodal tDCS over the left dlPFC and
cathodal over the right deltoid muscle suppressed upset induced
by the Paced Auditory Serial Addition Task (Plewnia et al.,
2015). There seems to be no other studies reporting significant
changes in mood when targeting the DLPFC of healthy subjects.
This has been tested with anodal over the left and cathodal
over the right DLPFC or the reverse electrode montage (Plazier
et al., 2012; Morgan et al., 2014), anodal over the left DLPFC
and cathodal over the right supraorbital region or the reverse
montage (Nitsche et al., 2012), anodal over the left DLPFC and
cathodal over the primary motor cortex (M1) or the reverse
electrode montage (Peña-Gómez et al., 2011), and anodal over
the left DLPFC and cathodal over the right supraorbital region
delivering four sessions (Motohashi et al., 2013).

In sum, most studies reported that NIBS does not significantly
influence mood in healthy subjects. Those reporting positive
findings indicated a hemispheric lateralization: targeting the
left DLPFC induced both negative and positive mood, whereas
targeting the right DLPFC elevated mood.

Can NIBS Applied Over the DLPFC
Modulate Emotional Processing in Healthy
Individuals?

Studies applied NIBS over the DLPFC of healthy individuals
to investigate emotional processing, especially perception of
valence, identification of facial expressions, and retrieval of
emotional information (Table 1B). In regards to perception of
valence, Peña-Gómez et al. (2011) found that negative stimuli
were perceived as less negative after anodal tDCS over the
left DLPFC and cathodal over the right M1. Furthermore, this
effect was stronger in subjects with higher subclinical scores of
introversion.

For identification of facial expressions, Nitsche et al. (2012)
reported that subjects were faster at identifying faces expressing
positive and negative emotions during anodal or cathodal tDCS
over the left DLPFC, with greater effect during anodal tDCS
and positive stimuli. Conson et al. (2015) found that healthy
men, but not women, were faster at recognizing fearful faces
after receiving anodal and cathodal tDCS over the right and left
DLPFC, respectively.
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TABLE 1 | Summaries of the studies investigating the effects of non-invasive brain stimulation applied over the dorsolateral prefrontal cortex on mood,

emotional processing, and attentional processing of emotional information in healthy individuals.

References Study design N (Males) Mean age

in years

Site of

stimulation*

NIBS parameters** Experimental outcomes

(Time of assessment)

Main results

(A) EFFECTS OF NIBS ON MOOD

rTMS studies

Schaller et al.,

2011

Parallel

Sham controlled

9 rTMS sessions

44 (44) Range:

19–33

L DLPFC

(5 cm anterior

to M1)

25Hz

15 trains of 2 s

8 s ITI

750 pulses

Increasing MT across

sessions (from 100 to

136.9%)

1. BDI

2. 6-item mood VAS:

happy/unhappy, cheerful/sad,

energetic/lack of energy,

lively/gloomy,

even-tempered/restless,

serious/smiling

(day 0, day 5, day 9)

Active vs. sham rTMS:

1. BDI: Reduced sum scores

and scores on "libido",

"fatigability" and "weight

loss" at day 5 and 9

2. Mood VAS: No effect

Baeken et al.,

2010

Parallel

No sham

10 (0) N/A L DLPFC

(MRI BN)

10Hz

40 trains of 3.9 s

26.1 s ITI

1560 pulses

100% MT

1. POMS-32 (t0, t1) Before vs. after active L

DLPFC rTMS:

1. POMS-32: No effect

Before vs. after active R

DLPFC rTMS:

1. POMS-32: No effect

10 (0) N/A R DLPFC

(MRI BN)

Hoy et al.,

2010

Crossover

Sham controlled

rTMS combined

with exposure to

positive or

neutral pictures

10 (4) 31.2 L DLPFC

(10/20 EEG)

5Hz

30 trains of 10 s

20 s ITI

1500 pulses

120% MT

1. AGN task with happy and

sad words

2. 5-item mood VAS:

sadness, happiness,

tiredness, anxiety,

pain-discomfort

3. Valence and arousal ratings

on IAPS pictures (t0, t1)

Active vs. sham rTMS:

1. AGN task: No effect

2. Mood VAS: No effect

3. Valence and arousal

ratings: No effect

Baeken et al.,

2008

Crossover

Sham controlled

27 (0) 25.2 R DLPFC

(MRI BN)

10Hz

40 trains of 4.9 s

26.1 s ITI

1560 pulses

110% MT

1. 5-item mood VAS:

sadness, tension, vigor, anger,

tiredness

2. POMS-32 (t0, t1, t30)

Active R DLPFC vs. sham

rTMS:

1. Mood VAS: No effect

2. POMS-32: No effect

Crossover

Sham controlled

20 (0) 25.6 L DLPFC

(MRI BN)

10Hz

40 trains of 4.9 s

26.1 s ITI

1560 pulses

110% MT

1. 5-item mood VAS:

sadness, tension, vigor, anger,

tiredness

2. POMS-32 (t0, t1, t30)

Active L DLPFC vs. sham

rTMS:

1. Mood VAS: No effect

2. POMS-32: No effect

Baeken et al.,

2006

Crossover

Sham controlled

28 (0) 28.7 L DLPFC

(MRI BN)

10Hz

40 trains of 3.9 s

26.1 s ITI

1560 pulses

110% MT

1. 5-item mood VAS:

sadness, tension, vigor, anger,

tiredness

2. POMS-32

(t0, t1, t30)

Active vs. sham rTMS:

1. Mood VAS: No effect

2. POMS-32: No effect

Grisaru et al.,

2001

Crossover

Sham controlled

18 (7) 40.5 L DLPFC

R DLPFC

(5 cm anterior

to M1 or M2)

1Hz

1 single train

500 pulses

110% MT

1. 4-item mood VAS:

irritability, anxiety, depression,

happiness

(t0, t5, t10, t30, t240)

Active (either L or R DLPFC)

vs. sham rTMS:

1. Mood VAS: No effect

Padberg

et al., 2001

Crossover

No sham

9 (5) 29.8 L DLPFC

R DLPFC

(5 cm anterior

to M1 or M2)

10Hz

10 trains of 5 s

30 s ITI

500 pulses

110% MT

1. 8-item mood VAS: mood,

emotion, general state,

anxiety, activity, physical

condition, self-perception (t0,

t1, t15)

2. Facial expressions

recording with ultrasonic

signal emitted by mouth and

eyes muscles during a funny

movie (t0, t1)

Active rTMS, L vs. R DLPFC:

1. Mood VAS: No effect

2. Facial expressions:

Increased frequencies of

laughing and shorter RT of

laughing movements

(Continued)
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TABLE 1 | Continued

References Study design N (Males) Mean age

in years

Site of

stimulation*

NIBS parameters** Experimental outcomes

(Time of assessment)

Main results

Schutter

et al., 2001

Crossover

Sham controlled

12 (8) 28.4 R DLPFC

(10/20 EEG)

1Hz

1 single train

1200 pulses

130% MT

1. STAI

2. STAS

(t0, t1, t35, t65)

Active vs. sham rTMS:

1. STAI: Reduced anxiety

2. STAS: No effect

Mosimann

et al., 2000

Crossover

Sham controlled

25 (25) 22.4 L PFC

(5 cm anterior,

2 cm lateral to

M1)

20Hz

40 trains of 2 s

30 s ITI

1600 pulses

100% MT

1. 5-item mood VAS:

tiredness, happiness,

sadness, pain, anxiety (t0, t20)

Active vs. sham rTMS:

1. Mood VAS: No effect

George et al.,

1996

Crossover

No sham

10 (6) 35 L DLPFC

R DLPFC

(5 cm anterior

to M1 or M2)

5Hz

10 trains of 10 s

1 s ITI

500 pulses

120% MT

1. NIMH mood scale

2. Forced-choice mood VAS

3. PANAS

(t0, t30, t60, t90, t180, t480,

t1440)

Active rTMS, L vs. R DLPFC:

1. NIMH mood scale:

Reduced happiness and

increased sadness

2. Forced-choice

mood-VAS: No effect

3. PANAS: No effect

Active rTMS, R vs. L DLPFC:

1. NIMH mood scale:

Reduced sadness and

increased happiness

2. Forced-choice

mood-VAS: No effect

3. PANAS: No effect

Pascual-

Leone et al.,

1996

Crossover

No sham

10 (4) Range:

22–27

L DLPFC

R DLPFC

(5 cm anterior

to M1 or M2)

Mid PFC

10Hz

10 trains of 10 s

25 s ITI

500 pulses

110% MT

1. 5-item mood VAS: pain

discomfort, sadness,

happiness, anxiety, tiredness

(t0, t1)

Active rTMS, L vs. R DLPFC:

1. Mood VAS: Decreased

happiness and increased

sadness

Active rTMS, L vs. Mid PFC:

1. Mood VAS: Increased

pain/discomfort, anxiety and

sadness

Active rTMS, R vs. L DLPFC:

1. Mood VAS: Increased

happiness

tDCS studies

Plewnia et al.,

2015

Parallel

Sham controlled

28 (28) 27.9 L DLPFC/R

deltoid

(10/20 EEG)

1mA

20min

35 cm2

1. PANAS

2. PASAT

1. PANAS: No effect on

positive affect. Increase in

“upset” item after sham vs.

active tDCS

2. PASAT: Shorter

inter-stimulus interval after

anodal vs. sham tDCS

Slower inter-stimulus interval

were correlated to increased

upset

Morgan et al.,

2014

Crossover

No sham

18 (9) 23.2 L DLPFC/R

DLPFC

R DLPFC/L

DLPFC

(10/20 EEG)

1mA

12min

9 cm2

1. PANAS

2. Motivational state

questionnaire

3. Memory task with IAPS

pictures (t0, t1)

Active tDCS, L DLPFC/R

DLPFC vs. R DLPFC/L

DLPFC:

1. PANAS: No effect

2. Motivational state

questionnaire: No effect

3. Memory task: No effect

Motohashi

et al., 2013

Crossover

Sham controlled

4 tDCS sessions

12 (12) 22 L DLPFC/

supraorbital

region

(10/20 EEG)

1mA

20min

35 cm2

1. POMS-30

(day 0, day 4)

Active vs. sham tDCS:

1. POMS-30: No effect

(Continued)
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TABLE 1 | Continued

References Study design N (Males) Mean age

in years

Site of

stimulation*

NIBS parameters** Experimental outcomes

(Time of assessment)

Main results

Plazier et al.,

2012

Crossover

Sham controlled

17 (17) 21.5 R DLPFC/L

DLPFC

L DLPFC/R

DLPFC

O2/O1

O1/O2

(10/20 EEG)

1.5mA

20min

35 cm2

1. SUDS

2. POMS-32

3. PANAS

4. BISBAS

(t0, t1)

Active (either four conditions)

vs. sham tDCS:

1. SUDS: No effect

2. POMS-32: No effect

3. PANAS: No effect

4. BISBAS: No effect

(B) EFFECTS OF NIBS ON EMOTIONAL PROCESSING

rTMS studies

Balconi and

Cobelli, 2015

Crossover

Sham controlled

69 (31) 28.1 L DLPFC

Pz

(10/20 EEG)

5Hz

90 trains of 1 s

5 s ITI

450 pulses

100% MT

1. Memory task with positive

and negative words and

pictures with high and low

arousal (t0.5)

2. Valence and arousal

questionnaire with words and

pictures (t1)

Active rTMS, L DLPFC vs.

Pz and sham:

1. Memory task: Increased

accuracy and reduced RT

for positive high arousal

words and pictures

2. Valence and arousal

questionnaire: No effect

Balconi and

Ferrari, 2013

Crossover

Sham controlled

27 (12) Range:

21–36

L DLPFC

Cz

(10/20 EEG)

5Hz

180 trains of 1 s

5 s ITI

900 pulses

100% MT

1. Memory task with positive

and negative words among

semantically related or

unrelated distractors (t0.5)

Active rTMS, L DLPFC vs.

Cz and sham:

1. Memory task: Reduced

RT for positive targets and

positive (related and

unrelated) distractors in

subjects with high and low

anxiety level

Balconi and

Ferrari, 2012b

Crossover

Sham controlled

30 (13) Range:

21–31

L DLPFC

Cz

(10/20 EEG)

5Hz

90 trains of 1 s

5 s ITI

450 pulses

100% MT

1. Memory task with positive

and negative words (t0.5)

Active rTMS, L DLPFC vs.

Cz and sham:

1. Memory task: increased

accuracy for positive vs.

negative words in subjects

with high and low anxiety

level. Reduced RT for

positive vs. negative words

in subjects with high anxiety

level

Balconi and

Ferrari, 2012a

Crossover

Sham controlled

27 Range:

21–37

L DLPFC

Cz

(10/20 EEG)

5Hz

90 trains of 1 s

5 s ITI

450 pulses

100% MT

1. Memory task with positive

and negative words among

semantically related or

unrelated distractors (t0.5)

Active rTMS, L DLPFC vs.

Cz and sham:

1. Memory task: Reduced

RT for positive vs. negative

words and related vs.

unrelated positive distractors

tDCS studies

Conson et al.,

2015

Crossover

Sham controlled

16 (8) Range:

22–30

L DLPFC/R

DLPFC

R DLPFC/L

DLPFC

(10/20 EEG)

1mA

15min

35 cm2

1. Recognition of facial

expressions task

Active tDCS, R DLPFC/L

DLPFC vs. L DLPFC/R

DLPFC and sham:

1. Recognition of facial

expressions task: Reduced

RT for fearful faces in male

but not female subjects

Nitsche et al.,

2012

Crossover

Sham controlled

14 (9) 33.3 L DLPFC/

supraorbital

region

Supraorbital

region/L

DLPFC

(10/20 EEG)

1mA

20min

35 cm2

1. 14-item mood VAS

(t0, t15, t30, t45, t60, t120,

t180, t240, t300, following

morning)

Active tDCS, L

DLPFC/supraorbital region

vs. supraorbital region/L

DLPFC and sham:

1. Mood VAS: No effect

(Continued)

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 October 2015 | Volume 9 | Article 399

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Mondino et al. NIBS effects on mood and emotion

TABLE 1 | Continued

References Study design N (Males) Mean age

in years

Site of

stimulation*

NIBS parameters** Experimental outcomes

(Time of assessment)

Main results

Crossover

Sham controlled

17 (9) 24.9 L DLPFC/

supraorbital

region

Supraorbital

region/L

DLPFC

(10/20 EEG)

1mA

10min

35 cm2

1. Recognition of facial

expressions task (t0, t0.5, t5,

t10, t20, t30, t60)

Active L DLPFC/supraorbital

region vs. supraorbital

region/L DLPFC:

1. Recognition of facial

expression task: Reduced

RT for positive (t0.5–t10) and

negative faces (t0.5)

Active supraorbital region/L

DLPFC vs. sham tDCS:

1. Recognition of facial

expression task: Reduced

RT for negative faces

(t10–t20)

Peña-Gómez

et al., 2011

Crossover

Sham controlled

16 (0) 22.9 L DLPFC/M2

(10/20 EEG)

1mA

20min

35 cm2

1. Valence rating task with

IAPS stimuli (t0.5)

2. Mood 5-item VAS:

annoyance, contentment,

hope, nervousness, sadness

3. PANAS

4. STAI-state

(t0, t1)

Active vs. sham tDCS:

1. Valence rating task:

Negative pictures were rated

as less negative

Change in valence rating

negatively correlated to

extraversion score

2. Mood VAS: No effect

3. PANAS: No effect

4. STAI-state: No effect

Crossover

Sham controlled

9 (0) 25.8 M2/L DLPFC

(10/20 EEG)

1mA

20min

35 cm2

1. Valence rating task with

IAPS stimuli (t0.5)

Active vs. sham tDCS:

1. Valence rating task: No

effect

(C) EFFECTS OF NIBS ON ATTENTIONAL PROCESSING OF EMOTIONAL INFORMATION

rTMS studies

Vanderhasselt

et al., 2011

Crossover

Sham controlled

28 (0) 22.3 R DLPFC

(MNI BN)

10Hz

40 trains of 3.9 s

26.1 s ITI

1560 pulses

110% MT

1. Exogenous cueing task

with neutral and angry faces

(t0, t1)

2. POMS-32 (t0, t1, t30)

Active vs. sham rTMS:

1. Exogenous cueing task:

Increased AB for angry faces

2. POMS-32: No effect

De Raedt

et al., 2010

Crossover

(n = 18) and

parallel (n = 19)

sham controlled

37 (0) 22.6 L DLPFC

R DLPFC

(MNI BN)

10Hz

40 trains of 3.9 s

26.1 s ITI

1560 pulses

110% MT

1. Exogenous cueing task

with neutral and angry faces

during an fMRI scanning (t0,

t30)

2. Mood 5-item VAS:

sadness, tension, vigor,

fatigue, anger (t0, t1, t40)

Active R DLPFC vs. sham

rTMS:

1. Exogenous cueing task

and fMRI: Larger

disengagement score for

angry faces associated with

decreased activation in R

DLPFC, dorsal ACC, and L

SPG

2. Mood VAS: No effect

Active L DLPFC vs. sham

rTMS:

1. Lower engagement score

for angry faces associated

with increased activation in

the L OFC, R DLPFC,

dorsal/pregenual ACC, R

SPG

2. Mood VAS: No effect

Leyman et al.,

2009

Crossover

Sham controlled

18 (0) 21.1 R DLPFC 10Hz

40 trains of 3.9 s

26.1 s ITI

1560 pulses

110% MT

1. NAP task with happy, sad

and neutral faces (t0, t1)

2. Mood 5-item VAS:

sadness, tension, vigor,

fatigue, anger (t0, t1, t40)

Active R DLPFC vs. sham

rTMS:

1. NAP task: Decreased

scores for negative faces

2. Mood VAS: No effect

(Continued)

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 October 2015 | Volume 9 | Article 399

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Mondino et al. NIBS effects on mood and emotion

TABLE 1 | Continued

References Study design N (Males) Mean age

in years

Site of

stimulation*

NIBS parameters** Experimental outcomes

(Time of assessment)

Main results

Crossover

Sham controlled

22 (0) 24 L DLPFC

(MNI BN)

10Hz

40 trains of 3.9 s

26.1 s ITI

1560 pulses

110% MT

1. NAP task with happy, sad

and neutral faces (t0, t1)

2. Mood 5-item VAS:

sadness, tension, vigor,

fatigue, anger (t0, t1, t40)

Active L DLPFC vs. sham

rTMS:

1. NAP task: No effect

2. Mood VAS: No effect

Van Honk

et al., 2002b

Crossover

Sham controlled

8 (4) Range:

20–26

R DLPFC

(10/20 EEG)

1Hz

1 single train

1200 pulses

130% MT

1. Emotional Stroop task with

masked and unmasked

neutral and fearful faces (t30)

Active vs. sham rTMS:

1. Emotional Stroop task:

Decreased attention for

unmasked fearful faces

van Honk

et al., 2002a

Crossover with

no sham

10 (0) Range:

18–30

L DLPFC

R DLPFC

(5 cm anterior

to M1 or M2)

0.6Hz

1 single train

540 pulses

130% MT

1. Emotional Stroop task with

neutral and angry faces (t1)

2. PEP (t0, t1)

Active rTMS, R vs. L DLPFC:

1. Emotional Stroop task:

Increased attention for angry

faces

2. PEP: Reduced PEP

Correlation between

increased attention and

reduced PEP

d’Alfonso

et al., 2000

Crossover

No sham

10 (0) Range:

18–30

L DLPFC

R DLPFC

(5 cm anterior

to M1 or M2)

0.6Hz

1 single train

540 pulses

130% MT

1. Emotional Stroop task with

neutral and angry faces (t10)

2. POMS-32 (t0, t1)

Active rTMS, L vs. R DLPFC:

1. Emotional Stroop task:

Decreased attention for

angry faces

2. POMS-32: No effect

Active rTMS, R vs. L DLPFC

1. Emotional Stroop task:

Increased attention for angry

faces

2. POMS-32: No effect

tDCS studies

Wolkenstein

et al., 2014

Crossover

Sham controlled

28 (8) 30.9 R deltoid/L

DLPFC

(10/20 EEG)

1mA

20min

35 cm2

1. DWM (t0.5)

2. AIT with positive, neutral

and negative pictures (t1)

3. PANAS (t0, t1)

Active vs. sham tDCS:

1. DWM: Reduced accuracy

for negative vs. neutral and

positive pictures

2. AIT: Longer RT for

negative vs. neutral and

positive pictures

3. PANAS: No effect

Clarke et al.,

2014

Parallel

Sham controlled

“Attend threat”

ABM + active

tDCS

“Avoid threat”

ABM + active

tDCS

17 (7)

20 (6)

19.6

19.6

L DLPFC/L

superior

trapezius

(10/20 EEG)

1mA

mean 17min

24 cm2

1. AB assessment task with

neutral and threatening words

(t0, t1)

“Attend threat” ABM

combined with active tDCS

vs. “attend threat” ABM

combined with sham tDCS:

1. AB assessment task:

Increased AB to threat

“Avoid threat” ABM

combined with active tDCS

vs. “Avoid threat” combined

with sham tDCS:

1. AB assessment task:

Decreased AB to threat

(Continued)
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TABLE 1 | Continued

References Study design N (Males) Mean age

in years

Site of

stimulation*

NIBS parameters** Experimental outcomes

(Time of assessment)

Main results

“Attend threat”

ABM + sham

tDCS

22 (7) 20.6

“Avoid threat”

ABM + sham

tDCS

18 (8) 19.9

Feeser et al.,

2014

Parallel

sham controlled

tDCS applied

during emotional

regulation (4

conditions:

maintain neutral

emotions,

downregulate,

upregulate, or

maintain

negative

emotions)

42 (20) 28.5 R DLFPC/L

supraorbital

region

(10/20 EEG)

1.5mA

20min

Anodal: 35 cm2

Cathodal: 100 cm2

1. Arousal ratings on IAPS

pictures (t0.5)

2. Skin conductance

response (t0.5)

3. Gaze fixation (t0.5)

4. Multidimensional State

Questionnaire (t0, t1)

Active vs. Sham tDCS:

1. Arousal ratings: Lower in

the downregulation

conditions. Higher and in the

negative maintain in the

upregulation condition

2. Skin conductance: Lower

response in the

downregulation condition.

Higher response in the

upregulation condition

3. Gaze fixation: No effect

4. Multidimensional State

Questionnaire: No effect

*Site of stimulation is provided as follows, for rTMS: coil position, for tDCS: anode/cathode position. The method used to define the target is provided as follows, (10/20 EEG), Electrode

placements according to 10/20 EEG system; (MRI BN), Magnetic Resonance Imaging based neuronavigation. **NIBS parameters are provided as follows, for rTMS: frequency, trains

number and duration, ITI, number of pulses, intensity, for tDCS: intensity, duration, electrode size. AB, Attentional bias; ABM, Attentional bias modification task; ACC, Anterior cingulate

cortex; AGN, Affective go-no-go; AIT, Arithmetic inhibition task; BDI, Beck depression inventory; BISBAS, Behavioral inhibition system and behavioral approach system; Cz, Central

midline; DLPFC, Dorsolateral prefrontal cortex; DWM, Delayed response working memory task; IAPS, International affective picture system; ITI, Intertrain interval; L, Left; M1, Left primary

motor cortex; M2, Right primary motor cortex; MT, Motor threshold; N, number of subjects; NAP, Negative affective priming; NIBS, Non-invasive brain stimulation; NIMH, National institute

of mental health; OFC, Orbitofrontal cortex; O1, Left occipital cortex; O2, Right occipital cortex; PANAS, Positive affect and negative affect schedule; PASAT, Paced auditory serial addition

task; PEP, Preejection period; POMS, Profile of mood states; Pz, Parietal midline; R, Right; RT, Reaction Time; rTMS, repetitive transcranial magnetic stimulation; SPG, Superior parietal

gyrus; STAI, State-trait anxiety index; STAS, State-trait anger scale; SUDS, Subjective unit of distress schedule; t0, Baseline; t0.5, During stimulation, t1, Immediately after stimulation,

tX, X minutes after stimulation; tDCS, transcranial Direct Current Stimulation; VAS, Visual analog scale.

For retrieval of emotional stimuli, healthy subjects were faster
at recognizing positive stimuli (Balconi and Ferrari, 2012a,b,
2013), especially stimuli of high arousal (Balconi and Cobelli,
2015), after receiving 5Hz rTMS over the left DLPFC. Morgan
et al. (2014) observed no change on retrieval of emotional stimuli
delivering anodal and cathodal tDCS over the left and right
DLPFC, respectively, or with the reverse montage.

Overall, NIBS targeting the DLPFC, especially the left
hemisphere, seems to modulate emotional processing in healthy
individuals, such as perceiving negative stimuli as less negative,
improving identification of positive stimuli, and enhancing
retrieval of positive information.

Can NIBS Applied Over the DLPFC
Modulate Attentional Processing of
Emotional Information in Healthy
Individuals?

Several studies tested the effects of NIBS over the DLPFC
of healthy individuals on attentional processing of emotional
information (Table 1C). Selective attention toward emotional
information has been tested with high- and low-frequency rTMS

over the right and left DLPFC. Attention to angry faces was
increased when targeting the right DLPFC with 10Hz rTMS (De
Raedt et al., 2010; Vanderhasselt et al., 2011) and 0.6Hz rTMS
(d’Alfonso et al., 2000; van Honk et al., 2002a). Interestingly,
increased attentional bias toward angry faces was positively
correlated with subject’s anxiety level (Vanderhasselt et al., 2011)
and elevated sympathetic activity (van Honk et al., 2002a).
Moreover, targeting the right DLPFC with 1Hz rTMS reduced
attention to fearful faces (Van Honk et al., 2002b). Attention to
angry faces was also reduced with 0.6Hz rTMS (d’Alfonso et al.,
2000) and 10Hz rTMS (De Raedt et al., 2010) when targeting the
left DLPFC.

NIBS over the DLPFC has also been used to promote
attentional training. Clarke et al. (2014) tested the effects of tDCS
during two attention bias modification tasks: one task trains
attention to attend threat, whereas the other trains attention to
avoid threat. Subjects receiving tDCS with the anode over the left
DLPFC and the cathode over the left superior trapezius muscle
displayed increased attentional bias to threat when trained to
attend threat, but decreased attentional bias to threat when
trained to avoid threat.

For inhibitory control of emotional information, it has been
shown that targeting the right, but not the left DLPFC with
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10Hz rTMS impaired inhibition of negative stimuli (e.g., reduced
negative affective priming for negative stimuli; Leyman et al.,
2009). tDCS with the cathode over the left DLPFC and the anode
over the right deltoid muscle also impaired inhibitory control for
negative but not positive or neutral stimuli (Wolkenstein et al.,
2014).

tDCS with the anode over the right DLPFC and the cathode
over the left supraorbital region facilitated cognitive reappraisal
by increasing emotional responsiveness (arousal rating of
negative picture and skin conductance response) during negative
emotion upregulation or decreasing emotional responsiveness
during negative emotion downregulation (Feeser et al., 2014).

Overall, NIBS seems to modulate attentional processing of
emotional stimuli, and these effects seem to depend on the
targeted hemisphere. Specifically, selective attention toward
anger increased when targeting the right DLPFC, but decreased
when targeting the left DLPFC. Also, NIBS over either the left
or right DLPFC disrupted inhibitory control when processing
negative but not positive or neutral stimuli.

Discussion

We reviewed here studies investigating the effects of NIBS
applied over the DLPFC on mood, emotional processing and
attentional processing of emotional information in healthy
individuals. Overall, NIBS can selectively modulate processing of
emotional information without significantly influencing mood.
Specifically, NIBS over the left DLPFC resulted in improving
identification of positive facial expressions (Nitsche et al., 2012),
rating negative stimuli as less negative (Peña-Gómez et al., 2011),
and reducing attention toward anger (d’Alfonso et al., 2000; De
Raedt et al., 2010), without influencingmood. NIBS over the right
DLPFC increased attention toward anger without influencing
mood (d’Alfonso et al., 2000; De Raedt et al., 2010; Vanderhasselt
et al., 2011). NIBS applied over either the left or right DLPFC
disrupted inhibitory control when processing negative stimuli
without interfering with mood (Leyman et al., 2009; Wolkenstein
et al., 2014). It remains unclear whether NIBS can significantly
influence mood in healthy individuals as several studies reported
negative findings (d’Alfonso et al., 2000; Mosimann et al., 2000;
Grisaru et al., 2001; Padberg et al., 2001; Baeken et al., 2006, 2008;
De Raedt et al., 2010; Hoy et al., 2010; Peña-Gómez et al., 2011;
Vanderhasselt et al., 2011; Nitsche et al., 2012; Plazier et al., 2012;
Motohashi et al., 2013; Morgan et al., 2014).

We illustrate main findings in Figure 1. We propose that
mood, emotional processing, attentional processing of emotional
information are closely intertwined like wheels in a gear but
that modulation of emotional processing or attention, as it
has been induced with NIBS so far, may be insufficient to
influence mood in healthy individuals. This is consistent with
studies reporting that rTMS over the right DLPFC influenced
processing of neutral stimuli such as intentional set switching
(Vanderhasselt et al., 2006) and attention (Vanderhasselt et al.,
2007) without impacting mood in healthy subjects. Similarly,
one session of NIBS over the DLPFC reduced attentional bias
for negative stimuli (Brunoni et al., 2014) and inhibitory control
impairments independently from mood changes (Vanderhasselt

et al., 2009a,b; Wolkenstein and Plewnia, 2013) in individuals
with major depressive disorder (MDD). This is also in line
with pharmacological work: administering a single dose of
antidepressant medication to healthy subjects increased attention
to positive words without changes in mood (Browning et al.,
2007). Administering 7 days of antidepressant medication to
healthy subjects reduced attention to fearful faces (Murphy et al.,
2009), impaired identification of negative facial expressions and
improved retrieval of positive stimuli (Harmer et al., 2004)
without changes in mood.

Findings reviewed here support the hypothesis of
hemispheric lateralization in processing emotional information.
Neuroimaging studies showed that the left and right DLPFC
are specialized in processing positive and negative emotions,
respectively (Canli et al., 1998). As schematized in Figure 1,
NIBS over the left DLPFC improved processing of positive
stimuli and reduced attentional bias for negative stimuli, whereas
NIBS over the right DLPFC improved identification of negative
stimuli and increased attentional bias for negative stimuli.

In regards to stimulation parameters, it is not clear whether
some are more effective than others to modulate mood,
emotional processing or attentional processing of emotional
stimuli in terms of rTMS frequencies (ranging from 0.6 to 25Hz)
or number of pulses (ranging from 450 to 1800 pulses). Higher
intensity may induce greater effects: among the six studies using
100% of motor threshold (MT), four had positive results (all
improved retrieval of emotional stimuli) and two had negative
findings (no mood change), whereas the five studies using 130%
of MT reported changes in mood and attention. Of note, Schaller
et al. (2011) increased intensity from 100 to 130% of MT,
along with the number of sessions, and reported no correlation
between intensity and mood changes. For tDCS, anodal may
induce greater effects than cathodal on emotional processing
(Peña-Gómez et al., 2011; Nitsche et al., 2012), whereas it is not
clear whether amplitude (ranging from 1 to 1.5mA) or duration
(ranging from 10 to 20min) play an important role on these
processes.

Some methodological considerations should be noted. First,
mood, emotional processing, and attention to emotional
information have been tested with various approaches and
outcomes. For instance, mood has been assessed with self-rated
homemade VAS on limited number of items (ranging from 4 to
14) to standardized questionnaires (POMS, PANAS), including
clinical tools (BDI), whereas emotional processing and attention
have been mainly measured in terms of accuracy (percent of
correct answers) and response time (changes in milliseconds).
These assessments and outcomes may not have the same
sensitivity to capture NIBS-induced changes. As an example,
Schaller et al. (2011) showed an effect on mood when assessed by
the BDI but not by the 6-itemVAS. The VAS (as well as the POMS
and PANAS) require to rate mood on adjectives (e.g., delighted,
timid) with no specific context, whereas the BDI consists of
specific questions using contexts to assess mood. Second, NIBS-
induced changes have beenmeasured by comparing various NIBS
conditions. Some found changes by comparing two active NIBS
conditions (e.g., targeting the right vs. left DLPFC) and others
used sham conditions that are considered as partially active (e.g.,
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FIGURE 1 | Putative effects of NIBS over the left and right DLPFC on mood, emotional processing, and attentional processing of emotional

information in healthy individuals. Wheels represent processes that have been targeted using NIBS. Studies reported that NIBS applied over the left DLPFC

increased identification and retrieval of positive stimuli, decreased perception of negative stimuli, decreased attention to negative stimuli, and cognitive control of

negative stimuli, but no effect was reported on mood. NIBS applied over the right DLPFC increased identification of negative stimuli, increased attention to negative

stimuli and decreased cognitive control of negative stimuli, but no effect was reported on mood.

active rTMS with flipping the coil at a 45 or 90◦ angle away from
the head, Loo et al., 2000). Third, the DLPFC has been located
with several methods. For the rTMS studies, it has been located
as the site that is 5 cm anteriorly from M1, anatomically defined
with the international 10–20 EEG system (F3, F4) or with MRI
and stimulated with a neuronavigation system. For the tDCS
studies, the DLPFC has been located with the international 10–
20 EEG system. Therefore, these methodological considerations
may have contributed to the seemingly inconsistent results of the
studies reviewed here, especially those studying mood in healthy
individuals.

Only five studies out of 23 reported that NIBS over the
DLPFC modulated mood in healthy subjects. This lack of clear
evidence that NIBS can influence mood in healthy individuals
differs from studies in individuals with treatment-resistantMDD.
Applying high-frequency rTMS over the left DLPFC (O’Reardon
et al., 2007), low-frequency over the right DLPFC (Fitzgerald
et al., 2003), anodal and cathodal over the left and right

DLPFC respectively (Brunoni et al., 2013) can reduce depressive
symptoms in MDD. These differences on the effects of NIBS
applied over the DLPFC on mood between healthy individuals
and those with MDD may be explained by several factors. First,
these populations differed in brain activity, especially within
the DLPFC (Martinot et al., 1990), thus NIBS may modulate
brain activity differently according to the studied populations.
Moreover, studies in MDD delivered several NIBS sessions,
whereas most studies in healthy subjects performed single NIBS
sessions, which may be insufficient to induce significant mood
changes. A meta-analysis analyzing the effects of tDCS in
MDD reported a trend for greater mood improvement when
more than 10 sessions were delivered as compared to a lesser
number (Shiozawa et al., 2014). Here, two studies delivered
repeated NIBS sessions in healthy subjects, one reported mood
improvement after nine rTMS sessions (Schaller et al., 2011) and
one found no change after four tDCS sessions (Motohashi et al.,
2013).
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The influence between mood and attention and between
mood and cognitive control were not reported in the reviewed
articles here focusing on healthy individuals. Interestingly, these
findings differ from studies in individuals with MDD, which
have suggested a close relationship between mood, emotional
processing, and attention. It has even been hypothesized that one
mechanism underlying elevated mood in individuals with MDD
is that NIBS improve cognitive control and reduce attentional
bias for negative stimuli (De Raedt et al., 2014).

To further characterize potential non-specific and selective
effects of NIBS over the DLPFC on mood, emotional processing,
and attention of emotional information, future studies should
identify NIBS-induced neural changes linked to the observed
behavioral changes. It is very likely that these effects are not
limited to the DLPFC. For instance, De Raedt et al. (2010)
showed that engagement and disengagement for angry faces
implicated different neural networks. Engagement for angry faces
induced activations in the left orbitofrontal cortex, right DLPFC,
dorsal/pregenual anterior cingulate cortex (ACC), right superior
parietal gyrus (SPG), whereas disengagement for angry faces
elicited activations in the right DLPFC, dorsal ACC, and left
SPG. Reducing depressive symptoms with rTMS in treatment-
resistant MDD also appears to involve a complex neural network.
Fox et al. (2012) proposed that targeted DLPFC sites leading
to better clinical efficacy were negatively correlated with the
subgenual cingulate. It would thus be interesting to investigate
NIBS-induced neural changes that are overlapping or not when
modulating mood, emotional processing and/or attention of
emotional information in healthy individuals.

Another avenue for future investigation is brain state
dependency, which is known to play an important role on the
effects of NIBS (Lang et al., 2004; Silvanto et al., 2008). Only
one study among those reviewed here likely primed the brain

in a specific way. Hoy et al. (2010) presented their subjects with
positive affective stimuli when delivering rTMS over the DLPFC.
Results were however inconclusive as combination of exposition
with rTMS did not modulate mood. Future work might consider
guiding brain state when delivering stimulation. Personality traits
also seem to influence the effects of NIBS over the DLPFC. NIBS
seems to have greater effects in individuals with higher level
of anxiety as compared to those with lower level of anxiety on
retrieval of positive stimuli (Balconi and Ferrari, 2012b) and in
individuals with higher levels of introversion on rating valence of
negative stimuli (Peña-Gómez et al., 2011).

In sum, we cannot conclude whether NIBS over the DLPFC
can selectively modulate one of these processes based on specific
stimulation parameters and whether NIBS modulating a single
process influences the others as only one or two of these processes
have been studied within a same design. More studies measuring
the effects of NIBS on these processes altogether are needed to
test whether one can influence the others, or not. The underlying
neurocognitive concepts of mood, emotional and attentional
processes of emotional information still remain vague. Recent
developments of NIBS, along with neuroimaging technics, should
contribute to decipher these concepts. Our review highlights
the potential for NIBS applied over the DLPFC to modulate
emotional processing and attentional processing of emotional
information in healthy individuals, whereas its effect on mood
remains unclear.
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