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Stress granules (SGs) are RNA-containing cytoplasmic foci formed in response to stress
exposure. Since their discovery in 1999, over 120 proteins have been described to
be localized to these structures (in 154 publications). Most of these components are
RNA binding proteins (RBPs) or are involved in RNA metabolism and translation. SGs
have been linked to several pathologies including inflammatory diseases, cancer, viral
infection, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS)
and frontotemporal dementia (FTD). In ALS and FTD, the majority of cases have no
known etiology and exposure to external stress is frequently proposed as a contributor
to either disease initiation or the rate of disease progression. Of note, both ALS and
FTD are characterized by pathological inclusions, where some well-known SG markers
localize with the ALS related proteins TDP-43 and FUS. We propose that TDP-43
and FUS serve as an interface between genetic susceptibility and environmental stress
exposure in disease pathogenesis. Here, we will discuss the role of TDP-43 and FUS in
SG dynamics and how disease-linked mutations affect this process.

Keywords: TDP-43, FUS, stress granules, microtubules, pathological inclusions, amyotrophic lateral sclerosis,
frontotemporal dementia

STRESS GRANULES: GENERALITIES

Stress granule (SG) formation is a pan-cellular mechanism employed to counter exposures to
osmotic (Goulet et al., 2008; Dewey et al., 2011), oxidative (Kedersha et al., 1999; Stohr et al.,
2006; McDonald et al., 2011), mitochondrial (Stoecklin et al., 2004; Chalupnikova et al., 2008),
or endoplasmic reticulum (ER) stress (Kimball et al., 2003; Goodier et al., 2007), viral infection
(Emara and Brinton, 2007; Raaben et al., 2007), proteasome inhibition (Mazroui et al., 2007;
Colombrita et al.,, 2009; Fournier et al., 2010), inhibition of translation initiation (Dang et al.,
2006; Mazroui et al., 2006), ultraviolet light (Kwon et al., 2007; Pothof et al., 2009), cadmium
chloride (Bravard et al., 2010) as well as certain anti-cancer (Leung et al., 2006b; Mazroui et al.,
2006; Fujimura et al., 2012) and antifungal drugs (Ohn et al, 2008; Bentmann et al., 2012),
(Figure 1A). An analysis of 154 reports published between 1999 and 2014 reveals that the majority
of our knowledge of these cytoplasmic foci derives from studies in HeLa cells (45%) using sodium
arsenite (SA) as a means of oxidative stress (63%) or thermal stress (33%; Figure 1B). It is
noteworthy that not all environmental conditions induce a SG response. Namely, inhibition of
RNA polymerase, exposure to inflammatory cytokines, nutrient depletion, and destabilization
of microtubules and/or actin microfilaments do not induce SG formation in mammalian cells
(Kedersha et al., 1999).
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FIGURE 1 | Cell lines and stress inducing agents used in stress
granule studies. Analysis of 154 articles published between 1999 and 2014.
Some publications used many cells type and/or many stresses. (A) Stresses
involved in stress granule (SG) studies. (B) Cell lines used in SG studies.

Stress granules were first defined as cytoplasmic foci
containing polyadenylated RNA, small ribosomal sub-units,
translation initiation factors (eIF3, eIF4E, eIF4G), and RNA
binding proteins (RBPs) such as TIA-1, HuR, PABP, and TTP
that formed following eIF2a phosphorylation. Furthermore, SGs
formed from numerous small inclusions that fused over time
and dissolved once the stress abated, and were inhibited by
cycloheximide treatment (Kedersha et al., 1999). This definition
still applies today, but the number and variety of proteins
reported as recruited to SGs has exploded.

Stress granules are distinct from other RNA granule inclusions
called Processing Bodies (PBs), even though they share
some common protein components under certain conditions
(Kedersha et al., 2005; Dang et al., 2006; Leung et al., 2006a;
Wasserman et al., 2010). PBs do not contain initiation elongation
factors, with the exception of some elF4 subunits (Kedersha
et al., 2005; Teixeira et al., 2005). PBs contain proteins involved
in translational repression and mRNA degradation (Parker and
Sheth, 2007; Kulkarni et al,, 2010) and are present in basal
conditions but can also be induced by some stress exposures
(Sheth and Parker, 2003; Kedersha et al., 2005). For example, SA
induces both structures while heat shock or clotrimazole induce
only SGs (Kedersha et al., 2005). PB formation is dependent on
available mRNA in the cytoplasm (Kedersha et al., 2005; Teixeira

et al., 2005; Parker and Sheth, 2007), and is independent of eIF2a
phosphorylation (Kedersha et al., 2005). SGs and PBs can also
interact in a process referred to as “docking” (Kedersha et al.,
2005; Parker and Sheth, 2007; Aulas et al., 2015). How SGs and
PBs function together in the stress response is expected to be at
the center of future important discoveries.

Protein Composition of Stress Granules
Stress granules are extremely labile inclusions, non-limited by
membranes (Nover et al., 1989; Kedersha et al., 2000, 2005;
Kedersha and Anderson, 2002; Bosco et al., 2010). Many of
the RBPs found in SGs contain low complexity domains which
are prone to aggregation. These multimeric protein assemblies
are neither soluble nor insoluble but proposed to be in an
intermediate labile state referred to as a “hydrogel”. This unique
feature permits SGs to be highly dynamic and in constant
exchange with cytoplasmic components (Han et al., 2012; Kato
et al,, 2012). It is for this reason that there is no published
biochemical method to purify SGs so that their composition and
function may be more deeply interrogated. In our analysis of
SG-related publications (1999-2014), the majority of the proteins
described as localized to SGs belong to the large family of RBPs
(60%). A similar proportion are implicated in RNA metabolism
including transcription (12%), splicing (8%), RNA transport
(7%), degradation (4%), silencing (2%), mRNA stabilization
(3%), and translation (12%). There are also helicases (4%) and
small ribosomal proteins (5%). Of the remaining 40% of SG-
recruited proteins not involved in RNA metabolism, 11% have
a role in post-translational modification, 9% participate in cell
organization/protein transport, 4% in nuclear import, 3% are
(co)-chaperones, and 13% are sufficiently diverse to be classified
as other (Figure 2; Supplementary Table S1). These descriptors
have led to the proposal that SGs might also serve to integrate
complex cellular signaling (Kedersha et al., 2013).

Stress granules contain translation initiation factors eIF3, eIF4,
elF5 (Elongation Initiation Factor 3-5; Kedersha et al.,, 2002;
Li et al, 2010), small ribosomal subunits (S3, S6, S18, S19;
Kedersha et al., 2002; Kimball et al., 2003; Farny et al., 2009), and
numerous RBPs. Among the latter group, TIA-1 (T-cell-restricted
intracellular antigen-1) and G3BP1 (Ras GAP SH3 domain-
binding protein 1) are the two most commonly studied and
utilized SG markers (Kedersha et al., 1999; Tourriere et al., 2003;
Gilks et al., 2004). The overexpression of either of these proteins is
sufficient to drive the formation of cytoplasmic inclusions, often
referred to as “spontaneous” or “constitutive” SGs (Tourriere
et al., 2003; Gilks et al., 2004; Reineke et al., 2012). Both TIA-1
and G3BP1 feature a glycine-rich domain, also known as a prion-
like, low complexity or intrinsically disordered domain, which
facilitates the first step of SG formation (Kedersha and Anderson,
2002; Tourriere et al., 2003; Gilks et al., 2004). Historically, TTIA-1
was the most frequently studied marker of SGs, but has now been
surpassed by G3BP1 in the literature.

G3BP1 was first described as a nuclear mRNA binding
protein preferentially expressed in the brain (Parker et al., 1996;
Martin et al, 2013). It is implicated in mRNA degradation
via its endoribonuclease activity induced by its phosphorylation
at Ser'® (Gallouzi et al., 1998; Tourriere et al, 2001).
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FIGURE 2 | Stress granule composition. Analysis of 154 publications between 1999 and 2014. (A) Cellular metabolism functions of proteins recruited to SGs.
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Coincidentally, Ser'® phosphorylation inhibits SG formation
(Tourriere et al., 2003). That G3BP1 is central to SG dynamics
is supported by the observation that G3BP1 function is often
circumvented during viral infections. Most strikingly, during
poliovirus infection, G3BP1 is cleaved by the viral protease 3C.
Consequently, infected cells exposed to heat shock have disrupted
SG dynamics such that SG size is diminished compared to
non-infected heat-shocked cells (White et al., 2007; Piotrowska
et al, 2010). In primary embryonic fibroblasts derived from
these G3BP1™/~ mice, when SGs are able to form, they are less
numerous, smaller and less well-defined (Jedrusik-Bode et al.,
2013). It is noteworthy to mention that G3BP1 is a neuronal
survival factor since G3BP1-null mice die in the neonatal phase
owing to wide-spread neuronal cell death within the central
nervous system within 15 min of being ex utero (Zekri et al.,
2005). A second G3BP1-null model was created that generates
viable pups but demonstrates clearly that G3BP1 is critical
for synaptic plasticity and calcium homeostasis, establishing a
link between SGs and neurodegeneration (Martin et al., 2013).
Taken together, these data indicate that G3BP1 is an essential

component regulating SG dynamics and is relevant to neurons.
G3BP2, a close homolog of G3BP1, is also recruited to SGs and
has been suggested to partially compensate for the loss of G3BP1
(Kobayashi et al., 2012; Matsuki et al., 2013). However, it has
been recently demonstrated that while G3BP1 is necessary for
SG secondary aggregation and SG function, G3BP2 is dispensable
for these aspects, although simultaneous down-regulation of both
abrogates SG formation (Aulas et al., 2015). Further studies are
needed to clearly define the role of G3BP2 in SGs.

Stress Response in Neurodegenerative

Diseases

Neurodegenerative diseases are often characterized by
pathological inclusions, a subset of which colocalize with
SG markers. For example, TIA-1 co-localizes with neuronal
inclusions formed in response to expression of the first exon
of the Huntingtin gene containing a polyglutamine expansion
(a well described model for Huntington disease; Waelter et al.,
2001). In two different mouse models of Alzheimer’s disease
expressing Tau, three different cytoplasmic inclusions containing
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TIA-1, G3BP1, or TTP (Tristetraprolin, an RBP recruited to
SGs) are observed. The presence and the size of all of those
inclusions correlate with disease severity (Vanderweyde et al,
2012). TIA-1 and TTP colocalize with phosphorylated Tau
inclusions in murine models and in post-mortem patient tissues
primarily at later disease stages. In contrast, G3BP1 inclusions
have weak immunoreactivity for pathological Tau (marked by
PHEF-1 antibody) at any stage. Interestingly, although TDP-43
(TAR DNA binding protein 43) cytoplasmic inclusions were also
observed in animals with moderate to severe pathology, they did
not co-label with TTA-1 or PHF-1 (Vanderweyde et al., 2012).

In contrast, in Amyotrophic Lateral Sclerosis (ALS) and
Frontotemporal Dementia (FID), subsets of TDP-43 containing
cytoplasmic inclusions label for SG markers such as TIA-1, eIF3
and PABP (Polyadenylate-binding protein; Volkening et al., 2009;
Dormann et al., 2010; Liu-Yesucevitz et al.,, 2010; Bentmann
et al,, 2012; McGurk et al., 2014), (Table 1). It has been proposed
that the formation of these pathological inclusions may be due
to misregulation of the SG response. Indeed, one of the most
prevalent hypotheses is that inclusion formation is driven by
the failure of SGs to disassemble. At present, there is no data
nor methodology available to determine if these inclusions are
broadly composed of SG proteins or if SG proteins are themselves
recruited to pre-formed inclusions (Bentmann et al., 2013).

Pathological Inclusions in ALS/FTD

Ubiquitin-positive inclusions are primarily observed in neurons
and sometimes glial cells of ALS and FITD post-mortem tissues
from the central nervous system (Arai et al., 2006; Neumann
et al., 2006; Ling et al, 2013). They typically contain one of
two RBPs known to also harbor disease-causing mutations,
TDP-43 or FUS (Fused in liposarcoma; Colombrita et al., 2009;
Volkening et al., 2009; Dormann et al., 2010; Liu-Yesucevitz
et al,, 2010; Bentmann et al., 2012). TDP-43 is a major resident
of these pathological inclusions being detected in 97% of all
ALS cases and 45% for FTD. In contrast, FUS-immunoreactive
inclusions are found in only 2% of ALS and 9% of FTD cases
(Arai et al., 2006; Neumann et al,, 2006; Ling et al.,, 2013).

The functional significance of these structures remains poorly
defined and several possibilities have arisen. First, inclusions
could be indirectly harmful due to inappropriate sequestration
of critical cellular signaling proteins. Second, the pathological
process or mutations could induce protein misfolding, so as to
affect cell signaling and enhance cell vulnerability. On the other
hand, inclusions could also be considered as neuroprotective
due to sequestration of misfolded protein. Lastly, inclusions
could be inert and have no direct link to or bearing on disease
pathogenesis. Which of these scenarios is correct is still not yet
understood and a major focus of the field (Arai et al.,, 2006;
Neumann et al., 2006; Kabashi et al., 2008; Sreedharan et al., 2008;
Kwiatkowski et al., 2009; Vance et al., 2009; Ling et al., 2013).

From Inclusions to Stress Granules?

The presence of SG markers within TDP-43 positive inclusions
has led to the hypothesis that pathological TDP-43/FUS
containing inclusions originate from SGs that have failed to
disassemble. While TDP-43 and FUS inclusions have been
reported to clearly co-localize with some specific SG markers, it is
not a universal finding for both proteins (Colombrita et al., 2009;
Volkening et al., 2009; Dormann et al., 2010; Liu-Yesucevitz et al.,
2010; Bentmann et al., 2012), (Table 1). In addition, these studies
should perhaps be interpreted with some measure of caution
since some of the SG markers used in these studies, including
TIA-1and HuR, are reported to label other RNA granule subtypes
(such as PBs) in certain contexts (Dang et al., 2006; Leung et al.,
2006b). In our view, the question remains very much open as to
whether inclusions derive from SGs.

A number of proteins linked to ALS are found in SGs
and/or patient inclusions leading to the proposal that mutant
disease proteins may interfere in the normal SG response during
pathogenesis. These include VCP (Valosin-containing protein;
Abramzon et al., 2012; Buchan et al., 2013; Seguin et al., 2014),
SMN (Survival of motor neuron; Hua and Zhou, 2004; Piao
etal, 2011), hnRNP Al and hnRNP A2 (Heterogeneous nuclear
ribonucleoprotein A1 and A2; McDonald et al, 2011; Kim
et al, 2013), TAF15 (TATA-binding protein-associated factor

TABLE 1 | Stress granule markers observed in pathological amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) inclusions.

ALS protein SG markers Processing Bodies Patients Tissue Reference
(PB) markers
Positive Negative
TDP-43 TIA-1, HUR 3 Sporadic ALS Spinal cord Colombrita et al., 2009
TDP-43 TIA-1 Sporadic ALS Volkening et al., 2009
XRN1, not frequent
FUS PABP1, elF4G 1 Familial ALS-FUSR921C Spinal cord Dormann et al., 2010
7 Sporadic FTD-FUS Hippocampus
TDP-43 PABP1, elF4G 2 Sporadic FTD-TDP
TDP-43 elF3, TIA-1 Negative for Dcp1A ALS Spinal cord Liu-Yesucevitz et al., 2010
(not shown) FTD Frontal cortex
TDP-43 PABP1 (66% ALS-TDP Spinal cord Bentmann et al., 2012
of cases)
PABP1 FTD-TDP Hippocampus
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15; Andersson et al., 2008; Couthouis et al., 2011), Angiogenin
(Greenway et al., 2004; Conforti et al., 2008; Emara et al., 2010)
and Profilinl (Wu et al., 2012; Figley et al., 2014). However,
generally the focus is on TDP-43 and FUS (Andersson et al.,
2008; Colombrita et al., 2009; Bosco et al., 2010; Freibaum et al,,
2010; Liu-Yesucevitz et al., 2010; Dewey et al., 2011; McDonald
et al., 2011; Bentmann et al., 2012). TDP-43 and FUS share
many structural similarities (Figure 3) and both are involved
in various aspects of mRNA metabolism including splicing,
nucleocytoplasmic shuttling, transcription, mRNA stability, and
SG dynamics (Lagier-Tourenne et al., 2010). Specifically, they
both have prion-like domains (Cushman et al, 2010; King
et al., 2012; Li et al, 2013), and the combination of a prion-
like domain and a RRM has recently been used to predict
genetic modifiers or causes of several neurodegenerative diseases
(King et al., 2012). Thus, it has been proposed that these two
proteins may participate in a common pathogenic mechanism.
In ALS, exposure to external stress is frequently proposed as
a contributor to either disease initiation or rate of progression
(D’Amico et al., 2013). Given that TDP-43 and FUS are both
recruited to SGs and modulate the SG response (see below),
it is reasonable to propose that they may serve as an interface

between genetic susceptibility and environmental stress exposure
in disease pathogenesis. This thus explains the intensifying
interest around these molecules and their involvement in the SG
response.

LOCALIZATION OF TDP-43 AND FUS TO
STRESS GRANULES

Between 2010 and 2012, five different teams evaluated the
link between TDP-43 and SGs. All used different cell lines,
different stress-inducing agents, and different SG markers. From
this collective work, it is now recognized that TDP-43 is
recruited to SGs following a range of stress stimuli including
ER, osmotic, oxidative, thermal, and mitochondrial stress as
well as proteasome inhibition. While all of these studies used
different markers, there is consensus that TDP-43 is recruited
uniquely to SGs and not PBs (Table 2). Localization of TDP-
43 to SGs is mediated by both its RRM1 domain as well as
its C-terminal glycine-rich/prion-like domain (Colombrita et al.,
2009; Dewey et al,, 2011). These data imply that the binding
of TDP-43 to mRNA via its RRM1 as well as proteins, via the

24
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FIGURE 3 | TDP-43 and FUS protein structures. FUS and TDP-43 have structural similarities with both harboring a Prion-like domain, RNA recognition motif(s),
nuclear localization signal, and nuclear export signal. Details regarding the position of domains were derived from UniProt.

267 278 497 526
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TABLE 2 | TDP-43 localization to SGs.

Cell type Stress SG markers TDP-43 visualization Reference

HEK293T 0.4 M sorbitol, 1 h HuR, hnRNPA1, TIAR Overexpression + Endogenous Dewey et al., 2011

Cortical glia

BE-M17 HEK293 0.5mMMSA, 1 h TIA-1, TIAR, PABP, elF3 Overexpression Liu-Yesucevitz et al., 2010
Hanks balanced salt solution

NSC34 0.5 mM SA, 30 min TIA-1, HUR Overexpression + Endogenous Colombrita et al., 2009
Heat shock, 44°C, 30 min
10 pMMG132, 4 h

SK-N-SH 0.5 mM SA, 30 min TIA-1 Endogenous McDonald et al., 2011

Hela 0.5 mM SA, 30 min

Heat shock, 43°C, 30 min
1 uM thapsigargin, 50 min
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C-terminus, is relevant to its SG localization. Using transient
overexpression of TDP-43, only one team has reported that
exogenous TDP-43 induces the formation of “constitutive SGs”
(Liu-Yesucevitz et al., 2010). These results are reminiscent of
what is observed following high-level overexpression of TIA-1
and G3BP1 and thus may reflect the consequence of supra-
expression of aggregation-prone proteins which feature a prion-
like domain (Kedersha et al., 1999; Tourriere et al., 2003).
Moreover, other groups do not observe these TDP-43 induced
structures (Colombrita et al.,, 2009; Dewey et al., 2011; Walker
et al,, 2013). While this discrepancy remains to be resolved,
whether cytoplasmic aggregates induced by TDP-43, TIA-1, or
G3BP1 overexpression satisfy the consensus definition of SGs also
remains to be determined.

Exogenously expressed mutant FUS is recruited to SGs in
response to oxidative, thermal, mitochondrial and ER stress
(Andersson et al., 2008; Bosco et al., 2010; Bentmann et al.,
2012; Daigle et al., 2013), (Table 3). Interestingly, while GFP-
FUSWT is recruited to less than 10% of TIAR-positive SGs
(Andersson et al., 2008; Bentmann et al., 2012), SG localization
is exacerbated when FUS is mutated (Bosco et al., 2010; Baron
et al., 2013; Lenzi et al.,, 2015). In contrast, endogenous FUS
is reported to robustly localize to SGs only in conditions of
hyperosmolarity (Sama et al., 2013) and does not colocalize with
the PB marker GE-1/HEDLS (Bosco et al., 2010). Localization of
FUS to SGs is independent of its glycine-rich/prion-like domain
but does require its capacity to bind mRNA (Andersson et al.,
2008; Bentmann et al., 2012; Daigle et al., 2013). Mutations in
FUS frequently disrupt the nuclear localization sequence (NLS),
thereby leading to an accumulation of FUS in the cytoplasm
that contributes to its increased recruitment to SGs (Vance
et al, 2013). Intriguingly, mutant FUS localized to SGs will
further recruit wild type FUS protein (Vance et al., 2013). Lastly,
overexpression of FUS (wild type or mutant) itself does not
induce “constitutive SGs” but rather requires a stress stimulus
to trigger SG localization (Bosco et al, 2010; Daigle et al,
2013).

The Role of Endogenous TDP-43 and
FUS in Stress Granule Dynamics

While many teams have analyzed the effect of mutant or wild
type proteins on SG phenotypes using overexpression in a
range of transformed cell lines (Liu-Yesucevitz et al., 2010;
Dewey et al., 2011; Baron et al, 2013; Walker et al., 2013),
there are only a handful that have examined the role of the
endogenous proteins in SG dynamics (Colombrita et al., 2009;
McDonald et al., 2011; Aulas et al., 2012, 2015; Blechingberg
et al., 2012). Importantly, decreasing the expression of either
TDP-43 or FUS does not abolish SG formation (Colombrita et al.,
2009; Liu-Yesucevitz et al., 2010; McDonald et al., 2011; Aulas
et al,, 2012; Blechingberg et al., 2012; Sama et al.,, 2013). In
response to arsenite-induced oxidative stress, TDP-43 depletion
does not influence elF2a phosphorylation (McDonald et al.,
2011). However, SG dynamics are affected at several levels such
that SG assembly is delayed, secondary aggregation is abrogated
and disassembly is accelerated (McDonald et al,, 2011). The
SG proteins G3BP1 and TIA-1 are down and up-regulated,
respectively, in cells depleted of TDP-43 (McDonald et al,
2011). In addition, at early time points, SGs have a diffuse and
more irregular morphology (McDonald et al., 2011). This latter
observation prompted a deeper investigation of how TDP-43
influences the assembly process. Normally, SGs form initially as
multiple small cytoplasmic puncta, which gradually coalesce into
larger and less numerous structures. This process, sometimes
referred to as secondary aggregation, is completely abolished
when TDP-43 levels are reduced (Aulas et al, 2012). The
significance of this two-step assembly of SGs has been enigmatic.
However, it has recently been uncovered that SG coalescence (i.e.
larger SGs) favors interactions with PBs. Indeed, this interaction
seems to be essential to the protection of polyadenylated mRNA
during oxidative stress. Interestingly, cells depleted of G3BP1
have very similar disturbances in SG assembly and disassembly
(Aulas et al., 2015). Furthermore, reintroduction of G3BP1 in
TDP-43 depleted cells fully rescues SG secondary aggregation,

TABLE 3 | FUS localization to SGs.

Cell types Stress conditions SG markers FUS visualization Reference
Hela HT-1080 0.5mMSA, 1h TIA-1 Endogenous and Andersson et al., 2008
overexpressed wild type
protein
Heat shock, 44°C, 1h
SH-SY5Y primary hippocampal Heat shock, 44°C, 1h TIA-1 Overexpression of mutant Bentmann et al., 2012
neurons proteins
0.5 mM SA, 30 min
20 uM clotrimazole, 30 min
HEK293 0.5mMSA 1h TIAR Overexpression of mutant Bosco et al., 2010
and wild type proteins
10 uM thapsigargin, 2 h
Heat shock 42.5°C, 30 min
fish embryos Heat shock 42.5°C, 45 min
Hela 0.4 M sorbitol, 20 min or 1 h G3BP, TIAR Endogenous wild type Sama et al., 2013

protein
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PB docking, and mRNA protection (Aulas et al., 2012, 2015).
Thus, endogenous TDP-43 regulates the primary effector of SG
secondary aggregation and function, G3BP1 (Aulas et al., 2012,
2015). Intriguingly, neuronal-like cells exposed to oxidative stress
demonstrated a greater vulnerability than non-neuronal cells,
an effect which correlates with TDP-43 mediated regulation of
G3BP1 (Aulas et al, 2012). The mechanism by which TDP-43
regulates G3BP1 remains unknown.

In contrast, depletion of FUS does not interfere with SG
assembly (Aulas et al., 2012; Blechingberg et al., 2012; Sama
et al, 2013). SGs form at the same rate in cells depleted
of endogenous FUS compared to cells treated with control
siRNA, and secondary aggregation proceeds normally (Aulas
et al, 2012). Consistent with this, SG-PB docking, mRNA
preservation, and cell survival is undisturbed in FUS-depleted
cells following oxidative stress (Aulas et al., 2012, 2015). The
role for FUS in SG disassembly is unknown. Thus, although
TDP-43 and FUS are considered to be closely related, they
have very divergent endogenous roles in the regulation of SG
dynamics.

Influence of TDP-43 and FUS Mutations

on Stress Granule Dynamics

Whether disease-associated mutations in TDP-43 or FUS result
in a gain or loss of function with respect to the role of these
proteins in SG dynamics remains unresolved. Expression of
ALS-linked mutations in TDP-43 is reported to increase both
the number of SGs per cell and the size of individual SGs
compared to cells transfected with TDP-43WT (Liu-Yesucevitz
et al., 2010; Dewey et al., 2011). Unfortunately, these studies do
not include an analysis of untransfected cells, making it difficult
to determine the impact of TDP-43 overexpression itself on SG
dynamics. Notably, overexpression of TDP-43WT induces cell
death (Liu-Yesucevitz et al., 2010). Interestingly, mutant TDP-
43 expression induces an equivalent amount of cell death in
basal conditions. However, stress exposure exacerbates cell death
uniquely in cells overexpressing mutant forms of TDP-43 (Liu-
Yesucevitz et al.,, 2010). This latter result is reminiscent of that
which is observed in the context of TDP-43 depletion (Aulas et al.,
2012).

For FUS, the story is once again divergent. First, wild type
FUS protein, both endogenous and overexpressed, localizes
to SGs in response to osmotic stress but does not show a
robust localization in response to oxidative, thermal or ER
stress (Andersson et al., 2008; Bosco et al., 2010; Baron et al.,
2013; Sama et al., 2013; Lenzi et al., 2015). However, mutant
FUS expression increases the number of cells forming SGs in
response to oxidative stress (Bosco et al., 2010). Arsenite-induced
SGs in cells expressing the predominantly cytoplasmic mutant
FUSR4*X are larger and modestly more abundant compared
to cells expressing FUSWT. Moreover, SG assembly is delayed
and disassembly is accelerated (Baron et al., 2013; Lenzi et al.,
2015). Even though SGs are larger in FUSR%>X expressing cells,
the dynamic exchange of TIA-1 and G3BP1 between SGs and
the cytoplasm is faster compared to cells expressing FUSWT
(Baron et al, 2013). Thus, in the presence of mutant FUS,
SG protein interactions are more labile and likely explain the

observed defects in assembly and disassembly (Baron et al,
2013).

Microtubule-based Transport in SG
Dynamics: Links to ALS?

Microtubule-based transport defects are observed in several
ALS models (Swarup et al, 2011; Gal et al, 2013) and
thus are suggested to be relevant to ALS pathogenesis.
Microtubule-directed movements are implicated in SG formation
with depletion of proteins involved in microtubule-mediated
transport affecting both SGs and PBs (Aizer and Shav-Tal, 2008;
Aizer et al,, 2008; Ohn et al., 2008; Loschi et al., 2009; Bartoli
et al.,, 2011). In addition, microtubule destabilization leads not
only to defective secondary aggregation of SGs and accelerated
disassembly (Nadezhdina et al., 2010; Ivanov et al., 2011), but
also increased PB formation (Bashkirov et al., 1997; Sweet
et al., 2007; Aizer and Shav-Tal, 2008; Aizer et al., 2008). These
same phenotypes are observed in cells depleted of TDP-43 or
G3BP1. However, depletion of endogenous TDP-43 or G3BP1
is not reported to be associated with obvious alterations in the
microtubule network.

Microtubule-based transport requires not only the
“cytoskeletal highway” but also motor and adaptor proteins.
Analysis of published data reporting on transcripts bound by
TDP-43 reveals several Kinesin family members and Kinesin
binding proteins (Kcll, Kifap3, Kif3c, Kif3a, Kif5a, Kif5c,
Trakl, Trak2) as well as three Dynein family members (DynII2,
Dynclli2, BicD1; Polymenidou et al., 2011). While the axonal
transport of mutant TDP-43 containing RNA granules is
disrupted (Alami et al., 2014), the mechanism by which this
occurs remains unknown. It is tempting to speculate that
TDP-43 regulates the expression of these proteins, and thus
influences microtubule-based transport, but this remains
untested. In the context of microtubule-directed SG dynamics,
TDP-43 regulates both G3BP1 and HDACS6, which together
are reported to bridge the interaction between SGs and motor
proteins (Kwon et al., 2007; Fiesel et al., 2010; McDonald et al,,
2011). Thus, microtubule-based transport could still be relevant
to the overall coordination of SG dynamics influenced by
TDP-43.

The involvement of FUS in cellular movement is less
studied compared to TDP-43. However, in a recent summary
of FUS splicing targets, three genes reported in at least two
independent studies include the actin binding protein ENAH
(Protein enabled homolog), EPB4.1L2 (Band 4.1-like protein
2), and EPB4.9 (Dematin; Ishigaki et al., 2012, 2013; Lagier-
Tourenne et al., 2012; Rogelj et al., 2012; Nakaya et al,
2013; Orozco and Edbauer, 2013). While the role of FUS in
actin-based transport has been confirmed (Fujii and Takumi,
2005), actin-based transport is reported as not involved in SG
movement (Nadezhdina et al,, 2010). Interestingly, FUS has
been previously observed in RNA granules transported in a
microtubule-dependent manner and as a binding partner of
kinesin (Kanai et al., 2004). However, whether FUS (wild type
or mutant forms) can influence microtubule-based transport
remains unknown.
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UNLINKING STRESS GRANULES AND
PATHOLOGICAL TDP-43 AND FUS
INCLUSIONS

As described above, TDP-43 cytoplasmic inclusions are
independent of inclusions marked by SG markers in AD model
mice (Vanderweyde et al., 2012). However, in ALS/FTD human
samples, there are a handful of examples of co-labeling of
TDP-43 and FUS inclusions with well-known SG markers
(Colombrita et al., 2009; Volkening et al., 2009; Dormann et al.,
2010; Liu-Yesucevitz et al., 2010; Bentmann et al., 2012). Despite

the many papers documenting TDP-43 positive inclusions in
patient tissues, there is little known about their origins, with
only a single team reporting the generation of “stable” TDP-
43 positive inclusions that are distinct from SGs in cultured
cells (Meyerowitz et al., 2011; Parker et al., 2012). That these
inclusions are distinct from SGs is possibly in the details since the
experimental conditions are quite different from those generally
used to examine TDP-43 in SGs. Specifically, cells were exposed
to a stress stimulus over a prolonged period of time (1 mM
paraquat, 24 h) rather than the intense acute stress that is more
typically used in SG studies (0.1-0.5 mM SA, 30-60 min or

STRESS EXPOSURE
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FIGURE 4 | Down-regulation of TDP-43 and expression of mutant FUS share SG phenotypes. Delayed SG assembly and faster SG disassembly is observed
in cells with reduced levels of TDP-43 as well as cells expressing mutant forms of FUS. This phenotype increases cell vulnerability. Cells reduced in TDP-43 levels will
present a defect in SG secondary aggregation concomitant with a decrease in SG/PB docking followed by an increase in mRNA degradation after stress (siTDP-43
cells compared to siControl cells). This effect is mediated via G3BP1. Cells expressing mutant forms of FUS form larger SGs with more labile TIA-1 and G3BP1
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42°C heat shock, 30-60 min). Interestingly, this paraquat model
recapitulates the main features observed in ALS/FTD tissues,
namely the nuclear clearance and cytoplasmic aggregation of
TDP-43 (Meyerowitz et al., 2011; Parker et al., 2012). While the
authors initially claim that the observed inclusions are SGs based
on co-localization with HuR and TIAR, it is noted that two types
of inclusions are actually formed by paraquat exposure. One
subset is positive for TDP-43 while a second subset demonstrates
robust HuR labeling. Importantly, these two types of inclusions
do not share the same kinetic properties. Namely, HuR positive
inclusions are cycloheximide-sensitive and disassemble once
the stress is removed, consistent with a SG identity (Parker
et al, 2012). However, TDP-43 positive inclusions persist in
the presence of cycloheximide and after removal of paraquat,
suggesting that these structures are likely not SGs according
to the definition broadly accepted by the field (Kedersha et al.,
1999; Parker et al., 2012). Thus, even though this stress paradigm
induces TDP-43 positive inclusions, it cannot be asserted that
they are truly SGs. This could be considered as in vitro evidence
that TDP-43 pathological inclusions are distinct from SGs.
Unfortunately, the functional significance of these inclusions
on cell survival/vulnerability remains unknown. Similarly, the
impact of FUS and its ALS-linked mutations remains to be
explored. Despite these shortcomings, this paraquat model is
intriguing since it mimics ALS/FTD pathology and thus may be
ideally suited to further investigate whether a pathogenic link
between SGs and TDP-43/FUS positive inclusions does in fact
exist.

SIMILARITIES BETWEEN TDP-43 AND FUS

Most studies on TDP-43 and FUS and SGs have investigated the
“toxic gain of function” aspect of these two proteins containing
ALS-linked mutations. However, surprisingly, even though the
impact on assembly is well described, SG disassembly is typically
ignored and the link between mutations and cell sensitivity
to stress is often unexplored. In contrast, there are robust
correlations between defective SG kinetics and cell vulnerability
post-stress in “loss of function” models for TDP-43 that are not
shared by FUS (Aulas et al, 2012, 2015). However, there are
some similar alterations in SG dynamics induced by depletion
of endogenous TDP-43 and overexpression of mutant FUS
(Figure 4). Specifically, in both contexts, cells exhibit delayed
SG formation and accelerated SG resolution (McDonald et al.,
2011; Baron et al., 2013). Interestingly, mutant FUS expression
gives rise to increased SG size which could be attributed to
increased lability of TIA-1 and G3BPI in SGs (Baron et al,
2013). Specifically, this property may result in faster disassembly
due to inefficient packing/formation of individual SGs, effectively
yielding larger yet less stable structures. Since there is no evidence
that FUS impacts SG function and assembly, we propose that FUS
mutations primarily impact SG dynamics via a gain of function
mechanism. In contrast, while expression of mutant TDP-43
increases SG size, nothing is known about SG disassembly in this
context, but the notion that larger SGs are more labile and thus
disassemble faster, as is the case for FUS, is possible. However,

TDP-43 loss of function (depletion by siRNA) induces the down-
regulation of the major SG regulator G3BP1 (McDonald et al.,
2011) which is linked to increased susceptibility of neuronal-like
cells to oxidative stress (Aulas et al., 2012). More in-depth studies
examining the impact of mutant TDP-43 on SG kinetics and
G3BP1 expression/post-translational modification and/or lability
in SGs are needed as is investigation of nuclear clearance of
TDP-43 in the context of SGs.

The origin and nature of pathological inclusions found
in ALS/FTD patients remains poorly understood. Inclusion
formation could be a mechanism by which the neuron sequesters
non-functional protein that could otherwise perturb normal
function. Alternatively, they could arise from defective removal
of normal SGs, themselves a type of cytoplasmic aggregate,
responding to cellular stress. Lastly, it is remains equally possible
that ineflicient clearance of non-specific aggregates composed
of non-functional proteins which feature aggregation-prone
domains could yield these cytoplasmic accumulations or “primo-
aggregates” of undefined composition. This is an interesting
concept given the discovery of VCP-mediated autophagy as
a mechanism to clear SGs post-heat shock (Buchan et al,
2013). However, the role of VCP remains unclear given that
oxidative stress or proteasome inhibition of VCP-depleted cells
feature smaller SGs with atypical composition (Seguin et al.,
2014).

CONCLUSION

In recent years, there has been an important increase in the novel
descriptions of proteins localizing to SGs using co-localization
with only one or two previously reported SG markers. However,
according to the original definition of SGs, the co-localization
with protein markers is not sufficient to qualify a cytoplasmic
inclusion as a SG (Kedersha et al, 1999). Indeed, a large
proportion of SG proteins contain a prion-like/unstructured/low
complexity domain (Li et al., 2013) that could drive proteins
aggregation in a non-specific way (Olszewska et al., 2012). TDP-
43 and FUS most definitely have a role in the stress response
via their involvement in SGs and by interacting with proteins
localizing to SGs (Freibaum et al., 2010). However, determining
the link between their involvement in SG dynamics/function
and the formation of pathological inclusions is still very much
unclear. Whether TDP-43 or FUS recruitment to pathological
inclusions drives inclusion formation or they are passively
incorporated via a non-specific mechanism is an important future
direction. Hand in hand with this, elucidating whether these
cytoplasmic inclusions are beneficial, toxic or irrelevant is of
utmost importance.
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