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The infiltration of immune cells in the central nervous system is a common hallmark in
different neuroinflammatory conditions. Accumulating evidence indicates that resident
glial cells can establish a cross-talk with infiltrated immune cells, including T-cells,
regulating their recruitment, activation and function within the CNS. Although the healthy
CNS has been thought to be devoid of professional dendritic cells (DCs), numerous
studies have reported the presence of a population of DCs in specific locations such
as the meninges, choroid plexuses and the perivascular space. Moreover, the infiltration
of DC precursors during neuroinflammatory situations has been proposed, suggesting
a putative role of these cells in the regulation of lymphocyte activity within the CNS.
On the other hand, under specific circumstances, microglial cells are able to acquire a
phenotype of DC expressing a wide range of molecules that equip these cells with all
the necessary machinery for communication with T-cells. In this review, we summarize
the current knowledge on the expression of molecules involved in the cross-talk with
T-cells in both microglial cells and DCs and discuss the potential contribution of each of
these cell populations on the control of lymphocyte function within the CNS.

Keywords: antigen presentation, lymphocyte, dendritic cells, co-stimulatory signals, MHCs, B7, purine
nucleotides, CD39

INTRODUCTION

The central nervous system (CNS) has been considered for many years as an organ
immunologically isolated from the peripheral immune system, on one hand due to the presence of
the blood brain barrier (BBB) and the absence of lymphatic vessels (Perry, 1998) and, on the other
hand, by the fact that skin grafts and the direct inoculation of viruses, bacteria or antigens in the
nervous parenchyma did not induce an immune response (Medawar, 1948; Barker and Billingham,
1977; Stevenson et al., 1997; Matyszak and Perry, 1998). Nevertheless, in the last decade, an
increasing number of studies has demonstrated that the CNS is not only immune-competent, but
it also actively interacts with cells of the peripheral immune system (Aloisi et al., 2000; Becher
et al., 2000; Steinman, 2004; Almolda et al., 2011b; Gonzalez et al., 2014), which can be recruited
to the nervous parenchyma under specific circumstances (Ransohoff et al., 2003; Engelhardt and
Ransohoff, 2005; Becher et al., 2006; Engelhardt, 2006, 2008).

With all of these studies in mind, it is easy to think that the isolated view of the CNS
has drastically changed toward a more active scenario, in which a situation of active immune
tolerance is continuously maintained within the CNS. Different mechanisms have been reported
to contribute to this active tolerance, including the constitutive expression of FasL, a receptor
involved in the death of infiltrated immune cells (Bechmann et al., 1999; Flugel et al., 2000)
and the local production of anti-inflammatory mediators such as indolamine 2,3-dioxygenase,
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in response to the interaction with pro-inflammatory
lymphocytes (Kwidzinski et al., 2005). The presence of some
populations of cells, such as macrophages and dendritic cells
(DCs), located in strategic areas of the CNS such as the meninges
and the choroid plexus, may play a key function in the initiation
and regulation of immune responses. Nowadays, then, the
CNS is considered as an immune-privileged site, rather than
immune-isolated (Ousman and Kubes, 2012; Ransohoff and
Engelhardt, 2012).

INFILTRATION OF LYMPHOCYTES IN
THE CNS UNDER PATHOLOGICAL
SITUATIONS

The infiltration of lymphocytes within the CNS parenchyma is
a common hallmark in many pathological conditions (Rezai-
Zadeh et al., 2009; Anderson et al., 2014) such as VIH (Petito
et al., 2003) and West Nile virus infection (Glass et al., 2005);
neurodegenerative diseases such as Parkinson’s disease (Brochard
et al., 2009) and amyotrophic lateral sclerosis (Holmoy, 2008);
acute lesions like facial nerve axotomy (Raivich et al., 1998),
entorhinal cortex lesion (Babcock et al., 2008), stroke (Schroeter
et al., 1994; Gelderblom et al., 2009) and ischemia (Gelderblom
et al., 2009) or autoimmune processes such as experimental
autoimmune encephalomyelitis (Dittel, 2008; Almolda et al.,
2011a). While in some circumstances lymphocyte infiltration
has been related to protective functions, as occurs in the facial
nerve axotomy paradigm (Serpe et al., 1999), the West Nile virus
infection (Glass et al., 2005) and amyotrophic lateral sclerosis
(Beers et al., 2008; Chiu et al., 2008), in other circumstances
lymphocyte infiltration has been shown to contribute to the
exacerbation of the pathology. This is the case of Parkinson’s
disease (Brochard et al., 2009), VIH virus infection (Petito et al.,
2003), stroke (Yilmaz et al., 2006) and some autoimmune diseases
(Dittel, 2008).

Due to the fact that T-cells are not able to recognize
soluble antigens, they need the help of specialized cells, the so-
called antigen presenting cells (APCs), which through antigen
presentation mechanisms can capture, process and present
pathogen and viral antigens and other strange structures for
recognition by T-cells. Depending on the pattern of cytokine
secretion, the functions and the molecules that drive their
differentiation, different subtypes of T-helper lymphocytes are
identified (Reinhardt et al., 2006; Takatori et al., 2008; Sun
and Zhang, 2014). Classical classification considers two different
subtypes: T-helper 1 (Th1) lymphocytes, which secrete pro-
inflammatory cytokines such as interferon-γ (IFN-γ) or tumoral
necrosis factor-α (TNF-α) and Th2 lymphocytes, which produce
anti-inflammatory cytokines such as interleukin-4 (IL-4) and
interleukin-10 (IL-10). Therefore, Th1 accumulation has been
usually considered as an inflammatory event, whereas presence of
Th2 has been related to the down-regulation of the inflammatory
response. However, a growing accumulation of evidence has
changed this simple paradigm based on the presence/absence
of Th1/Th2, as other subpopulations of Th cells have been
discovered, among them, effector T-cells including Th17, Th22,

Th9, T-follicular helper (Tfh) cells with the capacity to secrete
different cytokines (Cosmi et al., 2014), but also regulatory
T-cells such as T-regulatory (Treg) and Tr1, whose principal
function is to maintain the immune system homeostasis and the
tolerance to self-antigens (Bluestone and Tang, 2005; Eltzschig
et al., 2012; Piccioni et al., 2014). Two different subtypes of
Treg are currently identified: the natural Treg (nTreg) and the
induced Treg (iTreg) (Horwitz et al., 2008; Curotto de Lafaille
and Lafaille, 2009; Piccioni et al., 2014). The nTregs, defined
as CD4+CD25+Foxp3+ cells, are generated in the thymus
during the maturation of T-cells by recognition of self-peptides
with intermediate affinity, whereas the iTregs are produced in
secondary lymphoid organs (spleen and lymph nodes) from
naïve CD4+Foxp3- T-cells under both homeostatic conditions
and in the presence of inflammation, infection or allergy after
stimulation with TGF-β (Piccioni et al., 2014). Due to their
capacity to suppress immune responses, the participation of
Tregs in the evolution of acquired immune responses in the CNS,
especially those related to autoimmunity, has generated much
attention in the last several years. In this sense a remarkable
accumulation of Tregs in cerebral gliomas (Grauer et al., 2007),
ischemic stroke (Stubbe et al., 2012) and in some experimental
models of encephalomyelitis such as EAE (McGeachy et al., 2005;
Kohm et al., 2006; Korn et al., 2007) has been reported.

The discovery of all of these subtypes of lymphocytes with
putative new functions in the promotion and modulation of the
acquired immune response and their still-unknown interactions
with resident CNS cells, specially microglia, has contributed to
becoming aware that the scenario of the neuroimmune response
could be even more complicated than previously thought.

ACTIVATED MICROGLIA ARE
CONSIDERED THE MAIN APC IN
THE CNS

Microglial cells are considered the sole representative of the
immune system within the CNS parenchyma. The precise
origin of microglia during development still remains under
debate, although emerging evidence reported that yolk-salk
primitive precursors are the principal source (Ginhoux et al.,
2010, 2013; Schulz et al., 2012). Studies in bone-marrow
chimera and parabiotic mice indicated that these yolk-salk
precursors invade the CNS parenchyma through the blood
vessels around embryonic Day 9 in mice, corresponding to
the vascularization process, and contribute substantially to the
maintenance of microglial cells in the adult (Ginhoux et al., 2010).
However, alternative routes of entry for microglial precursors,
including the ventricles and meninges, have been identified
(Cuadros and Navascues, 1998; Dalmau et al., 1998, 2003;
Navascues et al., 2000). Whether these different routes of entry
are linked to different populations of microglial precursors
with different functions is an interesting field that is still
unsolved.

Microglial cells are equipped with a broad range of receptors
in their plasma membrane that allows them to sense subtle
changes in the micro-environment (Kettenmann et al., 2011;
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Hanisch, 2013; Kierdorf and Prinz, 2013). Microglial cells play
very important roles in healthy, normal CNS, not only during
the post-natal period, where they contribute to the elimination
of synaptic structures (Pont-Lezica et al., 2011; Tremblay et al.,
2011; Harry and Kraft, 2012), but also in the adult, where
they are continuously scanning their local micro-environment
(Davalos et al., 2005; Nimmerjahn et al., 2005; Kierdorf and
Prinz, 2013; Castellano et al., 2015). When the homeostasis
of the CNS is perturbed as a result of injury or disease,
microglial cells become rapidly activated, acquiring a specific
phenotype totally dependent on the environment in which they
are activated and the specific stimulus that drives their activation
(Kettenmann et al., 2011; Gonzalez et al., 2014; Chen and Trapp,
2015). Activated microglia can rapidly proliferate and increase
the expression or de novo express a multitude of different
molecules and secrete a plethora of substances such as cytokines,
chemokines and trophic factors, all of which make them able to
modulate both the innate and the acquired immune responses
within the CNS (Ransohoff and Cardona, 2010; Kettenmann
et al., 2011; Eggen et al., 2013; Goldmann and Prinz, 2013; Casano
and Peri, 2015).

Recognition of the T-cell receptor (TCR) on the surface
of T-lymphocytes by the major histocompatibility complexes
(MHCs) located on the surface of the APCs, MHC-I in the
case of CD8+T-cytotoxic lymphocytes and MHC-II for CD4+T-
helper cells, constitutes the first signal of the antigen-presenting
mechanism related to the activation of T-cells (Lanzavecchia,
1997; Abbas et al., 2010). Co-stimulation, the second signal
involved in this mechanism, is based on the binding of diverse
receptors and counter-receptors expressed on the surface of
both APC and T-cells (Nurieva et al., 2009) and is essential
for a complete antigen presentation, as expression of MHCs in
the absence of co-stimulation leads to the apoptosis or anergy
of T-cells (Kishimoto and Sprent, 1999). A multitude of co-
stimulatory pairs of molecules, which can be classified into two
main families (the B7/CD28 and the TNFR families), have been
reported in the immune system, exerting different effects on the
activation/deactivation of T-cells (Sharpe, 2009) and driving the
final outcome and function of T-cells.

Expression of MHCs in Microglia
Resident glial cells, principally microglia, can establish a
cross-talk with infiltrated T-cells regulating their recruitment,
activation and function within the CNS (Gonzalez et al., 2014).
Although in healthy CNS microglial cells do not express
MHCs (Kreutzberg, 1996; Perry, 1998), it is well known that,
when activated in pathological conditions, they showed a wide
number of phenotypic changes (Ransohoff and Cardona, 2010;
Kettenmann et al., 2011; Prinz et al., 2014), including de novo
expression of these molecules (Kreutzberg, 1996; Perry, 1998).
Therefore, many authors consider microglial cells as the principal
APC within the CNS parenchyma (Aloisi, 2001; Carson, 2002;
Raivich and Banati, 2004; Graeber and Streit, 2010). Expression
of MHC-II in activated microglia in vivo has been reported
after a wide variety of CNS injuries including LPS injection
(Xu and Ling, 1995; Ng and Ling, 1997), ischemia and kainic
acid injection (Finsen et al., 1993), graft vs. host disease

(Sedgwick et al., 1998), facial nerve axotomy (Streit et al., 1989;
Villacampa et al., 2015), entorhinal cortex lesion (Bechmann
et al., 2001; Kwidzinski et al., 2003a) and different models of EAE
(Almolda et al., 2010).

Expression of Co-stimulatory Molecules
in Microglia
While the expression of MHCs has been extensively reported
in activated microglia, only a limited number of studies have
addressed the question of whether activated MHC-II+ microglia
simultaneously express co-stimulatory molecules (Summarized
in Table 1).

The B7/CD28 Family
The pair of co-stimulatory molecules with the major relevance
in the activation of T-cells, and therefore the most extensively
studied in the organism, is that formed by receptors B7.1/B7.2
(CD80/CD86) on the surface of APCs and their counter-
receptors CD28 and CTLA-4 on the surface of T-cells. The
binding of B7.1 or B7.2 to CD28 induces T-cell proliferation
and cytokine secretion, whereas binding of these same receptors
to CTLA-4 induces the inhibition of T-cell activity, promoting
the down-regulation of the immune response (Sansom, 2000;
Sharpe and Freeman, 2002). Specifically in the CNS, de novo
expression of B7.1 and/or B7.2 has been reported in microglial
cells after entorhinal cortex lesion (Bechmann et al., 2001;
Kwidzinski et al., 2003b), peripheral nerve injury (Rutkowski
et al., 2004), facial nerve axotomy (Bohatschek et al., 2004),
cuprizone-induced demyelination (Remington et al., 2007)
and models of autoimmunity such as EAE and Theiler’s
virus encephalomyelitis (Issazadeh et al., 1998; Juedes and
Ruddle, 2001; Mack et al., 2003; Raivich and Banati, 2004;
Almolda et al., 2010, 2011b).

Recently, other members of the B7 co-stimulatory molecules
family have been described in the immune system, including B7-
H2 (ICOS-L), B7-H1 (PD-L1), B7-DC (PD-L2), B7H3 (CD276),
B7H4, B7S3 and BTNL (Sharpe, 2009; Chen and Flies, 2013).
The ICOS-ICOSL pathway has important roles in the fine-
tuning of effector T-cell functions and the control of T-cell
tolerance (Nurieva et al., 2009). Although the presence of ICOS+
T-cells has been reported in the CNS of EAE-induced mice
(Rottman et al., 2001), to-date, no studies on the expression
of its ICOSL ligand on microglia or any other CNS resident
cells are available. PD-1 is another receptor gaining attention,
due to its crucial role in maintaining peripheral immune
tolerance (Nurieva et al., 2009). PD-1 has been shown to be a
negative regulator of T-cell responses, expressed at low levels
on the surface of T, B and natural killer T-cells, and further
induced upon activation. PD-1 has two counter-receptors that
are expressed on the surface of APCs, PD-L1 and PD-L2 also
called B7H1 and B7DC, respectively (Nurieva et al., 2009).
The few reports addressing the expression of this molecule
in the CNS demonstrated PD-L1 expression in both activated
microglia after middle-cerebral artery occlusion (Ren et al.,
2011; Bodhankar et al., 2013), coronavirus infection (Phares
et al., 2009), Theiler’s murine encephalomyelitis (Duncan and
Miller, 2011; Jin et al., 2013) and EAE (Schreiner et al., 2008),
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TABLE 1 | Principal co-stimulatory molecules from the B7/CD28 and TNFR family.

Effect on T-cell T-cell APC Determined in microglia Experimental model Reference

B
7/

C
D

28
fa

m
ily

Stimulation CD28

B7.1/B7.2 +

PPT
Bechmann et al., 2001
Kwidzinski et al., 2003b

Peripheral nerve injury Rutkowski et al., 2004

FNA Bohatschek et al., 2004

Inhibition CTLA-4

Cuprizone Remington et al., 2007

EAE models

Issazadeh et al., 1998
Juedes and Ruddle, 2001
Mack et al., 2003
Raivich and Banati, 2004
Almolda et al., 2010
Almolda et al., 2011b

Stimulation ICOS B7H2 (ICOS-L) n.d. – –

Inhibition PD-1 B7H1 (PD-L1) +

MCAO Ren et al., 2011
Bodhankar et al., 2013

Coronavirus infection Phares et al., 2009

TMEV
Duncan and Miller, 2011
Jin et al., 2013

EAE models Schreiner et al., 2008

PPT Lipp et al., 2007

B7DC (PD-L2) n.d. – –

Inhibition TLT-2 B7H3 n.d. – –

Inhibition Unknown B7H4 n.d. – –

Inhibition Unknown B7S3 n.d. – –

Inhibition Unknown BTNL n.d. – –

TN
FR

fa
m

ily

Stimulation CD40-L CD40 +

Microglial cultures

Tan et al., 1999
Qin et al., 2005
Lin et al., 2009
Lin and Levison, 2009
Vidyadaran et al., 2009

Ageing
Griffin et al., 2006
Simpson et al., 2007

Epilepsy Sun et al., 2008

Alzheimer’s disease

Togo et al., 2000
Town et al., 2001
Tan et al., 2002a

ALS Okuno et al., 2004

Neurodegeneration Ke et al., 2005

HIV infection D’Aversa et al., 2002, 2005

EAE models
Becher et al., 2001;
Ponomarev et al., 2006

TMEV Olson et al., 2001

MS Vogel et al., 2013

Stimulation OX40 OX40-L n.d. – –

Stimulation CD27 CD70 n.d. – –

The table summarized the different molecules studied in the context of microglial cells (+). n.d indicates that the expression has not been determined specifically in
microglia. PPT, perforant pathway transection; FNA, facial nerve axotomy; EAE, experimental autoimmune encephalomyelitis; MCAO, middle cerebral artery occlusion;
TMEV, Theiler’s induced encephalitis; ALS, amyotrophic lateral sclerosis; MS, multiple sclerosis.
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and in astrocytes after entorhinal cortex lesion (Lipp et al., 2007).
Moreover, the blockade of PD-1 signaling enhances EAE severity
(Salama et al., 2003) suggesting an outstanding role in the control
of CNS pathologies.

To our knowledge, no studies regarding the expression of
B7H3, B7H4, B7S3 or BTNL specifically in microglia are, until
present, available in the literature.

The TNFR Family
Additionally, a second family of co-stimulatory receptors, the
TNFR family, has been reported in the immune system. Various
members, including pairs CD40/CD40L, OX40L/OX40, and
CD70/CD27, expressed on APCs and T-cells, respectively, form
this family (Watts, 2005; Sharpe, 2009). Among them, CD40 is
the only molecule studied in the context of microglial activation
(Chen et al., 2006). CD40 expression in activated microglia has
been described not only in vitro in many cell-lines activated with
IFN-γ, LPS or β-amyloid protein (Tan et al., 1999; Qin et al.,
2005; Lin and Levison, 2009; Lin et al., 2009; Vidyadaran et al.,
2009) but also in vivo during physiological aging (Griffin et al.,
2006; Simpson et al., 2007) and under pathological situations
such as epilepsy (Sun et al., 2008), Alzheimer’s disease (Togo
et al., 2000; Town et al., 2001; Tan et al., 2002b), amyotrophic
lateral sclerosis (Okuno et al., 2004), neurodegeneration induced
by thiamine deficiency (Ke et al., 2005), human HIV (D’Aversa
et al., 2002, 2005), different animal models of autoimmunity such
as EAE (Becher et al., 2001; Ponomarev et al., 2006) and Theiler’s
murine encephalomyelitis (Olson et al., 2001) and MS (Vogel
et al., 2013). Moreover, inhibition of CD40 in microglia results
in the attenuation of β-amyloid pathology (Tan et al., 2002a) and
the reduction of EAE severity (Becher et al., 2001; Ponomarev
et al., 2006), pointing toward this molecule as a good candidate
for therapeutic interventions in these specific CNS pathologies.

Altogether, these studies indicate that, although so far it
seems that microglial cells may be the principal APC within
the CNS, in the coming years it will be necessary to inquire
about the expression of some other markers related to the
antigen-presenting mechanism described in professional DCs
and, until now, not explored in the context of microglial
activation.

OTHER MOLECULES EXPRESSED BY
MICROGLIA THAT CAN BE INVOLVED IN
THE COMMUNICATION WITH T-CELLS

Recent studies indicate that CD39 and CD73, some of the
molecules that mediate the immunosuppressive activity of
Treg lymphocytes (Deaglio et al., 2007), are also expressed
in specific subtypes of APCs and may be involved in the
suppressive activity of these cells. Specifically, a subtype of
DCs induced by IL27 has been shown to increase expression
of CD39 and exert protective functions in EAE (Mascanfroni
et al., 2013). CD39 and CD73 (also known as NDPase and 5′
nucleotidase, respectively) are enzymes involved in the hydrolysis
of extracellular ATP to ADP/AMP and to adenosine. CD39-
deficiency in DCs has been shown to ameliorate the course

of EAE by reducing the number of Th1 and Th17 effector
cells (Mascanfroni et al., 2013). The precise mechanism by
which CD39 regulates T-cell responses is not clear, although
it is proposed to be mediated by a reduction in the ATP
levels producing a down-regulation of the inflammasome activity
(Eltzschig et al., 2012), a multiprotein-assembled complex
involved in the initiation of the immune innate responses (Vanaja
et al., 2015).

Expression of both CD39 and CD73 in the membrane of
microglial cells has been extensively reported to regulate ATP
levels within the CNS, in both healthy situations and after
damage (Castellano et al., 2015). Therefore, it is easy to suggest
that regulation of the expression of those enzymes in activated
microglia take part in modulating the final outcome of infiltrated
T-cells.

PRESENCE OF DENDRITIC CELLS IN
THE CNS

Dendritic cells are considered to be the professional APCs
in the immune system (Guermonprez et al., 2002). They are
derived from hematopoietic stem cells in the bone marrow
that gives rise to early precursors called the Common Myeloid
Precursor (CMP). CMPs, in turn, originate the formation of
two different precursors, the Granulocyte/Monocyte precursors
(G/Ms) and the Macrophage/DC precursors (M/DPs). From
M/DPs, the common DC progenitors, the pre-DC precursors
and the plasmacytoid DCs are sequentially formed. Pre-DC
precursors egress into the blood circulation and populate
different organs, including the skin, heart, lung and spleen,
becoming conventional DCs (Liu and Nussenzweig, 2010). As
both DCs and macrophages derived from the same precursors
most of the markers and functions of these two populations are
similar.

Although the parenchyma of the normal CNS are devoid
of the so-called professional DCs, these cells are abundant
in the meninges, the choroid plexus (McMenamin, 1999;
McMenamin et al., 2003), the perivascular space and the
juxtavascular parenchyma (i.e., the neuropil just beyond the glia
limitants) (Prodinger et al., 2010). These locations are considered
strategically well-positioned for the communication with blood-
circulating pathogens or T-cells, supporting a role of DCs in the
control of the entry gates to the brain and thus in the regulation
of immune surveillance in the CNS during homeostasis. With
aging, the number of DCs increases markedly in the perivascular
space, meninges and choroid plexuses, and has even been
found into the brain parenchyma (Stichel and Luebbert, 2007;
Kaunzner et al., 2010). The presence of CNS parenchymal DCs
has also been reported in different neuroinflammatory situations
(McMahon et al., 2006; Colton, 2012; D’Agostino et al., 2012),
including infections (Fischer and Reichmann, 2001), traumatic
brain injury (Israelsson et al., 2010), ischemia (Kostulas et al.,
2002; Reichmann et al., 2002; Felger et al., 2009; Gelderblom
et al., 2009), excitotoxicity (Newman et al., 2005) and some
diseases such as amyotrophic lateral sclerosis (Henkel et al.,
2004), multiple sclerosis (Plumb et al., 2003; Serafini et al., 2006)
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and EAE (Matyszak and Perry, 1996; Serafini et al., 2000; Fischer
and Reichmann, 2001; Santambrogio et al., 2001; Santambrogio
and Strominger, 2006; Almolda et al., 2010, 2011b).

FUNCTION OF DCS IN THE CNS

Numerous works (McMahon et al., 2006; Colton, 2012;
D’Agostino et al., 2012) emphasize the possible relevance of
DCs in the CNS immunosurveillance as well as the function
they can play in neuroinflammatory situations. However,
the specific contribution of those cells is still not well-
understood.

The actual knowledge regarding the function of DCs in
the brain come from studies using the inoculation of different
types of DCs into the CNS under different circumstances.
Thus, it has been shown that subcutaneous administration
of bone marrow DCs before EAE-induction prevents EAE
development in rats (Huang et al., 2000). Other studies reported
that intraparenchymal inoculation of tolerogenic DCs, induced
by TNF-α treatment, prevents or delays EAE onset, whereas

immunogenic DCs administration increases the severity of this
disease (Zozulya et al., 2009).

All together, these studies have demonstrated the potential
of DCs to serve as potent vehicles to induce tolerance and
open a door to new therapeutic strategies to modulate CNS
disease. A question not yet addressed in this kind of studies
is how these DCs interact with both glial cells and blood–
borne infiltrated cells. Research in this field in the coming years
is vital to understand the molecular and cellular mechanisms
involved in the regulation of immune responses in the
CNS.

ARE CNS PARENCHYMAL DCS
AUTHENTIC DCS OR ARE THEY A
SUBTYPE OF ACTIVATED MICROGLIA?

In addition to the poor knowledge on the role of DCs in
the immune responses within the CNS, one of the issues
that generate more controversy is the origin of parenchymal
DCs observed in a wide range of neuroinflammatory situations

FIGURE 1 | Putative origins of parenchymal dendritic cells during neuroinflammatory conditions. In the CNS, under steady-state conditions a population of
professional DCs expressing MHC-class II and CD11c or ED2 are found in the meninges, the choroid plexuses and the perivascular space, where they coexist with
specific subpopulations of resident macrophages (Mø). Under specific neuroinflammatory conditions, such as infections, traumatic brain injury or EAE, DCs have
been also reported within the CNS parenchyma. Different possibilities are suggested to explain the origin of these parenchymal DCs (green arrows). The first
possibility (1) is that parenchymal DCs are derived from activated microglia. The second possibility (2) is that parenchymal DCs come from the recruitment of either
perivascular or meningeal or both DC populations. The third possibility (3) is that DCs come from infiltrated monocytes (Ly6Chigh). Recent research indicates that
parenchymal DCs are constituted by two different populations of cells, one becoming from microglia and the other infiltrated from the periphery. Although both
populations of parenchymal DCs present the ability to activate T-cells, the fact that they display a distinct phenotype, characterized principally by changes in the
levels of CD45 and the pattern of cytokine secretion, suggest that they may play different roles in the regulation of the immune response.
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(Figure 1). One possibility suggested by some authors is
that the perivascular or meningeal DCs observed in the
healthy brain are recruited to inflammatory sites within the
CNS parenchyma (McMahon et al., 2006). Alternatively, other
authors supported the idea that parenchymal DCs observed
during neuroinflammatory conditions come from infiltrated
monocytes (Ifergan et al., 2008), which under the influence
of specific molecules such as GM-CSF, differentiate to DCs
(Ashhurst et al., 2014). Supporting this idea, an alternative
developmental circuit occurring after the MDP precursors
involves monocytes as precursors of inflammatory DCs in
peripheral organs (Dominguez and Ardavin, 2010; Liu and
Nussenzweig, 2010). Infiltration of monocytes is a common event
in many of the above-mentioned neuroinflammatory situations
in which DCs have been described in the CNS parenchyma
(Zhu et al., 2007; Serbina et al., 2008; Mildner et al., 2009).
Furthermore, systemic administration of GM-CSF in EAE-
induced mice mobilizes Ly6Chigh-circulating monocytes that
migrate to the CNS parenchyma and are converted into DCs
(King et al., 2009). Nevertheless, later studies have demonstrated
that intraparenchymal infusion of GM-CSF not only promotes
the apparition of DC precursors recruited from the periphery
but also induces the emergence of a second population of DCs
derived from the CNS with an inhibitory phenotype (Hesske
et al., 2010), supporting the idea that DCs not only immigrate
from the periphery but may also be derived from local CNS
cells.

In this regard, several lines of evidence, including in vitro
studies (Fischer and Reichmann, 2001; Butovsky et al., 2007)
and neuroinflammatory situations such as ischemia (Kostulas
et al., 2002) and EAE (Fischer and Reichmann, 2001; Almolda
et al., 2011b; Wlodarczyk et al., 2014), support the hypothesis
that parenchymal DCs are derived from the differentiation
of local cells, probably microglia, on the basis that the
expression of some of the surface antigens commonly used
for the identification of DCs, such as CD11c, MHCII and
CD86, are found in activated microglial cells. In addition,
a study using the CD11c-GFP mouse, which expresses the
GFP protein under the control of the CD11c promoter, the
pan-marker of DCs, has reported the presence of CD11c+
cells not only in the choroid plexuses and perivascular space
but also in the juxtavascular parenchyma of non-lesioned
CNS (Prodinger et al., 2010). Interestingly, these authors
found that almost all CD11c+ cells in the juxtavascular
parenchyma presented markers of microglial cells such as Iba1
and CD11b, indicating that, presumably, a subpopulation of
microglial cells is able to express DC markers in steady-state
conditions. Even more, an interesting study (Anandasabapathy
et al., 2011) using the Flt3-treatment, a transcription factor
involved in the generation of DCs (Waskow et al., 2008;
Kingston et al., 2009), to induce the expansion of DCs
in transgenic mice carrying the EYFP fluorescent protein
under the control of the CD11c promoter, demonstrated
the presence of two different populations of CD11c+ cells
within healthy CNS. These two populations corresponded to
a population of EYFP+ cells located in the choroid plexuses
and meninges whose number increased after Flt3 treatment

and another discrete population of EYFP+ cells located in
CNS parenchyma with ramified morphology whose number
remains stable after the treatment. Flow cytometry studies
of these two populations demonstrated that the EYFP+
cells in the choroid plexuses and meninges presented a
profile of CD45high/MHCII+ DCs, whereas those EYFP+
cells in the parenchyma corresponds to CD45int/MHCII-
microglial cells (Anandasabapathy et al., 2011). Furthermore,
other works (Wlodarczyk et al., 2014) using flow cytometry
for different DCs markers have reported the existence of
two populations of DCs in EAE-induced animals in vivo:
CD11c+ DCs and CD11c+ microglia. Interestingly, both
populations showed a similar ability to induce T-cell proliferation
in vitro but, once activated, those T-cells showed a different
cytokine profile, suggesting that both populations can play
different functions in T-cell activation (Wlodarczyk et al.,
2014).

Altogether, these studies indicate, as previously suggested by
other authors (Ghosh, 2010), that in addition to professional
DCs located in meninges, choroid plexuses and the perivascular
space, there is a population of microglial cells that, according
to environmental cues, can acquire the phenotype of DCs and
consequently may act as professional APCs. One issue to be
resolved is if these parenchymal DCs that come from microglia
develop the same functions as other DCs or, conversely, if
both populations in the CNS have different roles regulating the
immune response.

CONCLUDING REMARKS

Current research suggests that the net effect of the acquired
immune response within the CNS must depend not only on the
number of lymphocytes and APCs, but must also be directly
related to the specific subtype of infiltrated lymphocytes, the
particular phenotype of the APC in each situation and the specific
micro-environment in which the communication between these
two cells takes place. Whether the principal intercomunicators in
the cross talk with T-cells are microglial cells, professional DCs or
both is an intriguing question, still under discussion, and should
be subject to thorough investigation. Research to help clarify
the question of the origin and a more complete characterization
of the phenotype and function of parenchymal DCs in CNS
will offer a more comprehensive understanding of the role
played by these cells during the evolution of neuroinflammatory
processes.
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