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The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a

central role in the initiation, growth and maturation of axons and dendrites; however, a

quantitative understanding of their mechanical function is still lacking. We here developed

computer simulations to investigate the dynamics of force generation in 1D bundles of

MTs that are cross-linked and powered by molecular motors. The motion of filaments and

the forces they exert are investigated as a function of the motor type (unipolar or bipolar),

MT density and length, applied load, and motor connectivity. We demonstrate that only

unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while

bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles

is shown to depend sharply on the fraction of unipolar motors due to a percolation

transition that must occur in the bundle. Scaling laws between bundle length, force,

MT length and motor fraction are presented. In addition, we investigate the dynamics of

growth in the presence of a constant influx of MTs. Beyond a short equilibration period,

the bundles grow linearly in time. In this growth regime, the bundle extends as one

mass forward with most filaments sliding with the growth velocity. The growth velocity

is shown to be dictated by the inward flux of MTs, to inversely scale with the load and

to be independent of the free velocity of the motors. These findings provide important

molecular-level insights into the mechanical function of the MT cytoskeleton in normal

axon growth and regeneration after injury.

Keywords: axon outgrowth, microtubules, molecular motors, force generation, neuronal polarization

1. INTRODUCTION

During development, neurons assume highly complex morphologies. After migration to their
target location, neurons extend several short processes (neurites). One of these neurites eventually
becomes an axon, the dominating cell process that can extend over considerable distances.
The remaining neurites typically remain shorter and become highly branched dendrites. This
change in cell morphology, so-called neuronal polarization, is critical for network formation and
functioning. While many chemical signals controlling neurite growth and axon specification have
been identified, the intracellular mechanisms driving outgrowth are still poorly understood (Suter
and Miller, 2011).
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A long-standing question pertains to the mechanism by which
MTs and the actomyosin network, along the neurite and within
the growth cone (GC), regulate axonal growth (Heidemann and
Buxbaum, 1993; Suter and Miller, 2011; Dehmelt, 2014). The GC
is the highly motile structure at the neurite tip which navigates
the neurite to its target. Forces generated at the GC leading edge
via actin polymerization and actomyosin contraction result in a
(tensile) pulling stress on the emerging neurite (Lamoureux et al.,
1989; Franze et al., 2009; Betz et al., 2011; Koch et al., 2012;
Toriyama et al., 2013; Hyland et al., 2014). It has nevertheless
been shown that neurites can grow and assume correct axonal
morphologies even without a GC (Marsh and Letourneau, 1984;
Letourneau et al., 1987; Ruthel and Hollenbeck, 2000). MTs
accumulating next to the plasma membrane and later on pushed
into the neurite shaft are believed to provide the complementary
force needed for neurite initiation and growth (Ahmad and Baas,
1995; Dehmelt et al., 2006; Dehmelt, 2014). Within an emerging
neurite as well as along the shaft of mature axons and dendrites,
MTs are organized in thick and dense bundles comprising tens of
filaments per cross-section, 1–100 µm in length, that are cross-
linked by a variety of microtubule associated proteins (MAPs)
including passive cross-linkers and molecular motors (Kapitein
and Hoogenraad, 2015). A growing body of evidence indicates
that the dynein and kinesin molecular motors residing in these
bundles exert sliding forces between the MTs, which push against
the actomyosin cortex that surrounds those bundles (Ahmad
et al., 2000; Dehmelt et al., 2006; Jolly et al., 2010; Lu et al.,
2013, 2015; Roossien et al., 2014). Although MTs eventually
undergo ‘catastrophe’ and depolymerize under load, experiments
show that they could still bear significant compressional forces
before they do so and thus contribute to the outward pushing
of obstacles (Janson et al., 2003). A well known example is their
role in the assembly and dynamics of the mitotic spindle during
cell division (Civelekoglu-Scholey and Scholey, 2010; Mogilner
and Craig, 2010). There is also ample of evidences that MT
pushing forces are involved in axon initiation and growth. Both
the depletion of MTs from the core of axons and the inhibition of
cytoplasmic dynein or kinesin-1 motors result in axon retraction
and impaired growth, while dismantling of actin filaments or
inhibition of myosin II molecular motors facilitates growth
(Bradke and Dotti, 1999; Ahmad et al., 2000; Dehmelt et al., 2006;
Jolly et al., 2010; Lu et al., 2013, 2015; Roossien et al., 2014).

Additionally, the tension along neurites was shown to increase
with MT depolymerization and decrease with actin disruption
(Dennerll et al., 1988). Forces on the order of 102–103 pN have
been reported to be essential for mechanically initiating axon
growth by external loading (Bray, 1984; Dennerll et al., 1989;
Zheng et al., 1991; Chada et al., 1997; Fass andOdde, 2003). These
experiments provide estimates of the restoring forces that may
be acting on the MT bundles in developing axons and dendrites.
This range of forces is approximately 10–100-fold higher than
the force needed to pull a tether from a (bare) lipid bilayer (Dai
and Sheetz, 1995; Hochmuth et al., 1996; Atilgan et al., 2006).
The larger range of resisting forces is believed to arise from the
cytoskeletal cortex underlying the lipid bilayer and the contractile
actomyosin forces generated therein (Ahmad et al., 2000; Xu
et al., 2013).

These observations highlight the role of molecular motor
activity in the regulation of axon initiation and growth. There
is nevertheless poor understanding of how molecular motors
cooperatively function in the dense MT bundles of axons
and dendrites. While some processes, such as filament sorting
and bundle expansion, have been investigated (Kapitein et al.,
2005, 2008; Kerssemakers et al., 2006; Braun et al., 2009),
experimentally monitoring the molecular organization and
motion of single filaments within neurites remains challenging.
Computer simulations provide an invaluable complementary
tool to gainmolecular-level insight into the internal organization,
dynamics and function of these cellular structures. They also
provide the opportunity to dissect the contribution of individual
molecular constituents to the overall macroscopic behavior of
the system and determine the most crucial parameters for force
generation. Models of both actomyosin and MT bundles have
been reported and studied in different contexts such as stress fiber
formation and cytokinesis (Nédélec, 2002; Mogilner et al., 2006;
Paul et al., 2009; Lenz et al., 2012; Kim, 2014; Bidone et al., 2015;
Ward et al., 2015).

In this manuscript, we present a computational investigation
of the dynamics and force generation properties of 1D bundles
of MTs that are cross-linked and powered by molecular motors.
The dynamics of bundle expansion are analyzed as a function of
the motor type, bundle polarity, filament length, filament-motor
connectivity, and strength of the applied load. We demonstrate
that both unipolar and bipolar motor types (e.g., kinesin-1
and kinesin-5, respectively) efficiently sort oppositely oriented
filaments. However, only unipolar motors are found to provide
the driving force for bundle expansion, while bipolar motors
hinder this motion. The capacity of MT bundles to exert a force is
shown to depend sharply on the fraction of cross-links formed by
unipolar motors; only if a threshold fraction is surpassed can the
bundle become percolated and exert a force on the boundaries.
The dependence of this percolation threshold on the MT density
and length is presented. We also investigated the growth of MT
bundles in the presence of a constant influx of MTs. Beyond a
short equilibration period the bundles grow linearly in time. In
this (steady-state) growth regime, the growth velocity is found
to be dictated by the inward flux of MTs and the magnitude
of the opposing load, but interestingly, to be independent of
the free velocity of the motors. This is because at this stage
of growth most filaments slide with the growth velocity while
the relative velocity between filaments is small and the force
exerted by the motors approaches the maximal stall force of the
motors; similar behavior has been observed experimentally (Suter
and Miller, 2011; Roossien et al., 2014). The bundle width and
growth velocity adjust spontaneously to the load. We discuss
these findings in the context of neurite initiation and growth and
their implications for axon specification.

2. MODEL

2.1. Bundle Structure
We consider a cylindrical bundle of MTs, cross-linked by
ensembles of molecular motors and oriented along the x-axis of
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a Cartesian coordinate system (Figure 1). The bundle comprises
a total of N = NR + NL filaments of which NR point with
their + end to the right (assigned as the GC direction) and
NL point with their + end to the left (cell body direction). For
simplicity we assume that all filaments in a bundle have an equal
length, l. The filaments are arranged on a hexagonal lattice in the
y − z plane and along the bundle axis. We set the initial bundle
length to L0, and sequentially position the N filaments along the
x-axis with their centers randomly chosen between x = 0 to
x = L0 and their y, z coordinates increasing gradually from the
bundle center outward to obtain a hexagonally packed cylindrical
bundle (Figure 1B). The inter-filament spacing in the y − z
plane (∼50 nm) is assumed to allow individual molecular motors
to intervene between the filaments and cross-link them with
their respective “cargo” or “walking” domains. This architecture
allows the motors to slide the filaments past each other and to
collectively induce global changes in bundle length and force
(Chen et al., 1992; Kapitein et al., 2005, 2008; Kerssemakers et al.,
2006; Braun et al., 2009).

Axons and dendrites comprise different types of motor
proteins that may generally be classified as unipolar or bipolar
motors (Zemel and Mogilner, 2009). Unipolar motors, such as
cytoplasmic dynein or kinesin-1, possess one “walking” domain
with which it preforms a power-stroke and moves along a
filament, and one “cargo” domain, with which it binds a cargo or
another filament. Bipolar motors, such as kinesin-5, have walking
domains on both ends.

Only very little is known on how these motors organize
between adjacent MTs in dense bundles such as those of axons
and dendrites. It is generally expected that some degree of
cooperativity exists in the binding of the motors to the filaments
and that this will render the motors to locally segregate between
the filaments. As a working hypothesis, we thus assume that each
overlapping region between filaments is occupied by one type of
motor only, or is otherwise devoid of motors. This approximates
the more complex situation that may exist where different
motors occupy the same region between filaments and onemotor
type dominates due to inter-motor binding correlations. We
distinguish two generic binding arrangements of unipolar motors
to neighboring filaments (left panels Figure 1C). In one scenario,
the motors bind the filaments in an uncorrelated fashion with
their cargo or walking domains oriented randomly between
the filaments; in a second scenario, they bind the filaments in
a correlated fashion having their cargo and walking domains
oriented toward the same MT.

During bundle configuration, all possible overlap regions
between filaments are identified and their probability of being
cross-linked by unipolar or bipolar motors is determined by a
control parameter, χi, which dictates the fraction of MT overlaps
that are cross-linked by the given motor type i = {up, bp}. The
total fraction of overlaps that are populated by motors is given
by χup + χbp = χ. In the calculations presented below we
typically assumed that χ = 1, indicating that all overlapping
regions between filaments are cross-linked by motors; as would

FIGURE 1 | Schematic illustration of bundle structure. (A) Shows a side view of the bundle connectivity. MT filaments are shown as red arrows (indicating the MT

polarity), and shaded regions mark the overlap regions between them which may either be cross-linked by motors, or be unoccupied. Highlighted in black is a “central

filament,” i, interacting with its neighboring filaments. The force on any filament i is calculated by summing the contributions from all motors that interact with it (see

Equation 1); the calculation uses the overlap length between the filaments, lij , that is assumed to be proportional to the number of motors cross-linking the filaments.

The left boundary is held fixed (mimicking the dense cytoskeleton at the neurite entry), and expansion occurs to the right against an opposing load, F, arising from the

contractile actomyosin cytoskeleton in the neurite cortex. (B) Shows the hexagonal packing of filaments in a bundle cross-section (Chen et al., 1992). Each filament

potentially has six nearest neighbors in a cross section, but it may interact with more than six filaments along its length. (C) Illustrates three distinct motor-filament

configurations; see Section 2.2 for the consequences of these interaction types. Small arrows above each motor indicate the direction of the force that the motor

exerts on the filaments. Note how bipolar motors fail to exert forces between parallel filaments.
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be the case for sufficiently high density of motors in the bulk.
We nevertheless devote a whole Section (3.2) to demonstrate the
interesting role that χ may have in dilute motor systems.

During the simulation, filaments are sled by the motors they
connect to according to force-velocity relations which we detail
below. It is assumed that the motors maintain their interaction
to the filaments as long as the overlap between them exists. Once
an overlap is broken, the motors are assumed to bind elsewhere
in the bundle such that the proportion between motor types
χi remains fixed. The use of χi, although simplifies the much
more complicated thermodynamic problem of considering the
energetic tendency of the motors to populate the overlap regions
between filaments, allows us to draw important conclusions on
how a mixture of motors may affect the forces that such bundles
may exert.

2.2. Model Equations
We here derive the equations used in our simulations to calculate
the motion of filaments in the bundle. Because themotion ofMTs
in the dense bundles we discuss is essentially one-dimensional we
only consider filament movements along the x-axis and neglect
transverse (radial) forces that may arise due to interactions
with the lipid membrane or membrane-associated proteins. In
addition, in the low Reynolds number environment of the cell the
velocity of each filament is proportional to the total force exerted
on it (Howard, 2001). We thus write the following equation for
the velocity of each filament, i, in the bundle :

ξ vi = fi =
∑

j

fmi,j + f exi (1)

The first term on the right hand side (rhs), fmi = ∑

j f
m
i,j , is the

force exerted on filament i due to its motor-driven interaction
with all nearby filaments j (see Figure 1A). Each contribution,
fmi,j = fmi,j (vj − vi), depends on the relative velocity of the

two interacting filaments; the specific form of this force-velocity
relation is dictated by the type of motors and their organization in
between the filaments, as discussed below. For simplicity, linear
force-velocity relationships have been assumed; this is consistent
with experiments (Mallik et al., 2004; Valentine et al., 2006),
and generalization of this approach to more complex force-
velocity relationships is numerically straightforward. The second
term is the contribution of external forces; in our simulations it
is applicable only to filaments in contact with the boundaries.
On the left, ξ, is the drag coefficient representing the viscous
environment of filaments in the bundle. We anticipate that
ξ is significantly higher than the drag coefficient in aqueous
solution due to weak binding interactions of the filaments with
other proteins in their neighborhood; we used the value ξ =
0.023 pN s/µm per 1 µm filament based on diffusion constant
measurements reported in Tawada and Sekimoto (1991).

2.2.1. Motor Cross-bridging Types and

Corresponding Force-velocity Relations
We assume that the motors occupy the overlapping regions
between neighboring filaments with a uniform and constant
density, λ, and that the force they exert is additive and

proportional to the total overlap length lij of neighboring
filaments, see Figure 1A. Consequently, λ lij, is the mean number
of motors within this overlap. For simplicity, we assume that
motors along lij share the load equally and omit the complex
non-linear effect of indirect non-linear inter-motor interactions
(Klumpp and Lipowsky, 2005; Kunwar et al., 2008). The forces
generated by the motors are characterized by force-velocity
relationships which we specify below for the different possible
cross-bridging types.

2.2.1.1. Orientationally correlated unipolar motors
In an overlap region between filaments, unipolar motors may
be correlated, or randomly oriented as illustrated Figure 1C. In
the former case, all motors in a given overlap bind their walking
domains to one filament and their cargo domains to the other
filament. While not much is known about the orientation of
motors in the crowded environment of dense MT bundles, some
indirect evidence for such arrangement of motors exists (Haimo
and Rosenbaum, 1981; Haimo and Fenton, 1984; Vilfan et al.,
2001; Sciambi et al., 2005). In a dense interconnected bundle,
each MT filament may interact with multiple MTs at the same
time (Figures 1A,B) and the motors within each overlap region
can exert a different net force on the given filament. When
expressing the force acting on a given filament, i, it is essential
to know if the motors in an overlapping region with a filament j
are bound with their walking domains to filament i or to filament
j. The following force-velocity relationship holds when motors
bind their walking domains to filament i and cargo domains to
filament j:

fmi,j = −λlijfs

[

ni −
vj − vi

v0

]

; (2)

when the motors’ walking domains are bound to filament j one
has:

fmi,j = λ fs lij

[

nj −
vi − vj

v0

]

(3)

The factors fs and v0 are the stall force and free velocity of the
motors, respectively. nix̂ is the walking direction of the molecular
motor on the filament, e.g., a value of ni = −1 represents a
motor that walks in the negative direction of the x-axis (for
instance when a minus-end directed motor moves on a filament
that points with its minus-end toward the negative direction of
the x-axis).

2.2.1.2. Orientationally uncorrelated unipolar motors
When the binding of unipolar motor proteins to a pair of
neighboring filaments is orientationally uncorrelated, we sum the
contributions of the two populations of motors in that overlap
region; this leads to the following force-velocity relationship in
the limit of large numbers of motors:

fmi,j =
1

2
λ fs lij

[

(nj − ni)+
2(vj − vi)

v0

]

(4)

The factor 1/2 reflects the equal probability of individual motors
to bind the filaments in a given overlap with either their walking
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or cargo domains. Note that for an isolated parallel pair (i.e.,
nj = ni and no other cross-links), Equations (4) and (1) yield
vi = vj = 0, as expected, because the motor forces on each
filament cancel each other. This is in contrast to the correlated
motor binding case, in which the motors can exert significant
sliding forces on a pair of parallel filaments. For an antiparallel
pair, Equations (4) and (2) are equivalent.

2.2.1.3. Bipolar motors
The situation in this case is similar to that of uncorrelated
unipolar motors, if we assume that the two walking domains
of each motor are independent of one another. Unlike unipolar
motors, a bipolar motor can glide between the filaments with
a finite velocity, Evm = vmx̂, relative to a stationary frame of
reference. If this motor is connected to a pair of filaments {i,j},
it exerts equal and opposite forces fi = −fj. Implementing a
linear force-velocity relationship for each of the walking domains
independently yields: fi = −fs[ni − (vm − vi)/v0] and fj =
−fs[nj − (vm − vj)/v0]. We thus find a limiting equation for the

motor velocity in a pair of sliding filaments: vm = 1
2 [vi + vj +

v0(ni + nj)]. Substituting this in the expression for fi we find:

fmi,j =
1

2
λfslij

[

(nj − ni)+
vj − vi

v0

]

(5)

Note that the only apparent difference between this case and
Equation (4) above is that bipolar motors slide the filaments with
free velocity that is twice as large as that driven by orientationally
uncorrelated unipolar motors. In addition, bipolar motors
that distribute uniformly between two parallel filaments do
not exert a net force on the filaments but merely bundle
them together or act as viscous elements that slow down
their relative motion. This applies to motors that persistently
move across the filaments with constant speed, as observed
for instance for the bipolar motor kinesin-5 (Cheerambathur
et al., 2008; Kapitein et al., 2008). Because orientationally
uncorrelated unipolar motors behave similarly to bipolar motors
we discuss them interchangeably in what follows and draw
the comparison between correlated-unipolar motors and bipolar
motors.

Within an interconnected bundle each filament, i, may
have multiple cross-links with other filaments and the cross-
bridges may be of the different types discussed above; the
overall motor-generated force is calculated as a sum: fmi =
∑

j f
m
i,j . This, together with the boundary conditions discussed

below, constitute an algebraic set of linear equations for the
velocities of all the filaments in the bundle. Once the velocities
have been determined, all filaments are propagated by a small
distance, vi dt, where dt ∼ 0.2 s is a sufficiently small time
step to avoid numerical error. This results in a “trajectory”
of the filaments in the bundle that can be averaged over
an ensemble of starting configurations. Between 50 and 1000
trajectories have been averaged to characterize the mean behavior
of the bundles. For simplicity, all bundles studied comprised
either plus-end or minus-end-directed motors but not their
mixtures.

2.2.2. Boundary Conditions
In all simulations an opposing force, Fex, was assumed to act
on the right boundary to resist the motor-driven motion of the
filaments. The left boundary was assumed to be supported by
a stiff spring that sustains the same load but in the opposite
direction. We considered two types of external load: (i) a fixed
load, Fex = const, (ii) an elastic load, Fex(t) = −k[L(t) − L0],
where k is the spring constant of the compliant right boundary.
In either case, the total force Fex distributes among all filaments
touching the right boundary, and −Fex distributes over the
filaments touching the left boundary. The distribution of Fex

and −Fex amongst the different filaments on the right and
left boundaries, respectively, is not necessarily even. Rather, we
assumed that all the right boundary filaments, whose tips exceed
the boundary x = L(t), displace with equal speed, vR; and all
filaments exceeding the left boundary, x = 0, (principally) move
with equal speed vL. These conditions are formulated as follows:
For the right boundary filaments:

nR
∑

i= 1

f exi = Fex (6)

v1 = v2 = · · · = vR (7)

For the left boundary filaments:

nL
∑

i=1

f exi = −Fex (8)

v1 = v2 = · · · = vL (9)

In our simulations, we used a stiff spring on the left boundary to
prevent motion of that boundary; hence, vL ≈ 0, and the speed
of bundle expansion is given by dL/dt = vR. These conditions
supplement the set of equations, Equation (1), for the velocities
of the filaments, with nR + 1 new equations to solve for the
nR + 1 unknowns, {f exi } and vR, on the right boundary, and
nL + 1 new equations for the nL + 1 unknowns, {f exi } and vL
on the left boundary. For all other filaments f exi is identically
zero. For N filaments one diagonalizes an N × N matrix at each
iteration in time to solve for the velocities of all filaments in the
bundle.

3. RESULTS

3.1. Unipolar Motors Provide the Driving
Force for Bundle Expansion and Bipolar
Motors Hinder it
Bundles comprising a total of N ∼ 100 MTs (of which NR and
NL point with their plus-ends to the right and left, respectively),
closely packed in a hexagonal array within a cylinder of axial
length L0 = 50µm, were simulated subject to an opposing spring
on the right boundary and a fixed boundary on the left; the total
force generated by the bundle is F(t) = k[L(t) − L0], where
L(t) is the evolving bundle length and k is the external spring
constant.
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Figure 2A illustrates the calculated evolution of L(t) and
F(t) in mixed bundles of filaments that are cross-linked by
different ensembles of motors. Blue curves correspond to bundles
with unipolar cross-bridges only, purple curves to bundles with
bipolar cross-bridges only, and black curves to bundles with
a 50% mixture of unipolar and bipolar cross-bridges; solid,
dashed and dotted curves respectively represent different polarity
ratios, NR/N = 1, 0.2, 0.5, of filaments in the bundle. Bundles
comprising unipolar cross-bridges only (blue curves) are shown
to exert the strongest steady state forces, and the addition
of bipolar motors hinders force generation. Between parallel
filaments, bipolar motors behave as transient cross-linkers and
thereby hinder movement and force generation. Bundles cross-
linked by these motors only, may only expand for a limited
time until the bundles get sorted apart and motion stops (purple
curves).

When interacting with anti-parallel filaments, both unipolar
and bipolar motors have a tendency to sort the filaments
apart (Zemel and Mogilner, 2009). The filaments are eventually
sorted into two separate domains of parallel filaments, one
comprising only right-oriented filaments, and the other only left-
oriented filaments, with a transition zone between them. The
inset in Figure 2A provides a quantification of the dynamics of

sorting. An order parameter, S(t) = (N L(t))−1
∫ L(t)
0 |nR(x, t) −

nL(x, t)|dx, has been defined to average the local polarity of
the bundle (namely, the local difference between the number of
right- and left-oriented filaments, |nR(x, t)−nL(x, t)|/N) over the
bundle length at any given time; S = 1 corresponds to a bundle
that is locally parallel across its length, and S = 0 to a bundle that
is locally mixed everywhere. The panel shows that sorting occurs

on a time scale of∼10 s and that bipolar motors sort the filaments
faster. Consequently, only the initial expansion dynamics depend
on the bundle polarity, NR/N, while the steady-state force and
length are polarity-ratio independent (compare dotted, dashed
and solid curves in Figure 2A). We find that the time to reach
the stationary state for the (50%) orientationally-mixed bundles
(dotted curves) is longer than for the more polar ones. In the
mixed bundles, the initial sorting of filaments reduces the force
that can be generated against the boundary. This is because
filaments that undergo sorting move faster and contribute less
to force generation; as a consequence the bundle expands more
slowly1.

Figure 2B shows the calculated steady-state force, Fss, for
bundles with varying fractions of bipolar cross-bridges. We find
that the exerted steady-state force is a monotonically decreasing
function of the fraction of bipolar cross-bridges. Interestingly, as
soon as the fraction of bipolar cross-bridges surpasses a critical
value, the force exerted by the bundle sharply decreases to zero
(this is more clearly seen with the dashed-blue curve plotted for
bundles with 5µm long filaments in which the sharp change
occurs at a smaller value of χbp ≈ 0.8). The sharpness of
this transition and the critical value of χbp increase with the
number of filaments and their length. The sharp transition and

1Calculations are presented for equal stall force for the bipolar and unipolar

motors. When the bipolar-motor stall force is increased, only the dynamics of

bundle expansion is affected but there is no effect on the steady-state force; Fss
is dictated by the stall force of unipolar motors (see Section 3.3). Because bipolar

motors sort the filaments faster, sorting occurs more quickly when their stall force

exceeds that of the unipolar motors, but the time to reach the steady-state is

prolonged due to the increase in the viscosity of the bundle.

FIGURE 2 | Dynamics of bundle expansion and force generation, shown for varying polarity ratios of filaments and fraction of bipolar cross-bridges.

(A) Shows the evolution of bundle length (left y-axis) and force (right y-axis) for different fractions of bipolar cross-bridges, χbp, and different polarity ratios, NR/N; the

number of filaments is N = 100. Blue curves correspond to bundles comprising unipolar cross-bridges only (χbp = 0), black curves are for a 50:50 mixture of bipolar

and unipolar cross-bridges (χbp = 0.5), and purple curves are for bundles with bipolar cross-bridges only (χbp = 1). Solid, dashed and dotted curves correspond to

polarity ratios: NR/N = 1,0.2,0.5, respectively. Bundle polarity is found to have a minor effect on the expansion dynamics and no effect on the steady state force. The

inset shows the dynamics of filament sorting in mixed bundles (NR/N = 0.5) as quantified by the order parameter S(t) (defined in the text); S = 0 is found for a bundle

that is locally mixed across its length, and S = 1 is found for a bundle that is locally parallel all along. S(t) evolves to ∼1 on a time scale of ∼10 s, with bipolar motors

being more efficient. Consequently the steady-state force, Fss, is determined by forces exerted in parallel bundles and is independent of the bundle polarity. (B)

Shows Fss as a function of the fraction of bipolar cross-bridges for varying numbers of MTs. The same stall force is used for both unipolar and bipolar motors and Fss

is found to be proportional to λ fs (see Section 3.3). The MT length in all curves of (A,B) is 10µm, except for the dashed blue curve in (B) which is for l = 5µm. Note

the sharp drop in bundle force as the bipolar motor fraction surpasses the value χbp ≈ 0.8 (indicated by a black arrow). Other parameters used in these calculations

are: v0 = 1µm/s, L0 = 50µm, k = 10pNµm, χ = 1.
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the dependence on system size are reminiscent of a percolation
transition occurring in the bundle. Since bipolar motors do
not exert sliding forces between parallel filaments (Equation 5),
but rather behave as passive frictional elements between them,
they are unable to sustain long-term stresses in the bundle.
Thus, a system with a high fraction of bipolar cross-bridges
and low fraction of (orientationally correlated) unipolar cross-
bridges may become disconnected from one side to the other
and long-term forces cannot be generated in such bundles. For a
sufficiently large number of filaments, this so-called percolation
transition occurs at a critical fraction of active overlaps in the
bundle that depends on the density of filaments and their length,
as discussed next.

3.2. Percolation Transition Dictates a
Motor-density Threshold for Force
Generation
To demonstrate that the sharp changes in force generation
indeed result from a percolation transition we have directly
calculated the percolation probability, p, in bundles containing
unipolar motors only and systematically varied the connectivity
parameter, χ (see Figure 3). p is defined as the probability for
the bundle to be percolated, namely, that at least one route of
interconnected MTs transverses the bundle from left to right
and allows the transmission of force to the boundaries. To
calculate this probability numerous bundle configurations were
generated with fixed numbers of MTs of same length, l, and
fixed connectivity fraction, χ (the number of overlaps cross-
linked bymotors divided by the total number of overlaps between
neighboring filaments); we also used a relatively stiff spring
to prevent significant bundle expansion and thereby kept the
density of filaments, N/L, fairly constant. For each configuration
we determined whether the bundle was percolated or not. p was
then determined as the number of percolated bundles divided by

the total number of configurations generated, and we investigated
it as a function of N/L, l, and χ.

Figure 3A shows the percolation probability, p, as function
of the connectivity fraction, χ, for varying MT densities N/L.
Figure 3B shows the calculated force exerted by the bundle.
Since expansion was minor, the calculated force was also the
steady-state force. As expected, the point at which the force
increases sharply with χ is the point where the percolation
probability increases sharply to 1. We denote this percolation
threshold by χc. The inset figure in Figure 3A shows that χc is
a decreasing function of the MT density and MT length. This
result is expected since the longer the filaments, or the higher
their density, the more likely it is to find an interconnected
route of filaments that transverses the bundle. Another expected
behavior is that the percolation transition becomes sharper
and resembles a phase transition as the system size (number
of filaments) increases (Stauffer and Aharony, 1992). The
percolation threshold is a structural property of the bundle
reflecting the hexagonal organization of the filaments in the
y − z plane and their axial spread along the x-axis. We find
that χc varies from ∼0.08 for 50 filaments to ∼0.04 for 150
filaments in case that l = 10µm, and correspondingly between
0.1 and 0.2 when l= 5µm. For comparison, the bond-percolation
threshold is 0.34 for a two-dimensional triangular lattice and
0.25 for a three-dimensional cubic lattice (Stauffer and Aharony,
1992).

Interestingly, the percolation thresholds calculated in
Figure 3A are consistent with those found in the previous
section when the fraction of bipolar cross-bridges was varied
systematically, indicating that the sharp decrease in force with
χbp = 1 − χup resulted from a percolation transition. Another
consequence of the percolation transition has been reported in
our previous investigation of circularly-closed ringed bundles. It
has been demonstrated that beyond a threshold level of bundle
connectivity the induced velocity of the filaments sharply drops

BA

FIGURE 3 | Percolation transition in cross-linked bundles of filaments. (A) Shows the percolation probability, p (of a bundle of fixed length L ≈ L0 to be

interconnected from left to right), as a function of the fraction of active cross-links, χ, for different numbers of MTs (color coding is indicated in B). The percolation

probability is seen to sharply increase to ∼1 when a critical fraction χc is surpassed. The inset figure shows that χc is a decreasing function of the filament density,

N/L and length, l. (B) Shows the steady-state force, Fss, as a function of χ for different N. Solid curves correspond to l = 10µm and the dashed blue curve to l =
5µm. Note the sharp increase in Fss when χ surpasses the percolation threshold, χc, that is found in (A). Parameters used in these calculations: L0 = 50µm,

λfs = 10 pN/µm, k = 10pN/µm.
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down due to interference of motor activity (Zemel and Mogilner,
2009).

The demonstration that interconnected bundles of MTs
may undergo a sharp transition in their capacity to generate
a force with variations of unipolar motor density may have
important implications for neurite initiation and growth. During
neuronal development force thresholds must be met to permit
initial neurite extension and axon specification (Heidemann
and Buxbaum, 1993; Chada et al., 1997; Fass and Odde,
2003). Following initiation, neurites undergo rapid growth and
retraction cycles. Subsequently, one neurite starts rapid growth
and becomes the axon. We suggest here that availability of
unipolar motors at the cell periphery might be one of those
limiting factors; once it surpasses a critical threshold, MT bundles
in that region can become percolated and neurite initiation may
proceed.

3.3. Scaling Laws of Force Generation in
Bundles with a Fixed Number of Filaments
Another important characterization of cytoskeleton-motor
bundles is the relation between the bundle geometric
characteristics, diameter and length, and the force that it
generates. We concentrate here on forces generated in bundles
with a fixed number of filaments; growth arising from an influx
of filaments will be discussed in the next section. Because the
MTs overlap, the generated force not only depends on the
number of filaments in a cross section, but also on the mean
overlap length between them. We shall therefore also reveal
how the force/length relation depends on the MT length, l, and
the motor connectivity factor, χ. The relationships discussed
here pertain to the steady-state where bundle length and force
are stationary. For clarity, we omit the subscript indication of
the steady-state and denote the steady-state force and length
by F and L, respectively. The following simulations have been
carried out: (i) Bundles with a fixed number of MTs, N, were
allowed to expand against an opposing spring with varying
degrees of stiffness and the resulting steady state length and
force were measured. We performed these calculations in
bundles comprising MTs of different lengths and with variable
degrees of the motor connectivity parameter χ (Figure 4A).

(ii) We used a stiff spring to prevent changes of bundle length
and carried out simulations with varied N (Figure 4B) or l
(Figure 4C). In a given simulation all MTs had the same length.
Since bundle polarity showed only little effect on the dynamics
of bundle expansion and had no effect on the steady-state force,
all simulations were carried out with polar bundles. Our results
can be summarized via the following scaling relation:

F (L,N) /(λfs) ∼
√

χ l2N/L2 (10)

with the geometric relation:

L d2 ∼ N l (11)

where d is the bundle diameter. The scaling expressed in
Equation (10) is demonstrated in Figure 4, showing F separately
as function of L, N, and l. The scaling of F with

√
χ is seen in

Figure 3B for χ > χc. To explain these dependencies we first
note that for any given cross-section in the bundle the force scales
as, F ∼ λ l̄ov m̄, where m̄ is the mean number of MTs in a cross
section, λl̄ov is the mean number of motors interacting with a
given filament and l̄ov is the total average length of overlap per
filament. We find in our simulations that l̄ov ∼ l/L. The inverse
dependence on bundle length reflects the increase in number of
interactions per filament with bundle compression; the square
root dependence on χ follows because for a given cross section
with m filaments around a given filament, ∼ m2 is the total
number of pair interactions and χm2 is the fraction of those
occupied by motors; hence only

√
χm interact with one given

filament in that cross section. Combining these relations, using
Equation (11) and noting that m̄ ∼ d2 one arrives at the scaling
in Equation (10).

3.4. Inward Microtubule Flux and Bundle
Growth Against a Load
We now consider the growth of MT bundles in the presence
of a constant influx of filaments. This is relevant for growing
neurites that extend over considerable distances and thus require
a constant supply of new MTs. Experiments have demonstrated
that the application of a pulling load on the cell membrane of

FIGURE 4 | Scaling laws in MT bundle force generation. The three panels show the steady-state force as function of: (A) the steady-state bundle length, (B) the

number of MTs, and (C) the MT length. Solid lines represent best fits of the denoted scaling law to the calculated data. These results are summarized in Equation (10),

see text. Parameters used in the calculation: λfs = 10pN/µm, χup = 1; in (A,C): N = 300; in (A,B): l = 10 µm.
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neurons may initiate axon growth if a threshold level of force is
applied. Moreover, this growth rate has been shown to linearly
increase with the applied load (Zheng et al., 1991; Chada et al.,
1997; Fass and Odde, 2003). Motivated by these results we have
carried out the following simulations to investigate the properties
of bundle growth under varying levels of opposing load when a
constant supply of filaments is added per unit time. MT bundles
were prepared with a starting number of N0 = 100 filaments
and initial length L0 and new filaments of length l were added
at a constant frequency, ω, on the left hand side of the bundle;
the bundles were allowed to expand against a fixed load, F on
the right boundary and a stiff spring on the left boundary. The
simulations were carried out with varying levels of F (Figure 5B),
and ω (Figure 5C); we also investigated the effects of the MT
length, l (Figure 5D), and the fraction of bipolar cross-bridges
in the bundle χbp (Figure 5E), assuming that all MT overlaps
are occupied, either by unipolar motors or by bipolar motors
χbp = 1− χup.

The growth dynamics for varying load levels are shown in
Figure 5A. After a short period during which the filaments adjust

the overlap between them against the load, growth continues
linearly in time at a constant speed, vg = (dL/dt)ss. At this
state, both the mean number of filaments in a cross-section, m̄,
and the mean overlap length between filaments remain fixed.
Figures 5B–E, respectively show how vg depends on the applied
load, F, the inward flux rate, ω, the microtubule length l and
the fraction of bipolar cross-bridges in the bundle, χbp. We
find that the growth rate scales as: vg ∼ ω

√
χup lα/F, where

α varies from α = 1.8 for short MTs to α = 0.8 for long
MTs at some intermediate MT length (here, l ≈ 25µm) that
decreases/increases with decreasing/increasing stall force of the
motors.

These dependencies can be explained based on the geometric
relation, L = N l/m̄, expressed in Equation (11), where m̄ ∼ d2.
Taking the time derivative of the equation above while keeping
m̄ fixed results in the following intuitive expression for the
steady-state bundle growth rate vg :

vg =
ω l

m̄
(12)

FIGURE 5 | Dynamics and mechanics of bundle growth against a constant opposing load when a constant supply of MTs is added on the left

boundary at a fixed frequency, ω. (A) Shows the evolution of bundle length, L(t), for different levels of opposing load. Beyond a short equilibration period, the

bundles grow linearly in time and a constant velocity vg can be defined. The steady state growth rate, vg, is shown in (B–E) as a function of the opposing load, F, the

influx frequency ω, the MT length, l, and the bipolar cross-bridge fraction χbp. Solid lines in panels B and E provide best fits to the simulation data. vg is found to

decrease with the load as F−0.8 (B), and to linearly scale with ω (C). The inset in (B) shows velocity distributions of the filaments for F = 50 pN and F = 200 pN

(circled dots in the main panel). The peak velocity equals vg, implying that most filaments move as one mass with the growth velocity. The dependence of vg on

filament length (D) is biphasic: changing from vg ∼ l1.8 for short MTs (l < 25µm, blue curve) to vg ∼ l0.8 for longer MTs; the transition point (dotted black line) depends

on the stall force of the motors, see text. Interestingly, vg is seen to rise above the motor free velocity, v0 = 1µm/s, illustrating that the bundle can grow much faster

than individual motors are able to move. Increasing the amount of bipolar motors in the system decreases the growth velocity severely and finally halts growth for

χbp = 1. Unless otherwise mentioned we used N = 100, L0 = 50 µm, ω = 0.1 s−1, l = 10µm, χup = 1, v0 = 1µm/s, and λfs = 10pN/µm. In (D), L0 = 120µm to

allow longer filaments to be explored. In (D,E), we used F = 200pN.
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where ω = dN/dt. The added MT mass per unit time,
ω l, distributes over the bundle cross section m̄, to produce a
unit change in bundle length. Interestingly, m̄ turns out to be
proportional to F, which means that during growth the bundle
adjusts its cross-section to match the number of filaments that
share the load. Moreover, we find that the proportionality factor,
F/m̄, scales linearly with the motor density (per unit filament
length, λ) and stall force of the motors, and as the square root
of the unipolar cross-bridge fraction: F/m̄ ∼ λ fs

√
χup. The

F/m̄ ratio reflects the number of motors that share the load
per filament in a cross section. The square root dependence on
χup arises because the number of active overlaps driving a given
filament scales in this way, as previously explained in Section 3.3.

The proportionality factor between F and m̄ depends in a non-
trivial way on the MT length. For short MTs, m̄/F decreases with
l and for long MTs it increases smoothly with l (not shown). This
reflects the manner by which the filaments in the bundle adjust
their interactions in response to the load. There are principally
two ways in which they can do so: (i) by increasing the average
overlap between pairs of filaments, and (ii) by increasing the
number of filaments in a cross-section, m̄. For short enough
MTs, only the latter choice is possible, hence m̄ decreases with
l. For long MTs, (i) and (ii) provide two degrees of freedom
for achieving force balance, hence m̄ depends weakly on l. This
behavior predicts an interesting dependence of bundle width
on the MT length. In addition, it provides an explanation for
the sigmoidal dependence of the growth rate, vg , on l, which
shows an approximately quadratic dependence for short MTs,
followed by a (nearly) linear dependence for long MTs, as shown
in Figure 5D. The transition between these two scaling regimes
depends on the stall force of the motors. The larger the stall force
the better the filaments can sustain the load without increasing
the number of filaments in a cross section, m̄. Consequently, the
transition point shifts to lower values of l when λfs is increased.

Summarizing these considerations we conclude:

vg ∼
λfs

√
χup ωlα

F
(13)

where α ≈ 1.8 for short MTs and α ≈ 0.8 for longer MTs and the
transition occurs at some intermediate MT length that decreases
with the stall force of the motors.

The inset of Figure 5B show the velocity distribution of
filaments in the bundle for two cases of opposing force (50
and 200 pN). Notably, most filaments are found to move with
the growth velocity, vg . This implies that during steady-state
growth the relative velocity between most filaments is zero.
Although some filaments do continue to perform back and
forth movements along the bundle length, the majority of them
remain stationary with respect to each other and are collectively
pushed as one mass at a constant velocity vg . In this situation,
most motors are stationary, exerting their maximal stall-force fs.
A remarkable consequence of this behavior is that the growth
velocity of the bundle is independent of the free velocity of
the motors, despite the fact that the entire motion is driven
by motor activity only. Another important prediction is that
the velocity distribution of filaments becomes wider when the
opposing force is increased. The reason is that under conditions
of larger force, the number of filaments in a cross-section is larger
and this increases the diversity of possible interactions between
filaments. As a consequence a wider range of filament velocities is
found.

These results are consistent with experimental observations
on neural growth. It is frequently reported that MT filaments in
axons and dendrites are mostly stationary and that growth is in
the range of 1µm/min, an order of magnitude slower than the
free velocity of typical motor proteins (Howard, 2001; Suter and
Miller, 2011). According to our calculations the growth velocity
is primarily dictated by the inward flux of filaments and the load
acting on the bundle. This is consistent with the experimentally
determined linear dependence of the growth rate on an external
pulling load. This is because external pulling of the neurite tip
relieves the opposing force acting on the growing MT bundle
(see Figure 6). In a restricted range of loads, the scaling of vg
with F appears linear (see Figure 5B for F & 200 pN) which
might explain the reported experimental observations (Zheng
et al., 1991; Chada et al., 1997; Fass and Odde, 2003). The
threshold level of force (not to confuse with the percolation
transition in Section 3.2) for axon initiation may relate to a
number of factors, e.g., to the densities of MTs and/or the
unipolar motors at the cell periphery, which limit the force that
emerging bundles can spontaneously exert against the restoring
forces in the plasma membrane and the underlying actin
cytoskeleton.

FIGURE 6 | Elements of force balance during neurite growth. Our major focus is on the motor-cross-linked MT bundle at the neurite core. The opposing force

on the neurite, F, arises from actively generated actomyosin tension, TCX , in the neurite cortex, and is biased by the GC-generated tension, TGC . Actomyosin, force

dipoles embedded in the cortex are illustrated with small double headed arrows. Also shown is the inward flux, ω, which is found to play a primary role in determining

the neurite growth rate, vg.
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4. DISCUSSION

In this manuscript we focused on a major cytoskeleton

structure contributing to the force balance of emerging neuronal

processes—the heavily cross-linked MT bundle(s) in the neurite
core. While there is ample evidence that both the MT filaments

and the motor proteins associated with them are essential

for axon elongation (Suter and Miller, 2011; Dehmelt, 2014),
there is limited understanding of how these 1D molecular
assemblies function. The major limitation in investigating these

structures is their small size and their highly dense and compact
architecture, which impedes quantitative imaging and analysis
of their structure. Furthermore, there is also limited theoretical
understanding of how assemblies of molecular motors and
cytoskeletal filaments function collectively. We here used coarse-
grained computer simulations to investigate the dynamics and
force generation properties of such bundles. Our work, although
presented in the context of axon initiation and growth, is relevant
also for many other cellular processes in which such bundles
play a key role, such as mitosis, blood platelet formation, and
apoptosis (Scholey et al., 2003; Patel et al., 2005). The approach
we took is intermediate between detailed computer simulations
(Nédélec, 2002; Mogilner et al., 2006; Paul et al., 2009; Kim,
2014; Bidone et al., 2015; Ward et al., 2015), in which the
motion and power-stroke dynamics of all individual motors
are accounted for explicitly, and continuum approaches (Kruse
and Julicher, 2000; Kruse et al., 2003; Liverpool and Marchetti,
2003; Ziebert and Zimmermann, 2005), which account for
the motor-induced fluxes of filaments in an average manner,
and in which only pairs of interacting filaments are taken
into consideration. Our approach enabled us to investigate the
dynamics exhibited by heavily cross-linked bundles of filaments.
Rather than representing the motors individually, we used the
force-velocity relationships that characterize their motion, and
we did so simultaneously for all overlapping regions between
filaments that are cross-linked by motors. This approach allows
to simulate the dynamics of such bundles on an hours time
scale (which is relevant for neurite growth) and to average over
ensembles of trajectories in order to reveal some of their generic
properties.

We first used our simulations to investigate how the motor
type, unipolar or bipolar, the polarity ratio of the filaments, and
the bundle connectivity affect the capacity of these bundles to
exert a force. We found that both types of motors efficiently sort
out oppositely-oriented filaments. Within seconds to minutes,
the bundles get sorted and the dynamics become dominated by
interactions between parallel filaments. Thus, the polarity ratio of
the bundle has only a marginal effect on the dynamics of bundle
expansion and no effect on its force generation capacity in the
steady-state. Furthermore, our simulations robustly showed that
only unipolar motors can provide the driving force for bundle
expansion while the presence of bipolar motors impedes it. This
result is expected since bipolar motors are unable to exert a force
between parallel filaments, see Equation (5) and (Kapitein et al.,
2005). In addition, the presence of bipolar motors in the bundle
competes with the binding of unipolar motors to the filaments,
and due to the reduced occupancy of the latter they slow down

bundle expansion and weaken overall force generation. This is
shown in Figure 2B, where the effect of χbp is demonstrated.

Importantly, we conclude that unipolar motors can drive
bundle expansion only if the motors bind the filaments in an
orientationally coordinated fashion (Figure 2B). If these motors
randomly bind the filaments they exert a similar inhibitory effect
on bundle expansion as bipolar motors do (cf. Equations 4 and 5).
Our calculations may thus provide insight into the orientational
organization and type of motors responsible for force generation
in the dense MT bundles of neurites. Such information on the
binding of dynein and kinesin-1 motors in the MT bundles of
neurites or other cellular structures is, however, still lacking.
Evidence for correlated binding of dynein to MTs has been
reported in some in vitro studies (Haimo and Rosenbaum, 1981;
Haimo and Fenton, 1984). Orientational correlation in unipolar
motor binding to filaments may arise from steric or specific
interactions between the motors and between the motors and
the filaments. We hypothesize that it may also arise from a
force-dependent binding rate of the motors. Because oppositely
oriented motors between parallel filaments hinder each others’
motion, the forces exerted by the motors are enhanced; this may
cause the motors to detach from the filaments and to rebind with
higher affinity in a correlated fashion. To test this hypothesis,
we carried out preliminary calculations using the Cytosim
simulation package [46], which allows to track the dynamics
of individual molecular motors in small clusters of filaments.
Our calculations indicate that force-dependent detachment rates
of motors indeed lead to their spontaneous organization in a
correlated fashion between the filaments.

Our conclusions are consistent with experiments highlighting
the role of the unipolar motors, cytoplasmic dynein (Ahmad
et al., 2000; Roossien et al., 2014) and kinesin-1 (Lu et al., 2013,
2015) in neurite initiation and growth, as well as with studies on
kinesin-5, a bipolarmotor, that has been shown to have inhibitory
effects on neurite growth (Haque et al., 2004; Myers and Baas,
2007; Falnikar et al., 2011). Kinesin-5 has been suggested to play
an important role in steering the motion of the GC. In that
region, kinesin-5, has been shown to prevent MTs from entering
filopodia and impede themovement of the filaments they connect
to, thus causing other MT bundles to forcefully orient the GC
(Nadar et al., 2008).

We have furthermore demonstrated a sharp dependence of
bundle force generation on the motor connectivity parameter, χ
(Figure 3A), and equivalently, on the fraction of unipolar cross-
bridges, χup, in a mixture of unipolar and bipolar motors. Below
a critical value, χc, the fraction of overlapping MTs that are
cross-linked by motors is not sufficient to form a percolated
bundle; hence forces cannot be transmitted across the bundle to
extend it forward. The likelihood of the bundle to be percolated
drops sharply below χc (Figure 3B). This behavior, known as a
percolation transition (Stauffer and Aharony, 1994), may play
an important role in neurite initiation and axon specification.
It has been shown that prior to axon specification, kinesin-1 (a
unipolar motor) accumulates at the tip of the emerging neurite
that eventually becomes the axon, Jacobson et al. (2006); it is
absent in the tips of the other neurites that grow slower and later
turn into dendrites. It is tempting to speculate that the sudden
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rise in kinesin-1 concentration at the tip of the future axon
enables the MT-connectivity to surpass the percolation threshold
necessary for the neurite to expand against themechanical barrier
of the actomyosin cortex, and thereby trigger a rapid growth
phase that eventually leads to axon specification.

Variations in χup may arise due to the presence of bipolar
motors and other MT-associated proteins (MAPs) which may
compete with unipolar motor binding. In addition, variations in
χup may arise due to the effects of MT binding proteins on the
inter-filament spacing. MAPs vary in size, ranging from 80kDa
(tau protein) to 200kDa (MAP2). Larger MAPs have been shown
to increase the spacing between MT filaments in neurites (Chen
et al., 1992; Mukhopadhyay and Hoh, 2001). Tau is enriched in
axons, while MAP2 is mostly expressed in dendrites (Bernhardt
and Matus, 1984; Kosik and Finch, 1987). Thus, axons have
much shorter inter-filament spacing (∼25 nm) than dendrites
(∼60 nm) (Chen et al., 1992). Small spacing between filaments,
through enrichment of tau over MAP2, can thus facilitate the
cross-linking of MTs by motors and cause χ to surpass the
percolation threshold χc and thereby facilitate axon elongation.
This might also explain how Tau contributes to inducing axon-
like structures in Sf9 cells (Baas et al., 1991).

Our simulations allowed us to reveal generic scaling laws
for the dependence of MT bundle force on the bundle length.
One of the factors that strongly influences this dependence
is the MT length, l. We find that for bundles that expand
with a fixed number of filaments, F ∼ l2. This dependency
may be of importance during axon initiation and regeneration.
Stabilization of MTs in neurites of primary cultures is known
to precede cell polarization and axon growth. Furthermore, fast
MT polymerization correlates with faster outgrowth (Baas and
Ahmad, 1993; Witte et al., 2008; Lu et al., 2013). According to
our predictions, the force exerted by bundles with long and stable
MTs increases quadratically with the MT length, thus selective
stabilization in one neurite could lead to enhanced neurite
outgrowth and axon formation. These results may shed light on
the striking recent demonstrations that the MT stabilizing drugs
Taxol (Hellal et al., 2011) and epothilone B (Ruschel et al., 2015)
may promote axon regeneration after spinal cord injury.

Finally, in the last RESULTS section, we considered the growth
of MT bundles when a constant supply of MTs is added to
the bundle per unit time; this is relevant for neurites in their
growth phase (after initiation). The quantity ω l in Equation (12)
dictates the rate of (net) MT mass addition into the bundle.
During growth, this mass can either distribute across the bundle
cross-section or contribute to elongation. We found that the
bundles maintain a uniform number of filaments per cross-
section, 〈m(x)〉 ≡ m̄, along their length (with slight variations
near the fixed left boundary). This number, which reflects the

width of the bundle, is determined by the load acting on the
bundle. We find that m̄ does not alter during steady-state growth
and that it scales linearly with the opposing force on the bundle,
m̄ ∼ F. Thus, a load acting on the bundle determines its width
during steady-state growth. This is consistent with experiments

that have shown that the number of MTs per cross-section
in developing axons remains constant during different growth
stages (Baas et al., 1989). Hence, the overall caliber of the MT
bundle remains unchanged in pre-synaptic axons.

In Figure 6 we have schematically illustrated a few elements
that are believed to play a major role in the force balance of
growing neurites (Suter and Miller, 2011). The cross-linked MT
bundles found in the neurite core act against an actomyosin-
filled cortex, that in turn connects to the “towing” machinery of
the GC. Within the cortex, myosin II motors generate a tensile
load, TCX , whose contribution along the x-axis is F. GC motility
and actomyosin forces in this cellular domain produce elastic
tension, TGC , at the cell front. The larger TGC , the weaker is the
load F on the bundle, and consequently the neurite can grow
faster. Additionally, F can be reduced experimentally by external
pulling. In that case, TGC is replaced by the applied force and
consequently vg increases as observed experimentally (Zheng
et al., 1991; Chada et al., 1997; Fass and Odde, 2003).

These conclusions may provide important insight into the
different functions of the MT machinery in axons and dendrites.
Our predictions may also be applicable to other systems in
which MT bundles play a key role, such as in the mitotic
spindle of dividing cells, or within the pro-platelet shafts
emanating frommegakaryocytes during platelet formation (Patel
et al., 2005). In vitro studies, which allow control of the MT
density, bundle size, MT length distribution, and motor type,
will be invaluable to test the scaling laws described in this
manuscript.
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