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Stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor localized in the
cytosol, mitochondria and nucleus. Its expression is upregulated upon macrophage
activation and cellular stress. Mutations in the gene of stefin B are associated with
the neurodegenerative disease known as Unverricht-Lundborg disease (EPM1). It was
reported that early microglial activation precedes neuronal loss in the brain of the stefin
B-deficient mice, implying a role of the inhibitor at the cross-talk between microglia
and cerebellar cells. Detailed analysis of microglial activation in stefin B-deficient
microglia showed a significantly higher proportion of both pro-inflammatory M1 and
anti-inflammatory M2 microglia in stefin B-deficient mouse brain compared with control
mice. In our recent work, we demonstrated that stefin B-deficient mice were significantly
more sensitive to the lethal lipopolysaccharide (LPS)-induced sepsis, due to increased
caspase-11 expression and secreted higher amounts of pro-inflammatory cytokines IL-
1β and IL-18. Upon LPS stimulation, stefin B was targeted into the mitochondria, and the
lack of stefin B resulted in the increased destabilization of the mitochondrial membrane
potential and mitochondrial superoxide generation. The increased caspase-11 gene
expression and better pro- inflammatory caspase-1 and -11 activation determined
in stefin B deficient bone marrow-derived macrophages resulted in enhanced non-
canonical inflammasome activation. Since signaling pathways in macrophages could
be compared to the ones in microglia we propose that inflammasome activation could
play an important role in the pathogenesis of EPM1.
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INTRODUCTION

Inflammation is a protective and tightly regulated immune response to tissue damage or pathogen
invasion (Chovatiya and Medzhitov, 2014). In the central nervous system (CNS), this process is
known as neuroinflammation and is characterized by the activation of the microglia and astrocytes
population (Aguzzi et al., 2013). The innate immune response is triggered upon the recognition of
pathogen-associated molecular patterns (PAMPs), derived from invading pathogens, and danger-
associated molecular patterns (DAMPs), induced as a result of endogenous stress, by pattern-
recognition receptors (PRRs; Akira et al., 2006). Activation of PRRs by PAMPs or DAMPs triggers
signaling cascades that promote gene transcription by nuclear factor-κB (NF-κB), activator protein
1 (AP1), and interferon regulatory factors (IRFs) and results in the production of pro-inflammatory
cytokines, interferons, and other pro-inflammatory proteins (Akira et al., 2006; Kawai and Akira,
2009). DAMPs correspond to endogenous ligands that are released by dying or damaged cells after
cellular stress and can be recognized by PRRs such as membrane-bound toll-like receptors (TLRs)
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or cytosolic nucleotide-binding domain and leucine-rich repeat-
containing (NLR), the RIG-I-like receptor (RLR), the AIM2-like
receptor (ALR; Medzhitov, 2007; Moresco et al., 2011; Franchi
et al., 2012).

In the CNS, PRRs are primarily expressed by microglia,
macrophages and astrocytes. These receptors are either
membrane-bound and sense extracellular or endosomally
located signals (TLRs) or are located within the cytoplasm and
sense intracellular signals (NLRs). Recently, it was proposed
that TLRs have an important role in the crosstalk between
neurons and glial cells in the CNS. TLR signaling was linked
to neurogenesis, it was also found to be involved in the
pathogenesis of neurodegenerative diseases (Heneka et al.,
2014). Only cytosolic receptors are involved in the formation
of inflammasomes. The inflammasome is an intracellular
multimolecular complex for the activation of inflammatory
caspases-1 and -11 which leads into the cleavage and secretion
of IL-1β and IL-18 and cell death called – pyroptosis (Martinon
and Tschopp, 2007; Lamkanfi and Dixit, 2014). Caspases-1 and
-11 both induce pyroptosis, but only caspase-1 processes IL-1β
and IL-18 (Kayagaki et al., 2011). The nucleotide binding and
oligomerization domain-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome, which is composed of
NLRP3, the adaptor molecule apoptosis-associated speck-like
protein containing a caspase recruitment domain (ASC) and
the cysteine protease caspase-1, is one of the most studied
inflammasomes with responses to various endogenous and
exogenous danger signals (Latz et al., 2013). The priming step,
that up-regulates NLPR3 pro-IL-1β gene expression, provides
TLR signaling (Bauernfeind, 2009). Once primed, NLRP3 can
respond to its stimuli and assemble the NLRP3 inflammasome.
Stimuli that induce NLRP3 inflammasome assembly include
ATP, pore-forming toxins, crystalline substances, nucleic acids,
hyaluronan, and fungal, bacterial, or viral pathogens (Latz
et al., 2013; Lamkanfi and Dixit, 2014). It has been proposed
that phagocytosis of crystalline or particulate structures triggers
lysosomal destabilization and subsequent release of the lysosomal
cathepsins into the cytosol, and subsequently activates NLRP3
inflammasome (Halle et al., 2008). However, it is not known yet
if the cathepsins interact directly with the inflammasome or the
process involves molecules activated by the cathepsins. Recent
studies have revealed a role for reactive oxygen species (ROS) of
mitochondrial origin in the promotion of NLRP3 inflammasome
activation (Nakahira et al., 2011; Zhou et al., 2011). Several
reports showed that caspase-8 localizes and binds to ASC
specks, indicating that caspase-8 is an important component
of the inflammasome complex (Man, 2013; Sagulenko, 2013).
In addition to the canonical [lipopolysaccharide (LPS) and
ATP] NLRP3 inflammasome activation, a non-canonical
inflammasome activation was described (Kayagaki et al., 2011;
Rathinam et al., 2012; Broz and Monack, 2013). Canonical
inflammasomes convert procaspase-1 into the catalytically active
enzyme, whereas an undefined non-canonical inflammasome
promotes activation of procaspase-11 (Lamkanfi and Dixit,
2014). The mouse caspase-11 (gene name Casp4) has 46%
similarities to caspase-1 and is orthologous to human caspases-4
and -5 (Wang et al., 1996; Kajiwara, 2014). Non canonical

inflammasomes could be activated by Gram-negative, but not
by Gram-positive, bacteria, indicating that a specific factor
from Gram-negative bacteria – LPS is required (Broz et al.,
2012; Rathinam et al., 2012). In addition, caspase-11 detected
intracellular LPS and some intracellular bacteria, directly
mediate cell death and IL-1α secretion by a TLR4-independent
mechanism (Hagar et al., 2013; Lamkanfi and Dixit, 2014). The
non-canonical inflammasome pathway caspase-11 can interact
with caspase-1 and forms a heterodimeric complex. It could
induce a lytic cell death similarly to caspase-1; however, it
cannot by itself trigger IL-1β/-18 processing (Wang et al., 1998;
Kayagaki et al., 2011). Only caspase-11-deficient mice, but not
caspase-1-deficient mice were protected from endotoxic shock
(Wang et al., 1998; Kayagaki et al., 2011). The CNS is particularly
sensitive to IL-1β and IL-18 signaling because multiple neural
cell types in the CNS express receptors for these cytokines (Allan
et al., 2005; Alboni et al., 2010).

The goal of the present review is to describe recent advances
in neuroinflammation and the role of stefin B in the process.

CELLS OF THE IMMUNE SYSTEM IN
CNS

Microglia are CNS resident myeloid cells of embryonic
hematopoietic origin and comprise approximately 12% of cells in
the brain (Aguzzi et al., 2013). Other CNS resident cells descend
from neuroepithelial stem cells and are categorized as neurons
and macroglia, with glia further subdivided into astrocytes and
oligodendrocytes.

Astrocytes maintain CNS homeostasis and provide neuronal
support in healthy conditions; moreover, astrocytes can undergo
diverse phenotypic changes that may be protective or causative
with regard to pathology (Sofroniew and Vinters, 2010).
Astrocytes can produce numerous inflammatory molecules
like cytokines, chemokines, growth factors, and nitric oxide
(NO). Analysis of astrocyte transcriptome profiles indicates
that astrocyte exposure either in vivo or in vitro to PAMPs
such as LPS turns astrocyte transcriptome changes toward pro-
inflammatory and potentially cytotoxic profiles (Hamby, 2012;
Zamanian, 2012). Although astrocytes may undergo diverse
phenotypic changes and secrete pro-inflammatory molecules, a
recent study reported that NLRP3 inflammasome was expressed
and functional only in mouse brain microglia, but not in
astrocytes (Gustin et al., 2015). However, microglial–astrocyte
interactions are important in the CNS innate immunity.

Microglia is a unique myeloid cell population, derived from
primitive myeloid progenitors that arise before embryonic
day 8, before vascularization or definitive hematopoiesis in
the embryo (Ginhoux et al., 2010). Its density varies by brain
region, they are localized mostly in the grey matter, with
the highest concentrations being found in the hippocampus,
olfactory telencephalon, basal ganglia, and substantia nigra
(Lawson et al., 1990). Upon localization, microglia acquires a
compact or ramified phenotype (Lawson et al., 1990; Block
et al., 2007). In their resting state microglia have ramified
morphology, and monitor the brain environment. In response
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to immunological stimuli or brain injury the cells are activated
(Saijo and Glass, 2011). Activated microglia acquire a compact
phenotype and up-regulate several surface molecules like
major histocompatibility complex (MHC) molecules, chemokine
receptors and several other markers (Rock, 2004). Under other
circumstances, however, microglia become over-activated and
can induce significant and highly detrimental neurotoxic effects
by the excess production of a large array of cytotoxic factors such
as superoxide (Colton and Gilbert, 1987), NO (Moss and Bates,
2001), and tumor necrosis factor-α (TNFα; Lee et al., 1993). In
some cases, microglial responses could also be protective to the
CNS (Lalancette-Hebert et al., 2007; Vinet et al., 2012). Gene
expression and morphological changes associated with microglial
activation have been extensively studied (Prinz and Priller, 2014).
Several TLRs are expressed on the microglial membrane and
signaling induced by TLR activation results in production of
neurotoxicity and could contribute to the microglial response
to neuronal damage. Activation of TLR2, TLR4, and TLR9
induces microglial production of NO through multiple ligands
(Ebert, 2005). TLR9 recognizes single-stranded unmethylated
CpG-DNA (bacterial DNA), which stimulates an increase in
the production of microglial NO and TNFα (Olson and Miller,
2004; Ebert, 2005). TLR4 together with CD14 is implicated in
brain inflammation and microglial activation in response to
endotoxemia (Chakravarty and Herkenham, 2005). Monocyte-
derived macrophages are classified as M1, M2a, M2b, and M2c
subsets (Gordon and Taylor, 2005; Geissmann et al., 2010). It
is possible that microglia also transcribe activation-dependent
genes, like macrophages. Both microglia and macrophages share
several similarities, they are both myeloid-derived cells; however,
there are also some differences between the two cell types.
Some common markers used for microglial identification such
as CD11b, CD11c, and CX3CR1, could be found in microglial
cells as well as in monocytes, macrophages, and dendritic
cells. The difference in the expression level of cell membrane
tyrosine phosphatase CD45 may be used to discriminate
CD45low microglia from CD45high blood-derived cells by flow
cytometry (Sedgwick et al., 1991; Ford et al., 1995). However,
the signaling pathways in NLRP3 inflammasome activation
are comparable between macrophages and microglia (Halle
et al., 2008). Microglia clear apoptotic cells and are involved
in both elimination and maintenance of synapses, they use
their fine processes to monitor for dysfunctional synapses,
which they are able to eliminate by phagocytosis (Wake et al.,
2009). They also promote synaptic activity by secretion of
brain-derived neurotrophic factor (BDNF), a molecule that is
essential for learning-dependent synapse formation (Parkhurst,
2013). Moreover, microglia could modulate adult neurogenesis
in the brain (Vukovic et al., 2012). Some studies suggested
that microglial cells not only have a scavenger role during
development but can also promote the death of some neuronal
populations (Marin-Teva, 2004). Several studies have reported
NLRP3 activation in microglia or CNS macrophages, although
NLRP3 has also been proposed to function in neurons
(Compan, 2012; Ramos, 2012). The activation mechanisms
reported for NLRP3 activation in macrophages, such as ROS
production, K+ efflux and endosomal rupture, also apply

to NLRP3 activation within microglia (Halle et al., 2008;
Hoegen, 2011; Heneka, 2013). Not only caspase-1, but also
caspase-11 is expressed in microglial cells and could contribute
to inflammasome activation (Lee et al., 2001; Kim et al.,
2003).

CYSTATINS IN INFLAMMATION

Cystatins were initially characterized as inhibitors of lysosomal
cysteine cathepsins, however, in recent years some alternative
functions for cystatins have been proposed. Cystatins possessing
inhibitory function are members of three families, family
I (stefins), family II (cystatins), and family III (kininogens;
Kopitar-Jerala, 2006; Turk et al., 2008).

The cystatins (cysteine proteinase inhibitor) are reversible and
tight-binding inhibitors of the papain (C1) and legumain (C13)
families of cysteine proteases and have significant similarities
in amino acid sequence (Barrett, 1981; Barrett et al., 1986).
The inhibitory profile of a particular cystatin is rather specific,
despite significant sequence homologies (Turk et al., 2008).
Type 1 cystatins – stefins are mostly intracellular cystatins
present in the cytosol and the nuclei (Abrahamson et al.,
1986). They are single-chain polypeptides ∼100 amino acid
residues long, are synthesized without signal peptides and do
not possess any disulfide bonds or carbohydrate side-chains.
Recently, we reported the mitochondrial localization of stefin B
(Maher et al., 2014a). Type 2 cystatins are mainly extracellular,
secreted proteins. They are synthesized with 20–26 residue long
signal peptides and most of them are found in physiologically
relevant concentrations in body fluids (Abrahamson et al., 1986;
Kopitar-Jerala, 2006; Turk et al., 2008). They contain disulphide
bridges and may be phosphorylated (Laber et al., 1989). Type
II cystatins also possess a second reactive site for inhibition
of the C13 family of cysteine proteases (legumain; Alvarez-
Fernandez et al., 1999). Cystatin C was found upregulated in
the serum of patients with autoimmune diseases like systemic
lupus erythematosus (Lertnawapan et al., 2012). Moreover,
cystatin F was found abundant in the cells of the immune
system: macrophages and dendritic cells and the cells involved
in target cell killing (NK cells and cytotoxic T cells (CTLs;
Halfon, 1998; Ni et al., 1998; Obata-Onai et al., 2002). It was
also found in the microglial cells and monocyte/macrophages
in the CNS. Cystatin F is expressed as a di-sulfide-linked
dimer (Cappello et al., 2004) and translocated to endolysosomes
where it regulates cathepsin activity. Cystatin F transport to
endolysosomes depends on its N-linked glycosylation and it was
reported that the secreted dimeric cystatin F could be internalized
and activated by the mannose-6-phosphate receptor system
(Colbert et al., 2009). After proteolytic removal of its N-terminal
part, cystatin F becomes a potent inhibitor of cathepsin C
with the potential to regulate pro-granzyme processing and cell
cytotoxicity (Hamilton et al., 2008). Recently, we demonstrated
that cathepsin V in IL-2 stimulated NK cells could process
cystatin F (Maher et al., 2014b). In cytotoxic cells, cystatin F,
therefore, appears as a key regulator of granzyme processing and
consequently cell cytotoxicity.
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Type 3 cystatins are high molecular weight (60–120 kDa)
multidomain proteins and have three tandemly repeated type
2-like cystatin domains (Salvesen et al., 1986). The mammalian
cystatins belonging to this type are the kininogens (Ohkubo
et al., 1984). Cystatins in immune cells have been reported
to participate in the release of nitric oxide, phagocytosis, and
expression of cytokines (Kopitar-Jerala, 2006; Magister and Kos,
2013; Maher et al., 2014a).

STEFIN B AND EPMI 1

Stefin B belongs to the type one cystatins and is located in the
cytosol, mitochondria, and nucleus where it protects cells from
the detrimental release of the lysosomal cysteine cathepsins. In
the nucleus, stefin B interacts with nucleosomes, specifically with
histones H2A.Z, H2B, and H3 and cathepsin L (Ceru et al., 2010).
Goulet et al. (2004) has shown that only shorter procathepsin
L isoforms translocate to the nucleus and stimulate processing
of the CUX1 transcription factor at the G1/S transition of the
cell cycle. Stefin B-deficient mouse embryonic fibroblasts entered
S phase earlier than wild type mouse embryonic fibroblasts. In
contrast, increased expression of stefin B in the nucleus delayed
cell cycle progression in T98G cells. The delay in cell cycle
progression was associated with the inhibition of cathepsin L
in the nucleus, as judged from the decreased cleavage of the
CUX1 transcription factor (Ceru et al., 2010). Moreover, we
have shown that stefin B overexpression in the nucleus delayed
not only cell cycle progression, but also caspase activation (Sun
et al., 2012). Mutations in the gene encoding stefin B (either
through amultiplied repeat unit in the promoter or through point
mutations in the structural gene) are present in both alleles of the
gene in patients with a form of progressive myoclonus epilepsy
of Unverricht-Lundborg type (EPM1; Pennacchio et al., 1996;
Lalioti et al., 1997; Pennacchio et al., 1998). EPM1 is an autosomal
recessively inherited neurodegenerative disease, characterized by
the cerebellar granule neurons apoptosis, progressive ataxia and
myoclonic epilepsy (Joensuu et al., 2008). In lymphoid cells
of EPM1 patients, increased cathepsin activity, due to reduced
expression of stefin B was reported (Rinne et al., 2002), we
determined increased overall cathepsin activity in untreated, as
well as in classically activated stefin B-deficient bone marrow-
derived macrophages (BMDMs) compared to WT cells (Maher
et al., 2014c).

MOUSE MODEL OF EPM1

Stefin B-deficient mice developmyoclonic seizures by one month
of age and progressive ataxia by six months of age (Pennacchio
et al., 1998). Houseweart et al. (2003) reported that the removal
of cathepsin B from stefin B-deficient mice greatly reduced the
neuronal apoptosis, but did not rescue the ataxia and seizure
phenotype. Moreover, stefin B deficiency was implicated in the
impaired redox homeostasis, resulting in a pronounced oxidative
stress-induced cell death and neurodegeneration (Lehtinen et al.,
2009). Thymocytes from stefin B deficient mice were significantly

more sensitive to apoptosis induced with the inhibitor of protein
kinase C, staurosporin (Kopitar-Jerala et al., 2005). Manninen
et al. examined in detail the spatiotemporal dynamics of the
brain atrophy in stefin B-deficient mice (Manninen et al., 2014).
They showed progressive but non-uniform volume loss of the
stefin B-deficient mouse brains, indicating that different neuronal
populations possess distinct sensitivity to the damage, as a
consequence of stefin B deficiency. The authors suggested that the
white matter damage in the brain of stefin B-deficient mice was
secondary to glial activation and neurodegeneration (Manninen
et al., 2014). Another report showed that the early microglial
activation precedes neuronal loss in the brain of the stefin B
deficient mice, implying a role of the inhibitor at the cross-talk
between microglia and cerebellar cells (Tegelberg et al., 2012).

Joensuu et al. (2014) analyzed the gene expression changes
in the cerebellum of pre-symptomatic and symptomatic stefin
B -deficient mice and in cultured stefin B-deficient cerebellar
granule cells. Already in the cerebellumof pre-symptomatic stefin
B-deficient mice (7 days after the birth), multiple changes in
gene expression related to synapse maturation, development,
and function during postnatal maturation were observed. More
prominent changes were reported in the GABAergic signaling
pathway (Joensuu et al., 2014). GABA plays a central role in
controlling neuronal development and connectivity and defective
GABAergic signaling in the cerebellum of stefin B deficient
mice underlines a mechanism for ataxia in these mice (Grusser-
Cornehls and Baurle, 2001). At a later stage (30 days after
the birth), in symptomatic stefin B-deficient mice, the authors
reported the upregulation of immune response genes, in line with
the results showing early glial activation that preceded neuronal
degeneration (Tegelberg et al., 2012). Moreover, Joensuu et al.
(2014), reported the upregulation of the genes involved in cell
cycle progression, in stefin B-deficient granule neurons. We
have shown that the interactions of stefin B with cathepsin
L in the nucleus influence cell cycle progression into the S
phase (Ceru et al., 2010). We cannot exclude the possibility
that the impaired cathepsin regulation in the synapses could
lead to morphological and functional changes observed in
stefin B-deficient mice (Joensuu et al., 2014). For example,
cathepsin B-like immunoreactivity was observed at synaptic sites
and myristoylated-alanine-rich C-kinase substrate (MARCKS),
a known substrate of cathepsin B, was specifically degraded
in response to intense NMDA receptor stimulation (Graber
et al., 2004). Previously, we reported the increased cleavage of
MARCKS in the brains and macrophages of stefin B-deficient
mice, when compared to cells and tissue from control wild-type
animals (Kopitar-Jerala and Turk, 2007).

STEFIN B, EPM1, AND INNATE IMMUNE
RESPONSE

The increased expression of inflammatory genes indicates that
neuro-inflammation, together with neuronal dysfunction, plays a
crucial role in pathology of EPM1. Pro-inflammatory chemokines
and cytokines, highly expressed in symptomatic stefin B-deficient
mice were reported to lower the seizure threshold and may thus
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contribute to recurrent excitation in epilepsy (Devinsky et al.,
2013). Okuneva et al. (2015) reported significantly higher stefin
B mRNA expression in microglia than in neurons or astrocytes,
which is in line with our observation that stefin B is highly
upregulated in activated macrophages (Maher et al., 2014c). In
pre-symptomatic stefin B-deficient mice compared to control
animals the ratio of M1/M2 microglia is skewed towards M2
type, but towards M1 type in symptomatic mice. In addition, a
heightened expression of both pro-inflammatory inducible nitric
oxide synthase (iNOS), anti-inflammatory arginase 1 (ARG1)
and chemokine release was detected (Okuneva et al., 2015).
Interestingly, MHCII surface expression was suppressed. We
have reported that IFN-γ and LPS-activated stefin B-deficient
BMDMs produced higher amounts of NO, and expressed more
iNOS than WT BMDMs. IL-10 is a potent anti-inflammatory
cytokine that is crucial for dampening the inflammatory response
after pathogen invasion and acts to protect the host from
excessive inflammation (Fiorentino et al., 1991). We showed

decreased expression of IL-10 in BMDMs of stefin B deficient
mice, due to impaired STAT3 signaling (Maher et al., 2014c). IL-
10 plays an essential role in mediating inflammatory processes
not only in the cells of immune system, but also in the brain
(Zocchia et al., 1997). It has been demonstrated that it increases
the survival of cerebellar granule cells by blocking caspase-3-
like activity (Bachis et al., 2001). It is tempting to speculate
that the decreased IL-10 expression in stefin B-deficient mice
could contribute to the increased apoptosis in the cerebellum in
EPM1.

In the developing mouse cerebellum, Purkinje cells die and
a majority of these neurons are engulfed by microglial cells.
Interestingly, apoptosis of Purkinje cells in the cerebellum was
strongly reduced by selective elimination of microglia and
superoxide produced by microglia cells (Marin-Teva, 2004).
In our recent work we showed that stefin B-deficient mice
were significantly more sensitive to the lethal LPS-induced
endotoxemia due to increased caspase-11 expression. The

FIGURE 1 | Proposed model for the role of stefin B in non canonical inflammasome activation. Upon lipopolysaccharide (LPS) stimulation stefin B is
translocated from cytosol into mitochondria and protects mitochondrial membrane integrity. Stefin B deficiency resulted in the breakdown of mitochondria
membrane potential and increased mtROS generation. The consequence of the increased mtROS detected in stefin B-deficient bone marrow-derived macrophages
(BMDMs) upon LPS stimulation, was the increased nuclear factor-κB (NF-κB) activation and caspase-11 expression. Increased caspase-11 expression resulted in
increased inflammasome activation and pro-inflammatory IL-1β and IL-18 secretion.

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 December 2015 | Volume 9 | Article 458

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Kopitar-Jerala Stefin B (Cystatin B) in Neuro-inflammation

increased caspase-11 gene expression and better caspase-1 and -
11 processing determined in stefin B-deficient BMDMs resulted
in enhanced IL-1β and IL-18 processing and secretion (Figure 1).
The increased cathepsin activity determined in stefin B deficient
BMDMs was not essential for inflammasome activation, since
treatment of BMDMs with the cathepsin inhibitor E-64d did
not influence caspase-1 activation and IL-1β secretion. Upon
LPS stimulation, stefin B was targeted to mitochondria, and
the lack of stefin B resulted in the increased destabilization
of mitochondrial membrane potential and mitochondrial ROS
generation (Maher et al., 2014a). The induction of ROS in
microglia may therefore play an important role in non-canonical
inflammasome activation and cell death in the cerebellum in
disease.

CONCLUSION

This review summarizes recent discoveries that may contribute to
the understanding of the role of stefin B in neuro-inflammation.
Several studies, each from a different angle, have contributed
a piece of the puzzle, a process we are trying to understand.
Stefin B-deficient mice have proven to be a valuable tool
to explore the function of the protein in the pathology of

disease. During the past couple of years, several new data
from microarray experiments, histology, as well as magnetic
resonance imaging have revealed that neuro-inflammation is
an essential process in the pathology of EPM1. Biochemical
experiments in macrophages have contributed some hints
regarding the signaling pathways in inflammasome activation.
Signaling pathways in macrophages were compared to the ones
in microglia and the expression of caspase-11 was strongly
induced by activation of rat glial cells, as well as in astrocytes,
with interferon-γ and LPS (Hur et al., 2001). The expression
of caspase-11 in microglia may play an important role in
non-canonical inflammasome activation and cell death in the
cerebellum in disease. However, some questions still remain and
some more pieces need to be added to complete the whole
picture. Additional experiments will reveal if the inflammasome
activation and caspase-11 expression are part of the pathology of
EPM1.
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