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“NON-CANONIC” ROLES OF PLATELETS: INFLAMMATION,
ANGIOGENESIS AND TISSUE REGENERATION

Platelets are small, oval, circulating, anucleate cells that upon endothelial damage form a
haemostatic plug and stop blood leakage. Circulating platelets derive from bone-marrow-resident
megakaryocytes that daily produce and release approximately 100 billions of new platelets into
the blood stream (Kaushansky, 2006; Semple et al., 2011). During haemostasis, tethering platelets
adhere to the vascular injury through the interaction between their glycoprotein (GP) Ib/V/IX
receptor complex and GPVI/GP Ia with the vonWillebrand factor (vWF) and collagen provided by
the lesioned environment, respectively. Adherent platelets aggregate and secrete platelet activation
mediators, such as Thromboxane A2 (TXA2) and adenosine diphosphate (ADP). After activation,
the platelets membrane surface becomes procoagulant enhancing the coagulation cascade ending
in the formation and stabilization of the haemostatic plug and arresting blood leakage.

Platelet function is not restricted to haemostasis, as platelets also have inflammatory, angiogenic,
and tissue repair properties (Nurden, 2011). Within their storage compartments (α-granules and
dense granules), platelets store a plethora of bioactive molecules that, under specific circumstances,
are secreted to the extracellular space targeting other cell types. Platelets-derived molecules include
proteins such as chemokines, cytokines, and growth factors, as well as RNAs and microparticles
(Brill et al., 2005; Chen et al., 2012; Lohmann et al., 2012; Schallmoser and Strunk, 2013;
Warnke et al., 2013). Platelets granules contain several pro-inflammatory and anti-inflammatory
molecules that contribute to immunity. In fact, platelets react against pathogens and regulate
immune cells function (reviewed in Semple et al., 2011). For example, during inflammation,
GPIbα, and P-selectin located at the surface of platelets interact with PSGL-1 and Mac-1 on
monocytes/macrophages inducing their recruitment and activation (reviwed in Gawaz et al., 2005).
Also, CD154 in activated platelets (Henn et al., 1998) binds to CD40 on endothelial cells (ECs)
inducing the expression of cell adhesion molecules (i.e., VCAM1, ICAM1) and the endothelial
release of CC-chemokine ligand 2 (CCL2) promoting the leukocyte recruitment to inflammatory
sites (Andre et al., 2002). Moreover, CD154 supports B cell differentiation (Elzey et al., 2003;
Von Hundelshausen and Weber, 2007) and platelet-secreted transforming growth factor beta
(TGF-β) controls Treg cell differentiation (Tran, 2012) indicating that the contribution of platelets
to immunity is not restricted to the innate system but also involves adaptive response.

Platelets apparently also shape angiogenesis, which is a complex process that consists in
the formation/sprouting of new capillaries from preexisting vessels. Platelets have a dual role.
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First, they stimulate ECs proliferation and can promote capillary
formation (Pipili-Synetos et al., 1998). Indeed, α-granules
contain several pro-angiogenic molecules that are secreted upon
the activation of platelets, such as vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF), TGF-
β, basic fibroblast growth factor (bFGF), epidermal growth
factor (EGF), sphingosine-1-phosphate (S1P), etc (Kaplan et al.,
1979; Heldin et al., 1981; Nakamura et al., 1985; Folkman and
Klagsbrun, 1987; Ben-Ezra et al., 1990; Mohle et al., 1997; English
et al., 2000; Jonnalagadda et al., 2014). Second, platelets are
required to avoid leakage from angiogenic vessels and their
absence inhibits the formation of new vessels in vivo (Kisucka
et al., 2006).

Haemostasis, inflammation and angiogenesis are essential
processes for tissue repair; thus, platelets are critically involved
in many mechanisms that operate along the healing process
(reviewed in Gurtner et al., 2008; Gawaz and Vogel, 2013).
Upon tissue damage provoked by trauma or local ischemia,
circulating platelets accumulate and become activated at
the lesion site releasing their bioactive molecules into the
damaged microenvironment and contributing to tissue
repair and regeneration. For instance, stromal cell-derived
factor-1 (SDF-1), hepatocyte growth factor (HGF), PDGF,
serotonin, ADP, and platelets-derived microparticles regulate
recruitment, proliferation, survival, and differentiation not only
of immune cells (neutrophils, monocytes) necessary for the
local inflammatory and the phagocytic responses, but also of
cells that directly repair the lesion such as fibroblast, smooth
muscle cells and tissue-specific progenitor cells (Nakamura et al.,
1986; Crowley et al., 1994; Stellos et al., 2008, 2010; Mazzucco
et al., 2010).

PLATELETS INFLUENCE CNS
INFLAMMATION: IMPACT ON REPAIR?

Regardless of its immune privileged condition and the presence
of the blood-brain-barrier (BBB), the CNS is not free from
the action of platelets, particularly, in response to injury. As
expected, after their adherence to endothelial cells, platelets
activate, and recruit leukocytes into the damaged CNS tissue
(Simon, 2012; Langer and Chavakis, 2013), thus, platelets
interact with different cells in the neurovascular niche including
neurons, glial cells, endothelial cells, pericytes, and other blood-
derived cells (Hayon et al., 2013; Sotnikov et al., 2013).
This particular feature confers platelets a substantial role in
CNS inflammation in different pathological scenarios. After
stroke, platelets adhere to the endothelium and get activated
provoking further thrombo-inflammatory events exaggerating
infarct development (Kleinschnitz et al., 2007; Nieswandt et al.,
2011). In Alzheimer’s disease (AD) the BBB is partially leaky and
vascular inflammation occurs (Sardi et al., 2011). Interestingly,
platelets might be contributing to the propagation of AD as
they carry amyloid precursor protein and the amyloid beta,
two peptides that are found around vessels in AD patients
that constitute one of the molecular mechanisms for AD
pathogenesis (Skovronsky et al., 2001; Catricala et al., 2012).

In multiple sclerosis (MS), an autoimmune CNS demyelinating
disease, platelets also seem to be involved to the pathology
since they have been found in human chronic active MS lesions
(Lock et al., 2002; Langer et al., 2012; Steinman, 2012). In an
animal model for MS, platelets promote leukocyte infiltration
as well as CNS inflammation (Lock et al., 2002; Langer et al.,
2012). Therefore, platelets contribute to neuroinflammation
and an altered platelet functions may lead to pathological
conditions.

Besides their role in pathogenesis, platelets might also be
involved in the regulation of regenerative processes by interacting
with CNS stem/progenitor cells. Adult neural stem cells (NSCs)
are undifferentiated self-renewing multipotent cells that reside
in the subgranular zone (SGZ) in the dentate gyrus of the
hippocampus and in the subventricular zone (SVZ) of the wall
of the lateral ventricles (Altman, 1965; Gage, 2000; Alvarez-
Buylla and Garcia-Verdugo, 2002). Oligodendrocyte progenitor
cells (OPCs) represent themajor cellular source for remyelinating
oligodendrocytes and are widely spread throughout the CNS
(Ffrench-Constant and Raff, 1986; Woodruff and Franklin,
1999; Franklin and Ffrench-Constant, 2008). Interestingly,
NSCs and OPCs drive CNS repair in response to stroke
or to MS-associated demyelination (Arvidsson et al., 2002;
Franklin, 2002; Kokaia and Lindvall, 2003; Gonzalez-Perez et al.,
2009). While neuroinflammation was mainly considered to
be an aggravating factor, several recent studies have revealed
a supportive role in CNS repair (Patel et al., 2010; Jaerve
and Muller, 2012; Miron and Franklin, 2014). For example,
the very complex process of remyelination (Franklin and
Ffrench-Constant, 2008; Rivera et al., 2010) involves a crucial
inflammatory stage that precedes regeneration and occurs acutely
after myelin damage. This innate immune response is, at
least partially, mediated by blood-recruited macrophages and
CNS-resident microglial cells. During remyelination, circulating
monocytes/macrophages are recruited by chemotaxis (Charo
and Ransohoff, 2006; Ruckh et al., 2012) and, depending on
their inflammatory state, exert the following functional roles:
(i) they are responsible for the removal (clearance) of myelin
debris [which is a potent inhibitor of OPC differentiation (Kotter
et al., 2006; Baer et al., 2009)] through phagocytosis, and
(ii) they secrete cytokines, growth- and neurotrophic factors
that stimulate OPC responses to demyelination (Setzu et al.,
2006; Zhao et al., 2006; Ruckh et al., 2012; Miron et al.,
2013). A regulation of macrophage recruitment and activity
is essential to couple inflammation and regeneration during
CNS myelin repair (Miron and Franklin, 2014). However,
the cellular and molecular cues that regulate these events
are still unknown. As previously mentioned, platelets promote
the endothelial secretion of chemokines known to recruit
circulating monocytes/macrophages (Gawaz et al., 1998, 2000).
Furthermore, through the secretion of PDGF and platelet factor
4 (PF-4), activated platelets directly promote the recruitment of
monocytes and modulate their activity (Deuel et al., 1982; Brandt
et al., 2000; Fricke et al., 2004). Thus, it can be hypothesized
that circulating platelets might influence macrophage/microglia
recruitment and activity thereby linking neuroinflammation to
CNS repair.
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PLATELETS MODULATE CNS-RESIDENT
STEM/PROGENITOR CELL FUNCTION:
IMPACT ON REPAIR?

Supporting the previous hypothesis, a series of findings suggest
that platelets directly exert CNS-regenerative activities and
might contribute to neuroregeneration (see Table 1). Recently
we reported that upon demyelination in the corpus callosum
(CC), platelets specifically accumulate within the ipsilateral SVZ
vasculature, a process associated with an enhanced survival
of SVZ-resident NSCs (Kazanis et al., 2015). Importantly, we
found that a mechanical non-demyelinating lesion within the
CC is not enough to induce such accumulation of platelets
in the SVZ vasculature, indicating that cellular degeneration is
required for such an effect. Considering that SVZ-derived NSCs
contribute to remyelination in the CC (Jablonska et al., 2010;
Xing et al., 2014), these findings suggest that platelets might play
a role in controlling the NSCs pool available for CNS repair.
The mechanisms that mediate the very specific accumulation
of platelets in the SVZ vasculature far from the lesion site,
and that promote NSCs survival are not known. However,
platelets derived molecules might be involved as in the same
study we found that platelet lysate (PL) protects proliferating
NSCs from apoptosis (Kazanis et al., 2015). Furthermore, it
has been previously suggested that activated platelets contribute
to recovery after brain injury (Hayon et al., 2012c). For
example, it has been shown in an animal model for stroke
that infused platelets derived microparticles (PMP) increased
cell proliferation, neurogenesis and angiogenesis at the infarct
boundary zone leading to improvements in behavioral outcomes
(Hayon et al., 2012a). In addition to this, a different study
showed that PMP promotes NSCs survival and increased their
differentiation potential to glia and neurons (Hayon et al.,
2012b). Also, upon intracerebroventricular administration of PL

into an experimental model of stroke resulted in a significant
increase in angiogenesis and in the number of proliferating
SVZ-resident NSCs (Hayon et al., 2013). Besides these findings,
several platelets derived molecules influence CNS progenitor
function (see Table 1). For instance, the dense granules of
platelets contain serotonin (White, 1968), which is known to
control NSCs activity and adult neurogenesis (Brezun and
Daszuta, 1999; Banasr et al., 2004; Goto et al., 2016). The
effect of platelets derived molecules might not only target NSCs
but also OPCs during remyelination. For instance, platelets’ α-
granules contain large quantities of PDGF and bFGF (Lohmann
et al., 2012; Schallmoser and Strunk, 2013), factors that are
known to promote OPCs survival, proliferation, and recruitment
(Woodruff et al., 2004; Murtie et al., 2005; Zhou et al., 2006).
Moreover, upon activation, platelets’ α-granules secrete S1P
(English et al., 2000; Jonnalagadda et al., 2014), a molecule,
that is known to modulate OPCs survival, proliferation, and
differentiation (Jung et al., 2007). In summary, platelets react
to injury and secrete a plethora of bioactive molecules that
might directly influence NSCs and OPCs function, probably,
modulating CNS repair. This hypothesis could be evaluated
by studying neuroregeneration in animal models that display
platelet deficiencies (number and/or function). Also, by exploring
gene expression databases complemented with proteomics data,
further studies could identify molecules contained in platelets
that may influence CNS repair.

FINAL REMARKS

There is accumulating evidence that the role of platelets is not
restricted to haemostasis, but it also involves the regulation of
inflammation, angiogenesis and tissue repair. The CNS contains
NSCs and OPCs that contribute to cellular turnover and CNS
repair. In light of the accumulating evidence that associates

TABLE 1 | Evidences suggesting possible direct contribution of platelets in CNS repair.

Platelets derived

activity or factor

Experimental Model Findings References

Circulating Platelets Lysolecithin-induced demyelination in the CC Platelets aggregation in the SVZ vasculature associated to

NSCs survival

Kazanis et al., 2015

Platelet lysate (PL) In vitro proliferating NSCs PL promotes NSCs survival and protects from apoptosis Kazanis et al., 2015

Platelets-derived

microparticles (PMP)

Permanent middle cerebral artery occlusion

(PMCAO). PMP administrated to the brain

surface

PMP increases cell proliferation, neurogenesis, and

angiogenesis

Hayon et al., 2012a

PMP In vitro NSCs PMP promotes survival and increases the differentiation

potential of NSCs

Hayon et al., 2012b

PL PMCAO. PL administrated into the lateral

ventricles

PL increases the number of NSC and angiogenesis in the

subventricular zone (SVZ) as well as in the peri-lesion cortex

Hayon et al., 2013

Serotonin (contained in

dense granules)

In vivo normal wild type rats. Systemic

administration of serotonin

Serotonin regulate NSCs proliferation in the SVZ and

hippocampus and modulate adult neurogenesis

Banasr et al., 2004

PDGF and bFGF

(contained in α-granules)

Cuprizone-induced demyelination in

PDGFαR+/− mice, FGF2 knockout (−/−)

mice, and PDGFαR+/− FGF2−/− mice

PDGF and bFGF regulate OPCs proliferation and

differentiation during CNS remyelination

Murtie et al., 2005

S1P (contained in

α-granules)

In vitro OPCs. Use of S1P analogs: FTY720

and FTY720P, both modulators of S1P

receptors

By different mechanisms S1P and its receptors regulate

OPCs proliferation, survival, and differentiation

Jung et al., 2007
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platelets to neuroinflammation, especially under pathological
conditions, their potential role in CNS repair has to be further
investigated. Recent findings indicate that neuroinflammation is
also relevant for CNS repair as it contributes to debris clearance
and controls CNS-resident stem/progenitor cells function,
suggesting a potential role for platelets by linking inflammation
to regeneration. This hypothesis is supported by the facts that
circulating platelets react to CNS injury and accumulate within
the adult stem cell niche and that activated platelets release a
plethora of bioactive molecules that not only regulate immune
cells activity but also directly modulates NSC and OPC respond
to injury. It is, therefore, likely that platelets might modulate CNS
repair. Prospectively, this specific lesion-induced accumulation
of circulating platelets at sites of tissue damage, inflammation,
and even stem/progenitor cell activity (as in Kazanis et al., 2015)
opens the possibility to use genetically manipulated platelets or
manufactured platelet-like particles (Risitano et al., 2012; Brown
et al., 2014) when aiming for the delivery of specific molecules
directly to targeted areas.
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