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Mitochondrial dysfunction is one of the earliest and most prominent features in the
brains of Alzheimer’s disease (AD) patients. Recent studies suggest that mitochondrial
dysfunction plays a pivotal role in the pathogenesis of AD. Neurons are metabolically
active cells, causing them to be particularly dependent on mitochondrial function for
survival and maintenance. As highly dynamic organelles, mitochondria are characterized
by a balance of fusion and fission, transport, and mitophagy, all of which are essential for
maintaining mitochondrial integrity and function. Mitochondrial dynamics and mitophagy
can therefore be identified as key pathways in mitochondrial quality control. Tremendous
progress has been made in studying changes in these key aspects of mitochondrial
biology in the vulnerable neurons of AD brains and mouse models, and the potential
underlying mechanisms of such changes. This review highlights recent findings on
alterations in the mitochondrial dynamics and mitophagy in AD and discusses how these
abnormalities impact mitochondrial quality control and thus contribute to mitochondrial
dysfunction in AD.
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INTRODUCTION

Mitochondria are organelles essential for neuronal function and survival (Nicholls and Budd, 2000;
Sheng and Cai, 2012; Mishra and Chan, 2014). Their key role is ATP production, which is vital for
maintaining neuronal integrity and function (Verstreken et al., 2005; Sun et al., 2013; Rangaraju
et al., 2014). Mitochondria also play a critical role in buffering intracellular Ca2+ levels by taking
up and releasing Ca2+. At synaptic terminals, mitochondria take up excess intracellular Ca2+ and
release Ca2+ to prolong residual levels, maintaining Ca2+ homeostasis (Tang and Zucker, 1997).
Through this mechanism, synaptic mitochondria are thought to be involved in the regulation
of neurotransmission (Billups and Forsythe, 2002; David and Barrett, 2003) or certain types of
short-term synaptic plasticity (Levy et al., 2003; Kang et al., 2008). Dysfunctional mitochondria
not only produce energy and buffer Ca2+ less efficiently, but also release harmful reactive oxygen
species (ROS; Court and Coleman, 2012; Sheng and Cai, 2012). As a result, mitochondrial oxidative
stress triggers leakage of mitochondrial intermembranous contents, such as cytochrome c, into the
cytosol, causing caspase activation, DNA damage, and apoptosis (Mishra and Chan, 2014). The
progressive accumulation of these damaged mitochondria in axons and synapses over the lifetime
of neurons is thought to contribute to the pathogenesis of Alzheimer’s disease (AD; Du et al., 2012;
Reddy, 2013).

The half-life of neuronal mitochondria is estimated to be ∼30 days (Gross et al., 1969;
Menzies and Gold, 1971). Throughout a neuron’s lifetime, aged and damaged mitochondria
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undergo dynamic recycling via fusion and fission or elimination
via mitophagy, a cargo-selective autophagy that degrades
mitochondria within lysosomes after their transport back to
the soma. These dynamic processes of mitochondrial fusion,
fission, transport, and turnover constitute the elaborate system
of mitochondrial quality control, which regulates mitochondrial
function by enabling recruitment of healthy mitochondria to
subcellular compartments with high demands for ATP, such as
synaptic terminals or axonal branches (Bogan and Cabot, 1991);
content exchange between mitochondria; mitochondrial shape
control; and mitochondrial turnover via mitophagy (Chen and
Chan, 2009; Sheng and Cai, 2012). Disruptions in any of these
processes lead to mitochondrial pathology, cellular dysfunction,
and neurological defects (Chen and Chan, 2009).

Mitochondrial dysfunction is a significant concern in the
nervous system of aging and it has been associated with
major neurodegenerative disorders including the devastating
AD that now affects 50% of individuals over 85 years old
(Chen and Chan, 2009; Sheng and Cai, 2012). Mitochondrial
deficiency has been suggested to be a hallmark of AD as
the patients display early metabolic changes prior to the
emergence of any histopathological or clinical abnormalities
(Gibson and Shi, 2010). Mitochondrial pathology is also thought
to contribute to synaptic deficits, an early pathophysiological
feature of AD (Du et al., 2012; Reddy, 2013). Other prominent
mitochondria-related anomalies in AD include the accumulation
of damaged mitochondria in both familial and sporadic
forms of the disease (Swerdlow et al., 2010), as well as
changes in mitochondrial structure, dynamics, and motility
in vulnerable neurons of affected brain regions (Baloyannis,
2006; Chen and Chan, 2009; Sheng and Cai, 2012). Here, we
provide an overview of the underlying mechanisms regulating
mitochondrial dynamics and transport and discuss how
abnormalities in these mechanisms compromise mitochondrial
quality control, thus contributing to mitochondrial dysfunction
in AD.

Mitochondrial Fission
Mitochondria constantly change their shape through continuous
fusion and fission events (Figure 1). Mitochondrial fission in
mammals requires Drp1, a dynamin-like protein (Detmer and
Chan, 2007; Reddy et al., 2011; Kandimalla and Hemachandra
Reddy, 2015). Drp1 is a cytosolic protein recruited to
mitochondria during fission, forming a ring-like higher order
structure that physically pinches the mitochondria into two
daughter mitochondria. Drp1-mediated mitochondrial fission
in yeast requires an additional mitochondrial outer membrane
(OM) protein, Fis1 (Okamoto and Shaw, 2005). Knocking down
Fis1 in mammalian cells was also found to block mitochondrial
fission without affecting Drp1 localization to mitochondria (Lee
et al., 2004). Posttranslational modifications of Drp1 appear to be
important for regulating Drp1 activity. As a proposed substrate
of Sumo 1, Sumo 1-dependent sumoylation protects Drp1 from
degradation, thus promotingmitochondrial fission (Harder et al.,
2004). Loss of Parkin or PINK1 function in human SH-SY5Y
cells also resulted in increased Drp1-dependent mitochondrial

FIGURE 1 | Mitochondrial fission and fusion. Mitochondria are dynamic
organelles that undergo continuous fusion and fission events to intermix their
lipids and contents. (A) Dynamin-related protein 1 (DRP1) regulates
mitochondrial fission, which consists of two steps: first, DRP1 is recruited from
the cytosol to the mitochondrial outer membrane (OM); second, its
assemblage on the mitochondrial surface results in constriction of the
mitochondria, leading to the separation of one mitochondrion into two entities.
(B) Mitofusins 1 and 2 (MFN1/2) at the OM and optic atrophy 1 (OPA1) at the
inner membrane (IM) orchestrate mitochondrial fusion, which involves
MFN1/2-mediated OM fusion of two mitochondria, followed by OPA1-directed
IM fusion. Mitochondrial fusion leads to elongated and highly interconnected
mitochondria.

fragmentation (Lutz et al., 2009). Consistently, a study showed
that Parkin ubiquitinates Drp1 for its degradation within the
proteasome system (Wang et al., 2011a). However, it was also
found that loss of PINK1 in Drosophila impairs mitochondrial
fission (Liu et al., 2011). Another mitochondrial E3 ubiquitin
ligase known to regulate Drp1-mediated fission is MARCH-V,
which mediates ubiquitination of Drp1 (Nakamura et al., 2006;
Karbowski et al., 2007). Phosphorylation of Drp1 at different
sites, which functions variably to either promote or inhibit
its activity, is another mechanism regulating mitochondrial
morphology (Chang and Blackstone, 2007; Cribbs and Strack,
2007; Taguchi et al., 2007). Although no inherited diseases caused
by mutations of Drp1 have been reported, Drp1 is necessary
for embryonic development of the mouse brain and for synapse
formation in cultured neurons (Ishihara et al., 2009). In addition,
Drp1 maintains the proper distribution of mitochondria near
Drosophila neuromuscular junctions (Verstreken et al., 2005).
It was shown that defects in Drp1-mediated mitochondrial
fission result in the accumulation of mitochondria in the cell
body and reduced dendritic mitochondrial content (Li et al.,
2004).

Mitochondrial Fusion
Mitochondrial fusion in mammals is mainly mediated by
three proteins: Mfn1, Mfn2 and OPA1 (Mishra and Chan,
2014; Roy et al., 2015). Mfn1 and Mfn2 are required for
OM fusion, whereas OPA1 is involved in inner membrane
(IM) fusion (Meeusen et al., 2006; Song et al., 2009). Recent
studies propose that long forms of OPA1 is sufficient for
mediating efficient fusion and that short OPA1 forms may
act independently to promote mitochondrial fission (Ishihara
et al., 2006; Anand et al., 2014). OPA1 proteolysis itself
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has been reported to be a profusion event that operates
at the time of fusion (Mishra et al., 2014). Mutations
of each of these genes have been linked to neurological
disorders. Mutations in Mfn2 cause Charcot-Marie-Tooth type
2A (CMT2A), a peripheral neuropathy affecting sensory and
motor neurons (Zuchner et al., 2004), while mutations in
OPA1 are the primary cause of autosomal dominant optic
atrophy (DOA), a degeneration of retinal ganglia cells that
results in atrophy of the optic nerve (Alexander et al., 2000;
Delettre et al., 2000). Deletion of each of these genes in mice
leads to mitochondrial dysfunction and embryonic lethality
(Chen et al., 2003; Alavi et al., 2007; Davies et al., 2007).
In addition to regulating mitochondrial shape, mitochondrial
fusion affects the distribution and transport of mitochondria
in neurons. Mitochondria in Mfn2 conditional knockout mice
are fragmented and absent from distal neurites, impeding
dendritic outgrowth, formation of axonal projections, and
neuronal survival (Chen et al., 2007; Lee et al., 2012; Pham
et al., 2012). Moreover, motor neurons derived from transgenic
mice expressing mutant Mfn2 showed improper mitochondrial
distribution characterized by tight clusters of mitochondria
within axons (Detmer et al., 2008). Recent studies suggest
that mitochondrial transport is regulated through fusion
machinery by showing that Mfn1 and Mfn2 interact with
Miro and Milton, members of the adaptor complex linking
mitochondria to kinesin motors. Loss of Mfn2 or expression
of Mfn2 disease mutants in neurons was shown to affect
axonal mitochondrial fusion and transport and produce classic
features of segmental axonal degeneration (Misko et al., 2010,
2012). A study in living zebrafish revealed the contribution
of mitofusins, and thus fusion, to mitochondrial transport,
which is essential for maintaining motor function (Chapman
et al., 2013). Moreover, the motor neurons obtained from
differentiation of CMT patient-derived iPS (induced pluripotent
stem cells) presented abnormalities in mitochondrial trafficking
and abnormal electrophysiological properties (Saporta et al.,
2015). Thus, these studies provide evidence that a clear
link exists between mitochondrial fusion and transport in
neurons.

Mitochondrial fission and fusion ensure optimal functioning
of mitochondria. Mitochondrial fusion allows the exchange of
mitochondrial metabolites, mitochondrial DNA (mtDNA),
and oxidative phosphorylation components within a
mitochondrial network. While damaged mitochondria can
be repaired through fusion with healthy mitochondria for
mixture of contents, mitochondrial elongation upon nutrient
deprivation maximizes energy production and promotes cell
survival by preventing autophagy-mediated degradation of
mitochondria (Gomes et al., 2011; Rambold et al., 2011). On the
other hand, mitochondrial fission enables the segregation
of mitochondria that become severely and irreversibly
damaged or are fusion-incompetent, thereby leading to
their subsequent elimination via mitophagy (Twig et al.,
2008). Defects in either mitochondrial fusion or fission also
lead to impaired mitochondrial motility and distribution in
neurons, resulting in reduced mitochondrial content in distal
neurites. Together, mitochondrial fusion and fission are required

for the maintenance of mitochondrial shape, integrity, and
distribution.

MITOCHONDRIAL TRANSPORT IN
NEURONS

Alteredmitochondrial transport is one of the pathogenic changes
in major neurodegenerative diseases (Sheng and Cai, 2012). In
mature neurons, ∼20–30% of axonal mitochondria are motile
while the remaining two thirds are stationary (Cai et al., 2005;
Kang et al., 2008). Long-distance transport of mitochondria
along microtubules (MTs) between the soma and distal processes
or synapses is dependent on MT-based motor proteins, which
drive their cargoes via mechanisms requiring ATP hydrolysis
(Martin et al., 1999; Hirokawa et al., 2010). MTs are uniformly
organized in axons, with the plus end pointed away from the
soma and the minus end directed toward the soma (Hirokawa
et al., 2010). Thus, kinesin motors, the plus-end driven motors,
participate in anterograde axonal transport from the soma
to nerve terminals, whereas the minus-end directed dynein
motors mediate retrograde transport back to the soma. Efficient
regulation of mitochondrial transport is essential for recruiting
and redistributing mitochondria to specific domains with high-
energy demands, such as synaptic terminals. Mitochondrial
transport also plays a critical role in removing aged and damaged
mitochondria, and replenishing them with healthy ones at distal
regions of neurons.

The kinesin-1 family (KIF5) is the major motor that drives
mitochondrial transport (Hurd and Saxton, 1996; Tanaka et al.,
1998; Górska-Andrzejak et al., 2003; Cai et al., 2005; Pilling
et al., 2006). KIF5 heavy chain (KHC) has a motor domain with
ATPase activity located at the N terminus and a C-terminal
tail domain required for binding its cargo. Adaptor proteins
such as Drosophila protein Milton enable KIF5 motors to
attach to mitochondria. Milton acts as a KIF5 motor adaptor
by binding to both the KIF5 C-terminal tail domain and
the mitochondrial OM receptor Miro (Stowers et al., 2002;
Glater et al., 2006). Consistently, Milton mutation in Drosophila
reduces mitochondrial trafficking into synapses. Two Milton
orthologues, Trak1 and Trak2, are found in mammals (Smith
et al., 2006; MacAskill et al., 2009; Koutsopoulos et al., 2010).
Trak2 overexpression in cultured hippocampal neurons robustly
enhances axonal mitochondrial motility (Chen and Sheng, 2013).
In contrast, loss of Trak1 or expression of its mutants leads to
a reduction in mitochondrial transport along axons (Brickley
and Stephenson, 2011). A recent study showed that mammalian
Trak1 and Trak2 each contain one N-terminal KIF5B binding
site and two dynein/dynactin-binding sites, one located at the
N-terminus and the other at the C-terminus (van Spronsen
et al., 2013). This suggests that the Trak proteins can mediate
both KIF5- and dynein-driven bi-directional mitochondrial
transport.

Miro or MIRO, the mitochondrial OM receptor that
binds to Trak/Milton, is a Rho-GTPase that consists of two
Ca2+-binding EF-hand motifs and two GTPase domains
(Frederick et al., 2004; Fransson et al., 2006). In Drosophila,
mutation of the miro gene impairs mitochondrial anterograde
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transport and depletes the supply of mitochondria in distal
synaptic terminals (Guo et al., 2005). Mammalian Miro has two
isoforms, Miro1 and Miro2. The Miro1-Trak2 adaptor complex
regulates mitochondrial transport in hippocampal neurons
(MacAskill et al., 2009). A recent study showed that elevated
Miro1 expression increased mitochondrial transport, likely
by recruiting more Trak2 and KIF5 motors to mitochondria
(Chen and Sheng, 2013). KIF5, Milton (Trak), and Miro
are thus assembled into the transport machinery that drives
mitochondrial anterograde transport. Syntabulin similarly
serves as a KIF5 adaptor for neuronal mitochondria (Cai et al.,
2005). Loss of syntabulin or interruption of KIF5-syntabulin
coupling reduces mitochondrial anterograde transport in axons.
In addition, a number of other proteins have been suggested
as KIF5 motor adaptor candidates for mitochondrial transport,
including FEZ1 (fasciculation and elongation protein zeta-1)
and RAN-binding protein 2 (RANBP2; Cho et al., 2007; Fujita
et al., 2007; Figure 2).

Cytoplasmic dynein motors are composed of multiple
subunits including heavy chains (DHC) that function as
the motor domain for force production, and intermediate
(DIC), light intermediate (DLIC), and light chains (DLC)
that function in cargo attachment and motility regulation.
Dynein motors associate with Drosophila mitochondria, and
mutations of DHC alter both velocity and run length of
retrograde transport of axonal mitochondria (Pilling et al.,
2006). In addition to its role as a KIF5 motor adaptor,
Miro may also serve as an adaptor for dynein motors in
Drosophila (Guo et al., 2005; Russo et al., 2009). Loss of
dMiro impairs both kinesin- and dynein-driven transport, while
dMiro overexpression alters mitochondrial transport in both
directions. It is likely that regulation of the opposite-direction

motor activity is achieved through modulation of the cargo-
adaptor proteins. The existence of multiple motor adaptors
suggests that complex mechanisms regulate mitochondrial
motility in response to various physiological and pathological
conditions.

MITOPHAGY

Mitophagy, a selective autophagy for the removal of
dysfunctional mitochondria, constitutes a key cellular pathway
in mitochondrial quality control. It involves sequestering
damaged mitochondria into autophagosomes and subsequently
degrading them within lysosomes. Recent studies indicate that
PINK1/Parkin-mediated mitophagy ensures mitochondrial
integrity and function (Clark et al., 2006; Gautier et al., 2008;
Narendra et al., 2008). This type of mitophagy is initiated with
stable accumulation of PTEN-induced putative kinase protein 1
(PINK1) on the surface of damaged mitochondria, followed by
recruitment of Parkin from the cytosol to the mitochondria.
Parkin, an E3 ubiquitin ligase, then ubiquitinates a number
of mitochondrial OM proteins and activates the ubiquitin-
proteasome system (Geisler et al., 2010; Poole et al., 2010;
Ziviani et al., 2010; Chan et al., 2011; Yoshii et al., 2011), which
works in conjunction with the AAA ATPase p97 to degrade
mitochondrial OM proteins (Tanaka et al., 2010; Chan et al.,
2011). This triggers engulfment of damaged mitochondria by
isolation membranes to form autophagosomes. Loss-of-function
mutations of PINK1 and Parkin are associated with autosomal
recessive forms of Parkinson’s disease. While the functions of
PINK1 and Parkin in mitophagy have been proposed mostly
from in vitro studies, their involvement in this pathway has
recently been supported by proteomic analyses in Drosophila

FIGURE 2 | Microtubule-dependent motor-driven mitochondrial transport. Cytoplasmic dynein motors and kinesin-1 family (KIF5) of the KIF5 mediate
mitochondrial transport. Dynein motors, the minus-end driven motors, carry out retrograde transport of mitochondria toward the soma of neurons. By contrast, KIF5
selectively moves mitochondria toward the plus-end of microtubules (MTs), and participates in anterograde transport from the soma to distal axons and synaptic
terminals. Mitochondrial transport driven by KIF5 requires the mitochondrial rho (Miro)-Milton (or Miro-Trak) motor-adaptor complex. MIiro or MIRO is a mitochondrial
outer membrane (OM) protein of the Rho GTPase family. In Drosophila melanogaster, Milton recruits KIF5 to mitochondria by binding to Miro. In a similar way, Trak1
and Trak2 (mammalian Milton orthologues) can bind to Miro1 and Miro2 (mammalian orthologues of Miro). The Miro1-Trak2 complex is an important regulator of
mitochondrial transport in hippocampal neurons. KIF5 also associates with mitochondria and mediates mitochondrial anterograde transport via syntabulin, a KIF5
adaptor that binds to mitochondria via its carboxy-terminal transmembrane domain. Fasciculation and elongation protein zeta-1 (FEZ1), as well as RAN-binding
protein 2 (RANBP2), are additional kinesin adaptors that may contribute to mitochondrial transport. Figure is modified from Sheng (2014).
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under normal physiological conditions (Vincow et al., 2013).
The PINK1/Parkin pathway thus promotes both mitophagy
in vivo and the selective turnover of mitochondrial respiratory
chain subunits.

Other PINK1/Parkin-independent mitophagy pathways have
been identified as well. For instance, a mitochondrial OM
protein, the BCL-2 homology 3 (BH3)-containing protein NIP3-
like X (NIX, also known as BNIP3L), was shown to play
an important role in the elimination of mitochondria in
erythrocytes (Sandoval et al., 2008). NIX contains an amino-
terminal LC3-interacting region (LIR) that binds to LC3 on
isolation membranes (Novak et al., 2010). This enables NIX to
act as a selective mitophagy receptor that physically connects
the autophagy machinery to the mitochondrial surface in
erythroid cells. Another mitochondrial OM protein that has been
proposed as a mitophagy receptor is FUN14 domain containing
1 (FUNDC1), which regulates the autophagic degradation
of mitochondria in response to hypoxia. FUNDC1 has a
LIR required for recruitment of LC3 (Liu et al., 2012a).
Under hypoxic conditions, this LIR is dephosphorylated by
the mitochondrial phosphatase phosphoglycerate mutase family
member 5 (PGAM5), thus increasing its physical association with
LC3 and promoting mitophagy (Chen et al., 2014). In addition,
a recent study reported that in neuronal cells, cardiolipin—an
inner mitochondrial membrane phospholipid—externalizes to
the OM upon mitochondrial damage. LC3 has been shown
to contain cardiolipin-binding sites, which suggests that
externalized cardiolipin acts as an elimination signal for
neuronal mitophagy (Chu et al., 2013). Altogether, these
observations indicate that specific mitophagy receptors on the
mitochondrial OM play an essential role in mitochondrial
degradation by recruiting autophagy machinery to mitochondria
(Figure 3).

As a highly dynamic process, mitophagy needs to be evaluated
using several complementary assays: (1) cellular analysis of
depolarization of mitochondrial membrane potential with
Parkin translocation, co-localization with autophagy markers
(mitophagosome formation), and lysosomal sequestration of
defective mitochondria; (2) ultrastructural analysis by electron
microscopy based on alterations in mitochondrial structure and
morphological features of autophagic vacuoles (AVs) containing
mitochondrial profiles; and (3) western blot analysis of increased
association of mitophagy machinery with mitochondria and
reduced levels of mitochondrial proteins upon mitophagy
induction. These assays need to be combined with the application
of mitochondrial membrane potential dissipating agents and a
flux inhibitor to trap newly formed autophagosomes.

MITOCHONDRIAL QUALITY CONTROL

Mitochondrial quality control involves surveillance and
protective strategies at multiple levels in order to limit
mitochondrial damage and ensure mitochondrial integrity. The
quality control occurs at the molecular, organellar, and cellular
levels. At the molecular level, a proteolytic system, involving
molecular chaperones and ATP-dependent proteases in the
matrix and the inner membrane (IM) of mitochondria, degrades

FIGURE 3 | Mitophagy. Mitophagy, which is initiated when damaged
mitochondria are labeled for their subsequent recruitment into phagophore or
isolation membranes, occurs through two mechanisms. First, upon loss of
mitochondrial membrane potential, the E3 ubiquitin ligase Parkin is recruited
from the cytosol to damaged mitochondria in a PTEN-induced putative kinase
protein 1 (PINK1)-dependent manner. Parkin ubiquitinates mitochondrial
proteins and causes mitochondria to become engulfed by phagophore or
isolation membranes that then fuse with lysosomes. Second, outer
mitochondrial membrane proteins, such as NIP3-like protein X (NIX; also
known as BNIP3L), FUN14 domain containing 1 (FUNDC1), or cardiolipin
externalized from the inner mitochondrial membrane phospholipid upon
mitochondrial damage, bind to LC3 on the phagophore or isolation
membranes, which mediate the sequestration of damaged mitochondria into
mitophagosomes for lysosomal degradation.

damaged and misfolded proteins and/or dissolves protein
aggregates for proteolysis (de Castro et al., 2010). The ubiquitin-
proteasome system in the cytosolic additionally participates
in the quality control of mitochondrial proteins (Tatsuta and
Langer, 2008). At the organellar level, mitochondrial fusion
and fission provide additional protection against mitochondrial
damage. Dysfunctional mitochondria can be repaired by fusion
with healthy mitochondria, which allows for mixture of the
contents of healthy and defective mitochondria (Detmer and
Chan, 2007; Chen and Chan, 2009; Westermann, 2010). In
other cases, severely damaged mitochondria are segregated
by fission, ultimately leading to their elimination within the
autophagy-lysosomal system through mitophagy (Youle and
Narendra, 2011). However, if the quality control pathways
at the molecular and organellar levels are defective or if the
levels of damage exceed the capacity of these two pathways,
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damaged mitochondria can rupture and release pro-apoptotic
factors, leading to activation of apoptosis and cell death
(Figure 4).

MITOCHONDRIAL DYNAMICS AND
MITOPHAGY

Mitochondrial dynamics regulate mitochondrial elimination
through the autophagy-lysosomal system. Mitochondrial
elongation protects mitochondria from autophagy-mediated
degradation (Gomes et al., 2011; Rambold et al., 2011). Parkin-
mediated mitophagy can also be prevented by inhibition of
Drp1-mediated fission prevents (Tanaka et al., 2010). Studies
have indicated that mitochondrial fission yields uneven products,
leaving one hyperpolarized mitochondrion and one depolarized
daughter mitochondrion (Twig et al., 2008). Such depolarized
mitochondria display reduced levels of OPA1 protein, causing
them to become much less likely to fuse and to eventually
undergo autophagocytosis. Additional evidence supports the
notion that mitophagy relies on the loss of fusion and the
presence of fission, as OPA1-overexpression, Fis1 RNAi, and
Drp1 dominant-negative expression all reduce mitophagy
levels (Narendra et al., 2008; Twig et al., 2008). Moreover, a
study in yeast indicates that dynamin-related 1 (Dnm1) and
other components of the mitochondrial fission machinery are
dispensable for mitophagy (Mendl et al., 2011). However, it
should be noted that mitochondrial fragmentation facilitates, but
is not itself sufficient for, mitophagy. Reciprocally, mitophagy
influences mitochondrial dynamics. Upon mitophagy induction,
Parkin induces ubiquitination of Mfn1 and Mfn2, which leads
to their degradation in a proteasome- and p97-dependent
manner (Gegg et al., 2010; Poole et al., 2010; Tanaka et al.,
2010; Ziviani et al., 2010; Chan et al., 2011). A recent study
further showed that PINK1 phosphorylates Mfn2 and thereby
promotes Parkin-mediated Mfn2 ubiquitination, which is
required for the quality control of cardiac mitochondria
(Chen and Dorn, 2013). Through this interplay between
mitophagy and mitochondrial dynamics, Parkin-mediated
mitophagy inhibits the fusion of defective mitochondria with
healthy ones, thus promoting the segregation of dysfunctional
mitochondria for degradation via the autophagy-lysosomal
pathway.

MITOCHONDRIAL TRANSPORT AND
MITOPHAGY

The mechanism coordinating mitochondrial motility and
mitophagy represents an important emerging area. It has been
suggested that a likely relationship between mitochondrial
membrane potential and the direction of mitochondrial
movement exists. One study showed that mitochondria with
high membrane potentials exhibit anterograde transport towards
distal processes, whereas depolarized mitochondria return
to the soma following acute membrane potential dissipation
(Miller and Sheetz, 2004). These findings suggest that damaged
or defective mitochondria are delivered to the soma for repair
and/or degradation, which is consistent with the observation that

somatodendritic regions and the proximal axon are relatively
enriched with mature lysosomes (Overly and Hollenbeck,
1996; Cai et al., 2010; Lee et al., 2011). Consistently, one
recent study revealed that depolarized mitochondria in PINK1
mutant Drosophila neurons showed reduced anterograde axonal
transport and altered morphology in the soma, indicating
that mitochondrial turnover might be restricted to the cell
body in vivo in the intact nervous system (Devireddy et al.,
2015). Another study reported that axonal mitochondria
displayed reduced anterograde transport and relatively increased
retrograde transport upon mitophagy induction, promoting the
accumulation of Parkin-targeted mitochondria in the soma and
proximal regions (Cai et al., 2012a,b). The altered motility may
serve as a protective mechanism: healthy mitochondria remain
in distal areas whereas aged and defective mitochondria are
returned to the soma. This dynamic process allows neurons to
efficiently remove defective mitochondria from distal regions,
and then eliminate them within mature lysosomes in the
soma.

Reduced anterograde transport of depolarized mitochondria
is consistent with the results of many studies showing that Miro
is degraded in response to mitophagy induction. During the early
phase of mitophagy, the Parkin-activated ubiquitin-proteasome
system was shown to mediate widespread degradation of Miro1
and Miro2 (Chan et al., 2011; Yoshii et al., 2011). In addition
to binding to KIF5-Trak motor complex, Miro has been found
to interact with Parkin and is ubiquitinated by Parkin following
mitochondrial depolarization (Weihofen et al., 2009; Chan et al.,
2011;Wang et al., 2011b; Liu et al., 2012b; Sarraf et al., 2013; Birsa
et al., 2014). Degradation of Miro on the surfaces of defective
mitochondria may not only suppress mitochondrial anterograde
transport, but also favor their retrograde transport to the soma or
immobilization at distal regions in preparation for mitophagy.

Once mitochondria are immobilized at distal axons by
Miro degradation or by syntaphilin, the axonal mitochondrial-
anchoring protein (Kang et al., 2008; Chen et al., 2009),
damaged mitochondria may also recruit Parkin or be engulfed
by autophagosomes (Cai et al., 2012a,b; Ashrafi et al., 2014).
Recent studies indicate that autophagosomes, including those
containing engulfed mitochondria, predominantly undergo
retrograde transport from distal axons to the soma, which allows
for autophagosome maturation and subsequent degradation
within mature lysosomes in the proximal regions and soma
of neurons (Maday and Holzbaur, 2014; Maday et al.,
2012; Cheng et al., 2015). This functional interplay between
mitochondrial motility andmitophagy is a particularly important
mechanism by which the PINK1/Parkin pathway governs
mitochondrial quality control for the proper removal of aged and
defective mitochondria from distal axons and nerve terminals
(Figure 5).

Mitochondrial Abnormalities in Alzheimer’s
Disease
In AD brains, mitochondria display multiple abnormalities,
including impaired mitochondrial function, altered
mitochondrial dynamics and transport, increased mtDNA
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FIGURE 4 | Mitochondrial quality control. Mitochondrial quality control occurs at multiple levels in order to limit mitochondrial damage and ensure mitochondrial
integrity. At the molecular level of defense, degradation of misfolded or damaged mitochondrial proteins is supported by the proteolytic system. Molecular
chaperones and ATP-dependent proteases in the matrix and inner membrane (IM) of mitochondria degrade damaged proteins, stabilize misfolded proteins (thus
preventing their aggregation), and/or dissolve protein aggregates, and thereby promote proteolysis. In addition, the cytosolic ubiquitin-proteasome system can
participate in the quality control of mitochondrial proteins. At the organellar level, mitochondrial fusion and fission provide additional protection against mitochondrial
damage. Damaged mitochondria can be repaired by fusion with healthy mitochondria, which allows the contents of healthy and dysfunctional mitochondria to be
mixed. Fission, on the other hand, segregates mitochondria that have become irreversibly damaged or are fusion-incompetent and results in their subsequent
elimination by autophagy. If the two quality control pathways described above are ineffective, dysfunctional mitochondria are eliminated by autophagy. One type of
cargo-specific autophagy is mitophagy, which selectively removes damaged mitochondria. Figure is modified from Sheng and Cai (2012).

mutations, defective mitochondrial enzyme activities, and
abnormal expression of mitochondrial genes (Reddy et al.,
2011). A growing body of evidence suggests that accumulation of
amyloid precursor protein (APP) and amyloid β (Aβ) peptides
plays a central role in mediating mitochondrial toxicity.

APP and Aβ have been found in the purified
mitochondria from patient brains and AD mouse models
(Anandatheerthavarada et al., 2003; Lustbader et al., 2004;
Caspersen et al., 2005; Crouch et al., 2005; Devi et al., 2006;
Manczak et al., 2006; Du et al., 2008; Yao et al., 2009). Aβ has
been shown to interact with mitochondrial matrix proteins
ABAD and cyclophilin D, which has been suggested to induce
cytotoxic effects (Lustbader et al., 2004; Du et al., 2008). Aβ was
also found to affect mitochondrial fusion and fission (Wang
et al., 2008b; Manczak et al., 2011; Manczak and Reddy, 2012b),
alter mitochondrial motility (Rui et al., 2006; Du et al., 2010;

Calkins et al., 2011), disrupt function of the electron transfer
chain, increase ROS production (Keller et al., 1997; Abramov
et al., 2004; Manczak et al., 2006), and impair mitochondrial
function (Mattson et al., 1998; Lustbader et al., 2004; Du
et al., 2008). Neurons derived from mutant APP transgenic
(Tg) mouse models display altered mitochondrial dynamics,
impaired trafficking, and reduced biogenesis (Calkins et al., 2011;
Trushina et al., 2012). Abnormal accumulation of Aβ within
synaptic mitochondria was proposed to contribute to early
deficits in synaptic function in AD (Du et al., 2010). Moreover,
the degree of cognitive impairment in AD brains has been linked
to the extent of mitochondrial dysfunction and mitochondrial
Aβ accumulation (Dragicevic et al., 2010).

While it remains to be experimentally proven whether
intramitochondrial production of Aβ occurs (Pinho et al.,
2014), studies have shown possible routes for Aβ entry
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FIGURE 5 | Functional interplay of mitochondrial transport and mitophagy in neurons. Upon mitochondrial membrane potential dissipation, Parkin-targeted
mitochondria accumulate in the soma and proximal regions. Such compartmental restriction is attributed to altered motility of depolarized mitochondria, which exhibit
reduced anterograde and relatively enhanced retrograde transport, thus reducing anterograde flux of damaged mitochondria into distal processes. This spatial
process allows neurons to efficiently remove dysfunctional mitochondria from distal axons via the autophagy-lysosomal pathway in the soma, where mature
lysosomes are mainly located. Damaged mitochondria at axonal terminals can also recruit Parkin for mitophagy once they are anchored by syntaphilin, or
immobilized by turnover of the motor adaptor Miro on the mitochondrial surface. Autophagosomes containing engulfed mitochondria at axonal terminals are
predominantly transported to the soma for maturation and for more efficient cargo degradation within acidic lysosomes. Figure is modified from Sheng (2014).

into mitochondria—via mitochondrial-associated endoplasmic
reticulum membrane (MAM; Pinho et al., 2014) or via the
translocase of the outer mitochondrial membrane (TOM)
complex (Hansson Petersen et al., 2008). Extracellular Aβ was
also shown to be internalized and taken up by mitochondria
(Hansson Petersen et al., 2008; Hedskog et al., 2013). One
recent study reported that reduction inmitochondrial membrane
potential and the emergence of dystrophic and fragmented
mitochondria were limited to the vicinity of Aβ plaques in a live
ADmouse model, suggesting that Aβ plaques likely serve as focal
sources that promote mitochondrial Aβ accumulation and thus
Aβ-mediated toxicity (Xie et al., 2013). Altogether, these pieces
of evidences indicate that the accumulation of APP and Aβ in
the mitochondrial compartment likely has a causative role in
altering mitochondrial dynamics and transport, thereby leading
to mitochondrial dysfunction.

Abnormal Mitochondrial Dynamics in
Alzheimer’s Disease
Mitochondrial fragmentation and reduced mitochondrial
density in neuronal processes have been consistently observed

in neurons exposed to Aβ-derived diffusible ligands (ADDLs)
or oligomeric Aβ, as well as in primary neurons cultured
from AβPP mice (Wang et al., 2009a; Du et al., 2010; Calkins
et al., 2011). One recent study provided in vivo evidence of
the emergence of dystrophic and fragmented mitochondria
and a reduction in the total number of mitochondria near
amyloid plaques in living AD mouse brains (Xie et al., 2013).
In another study, neuronal cells incubated with conditional
medium from cells stably expressing mutant forms of APP
showed an increase in mitochondrial fission, caused by elevated
levels of S-nitrosylated Drp1 (SNO-Drp1; Cho et al., 2009).
Enhanced dimerization of SNO-Drp1, which was found in
AD patient brains and mouse models, likely contributes to
increased fission activity. These observations suggest that
Aβ-mediated cytotoxic effects lead to enhanced Drp1 activity
through the generation of nitric oxide. One study found the
contrary result of reduced levels of Drp1 in fibroblasts from
sporadic AD patients and AD patient brains (Wang et al.,
2008a, 2009a). The same group provided further evidence
that overexpression of APP in M17 neuroblastoma cells
results in predominant mitochondrial fragmentation and
decreased levels of Drp1 and OPA1, while overexpression of
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Drp1 or OPA1 could partially rescue some of these defects
(Wang et al., 2008b). However, more recent studies found
increased levels of Drp1 and Fis1 and reduced expression
of Mfn1, Mfn2 and OPA1 in AD patient brains. Moreover,
increased Aβ production and the interactions of Drp1 with
Aβ and phosphorylated tau lead to abnormal mitochondrial
fragmentation. These abnormal interactions are increased as AD
progresses (Manczak et al., 2011; Reddy et al., 2011; Manczak
and Reddy, 2012a; Kandimalla and Hemachandra Reddy, 2015).
Therefore, impaired balance in mitochondrial fusion and fission
in AD neurons likely interferes with mitochondrial motility
and mitophagy, thereby compromising mitochondrial quality
control.

ALTERATIONS IN MITOCHONDRIAL
TRANSPORT IN ALZHEIMER’S DISEASE

Several lines of evidence support the hypothesis that impaired
axonal transport plays an important role in the pathogenesis
of AD (Stokin and Goldstein, 2006; Wang et al., 2009b).
Axonal degeneration in patients with AD is characterized
by swollen regions where abnormal amounts of organelles
(including mitochondria) accumulate (Stokin et al., 2005). It
was reported that presenilin 1 (PS1) mutations impair kineisin-1
based axonal transport by increased GSK3β activity and thereby
enhancing the phosphorylation of kinesin-1 light chains (KLC).
This defect leads to a reduction in the densities of APP,
synaptic vesicles and mitochondria in the neuronal processes
of hippocampal neurons and sciatic nerves from mutant PS1
knock-in mice (Pigino et al., 2003). Consistent with this
finding, a study utilizing real-time analysis of vesicle motility
demonstrated that isolated axoplasms perfused with soluble
intracellular oligomeric Aβ exhibited inhibition of bidirectional
axonal transport as a result of increased phosphorylation of
KLC and subsequent release of kinesin from its cargoes (Pigino
et al., 2009). These observations suggest that defects in axonal
transport may compromise neuronal function by interfering
with both trafficking and distribution densities of important
cargoes, including mitochondria, in distal axons and at nerve
terminals.

Exposure of cultured neurons to Aβ or ADDLs consistently
results in decreased mitochondrial motility and reduced
mitochondrial density in axons (Rui et al., 2006; Du et al.,
2010; Vossel et al., 2010; Wang et al., 2010). One study
showed than overexpression of Aβ in Drosophila slowed down
bidirectional transport of axonal mitochondria and depleted
presynaptic mitochondria, leading to presynaptic dysfunction
(Zhao et al., 2010). Primary neurons derived from AβPP
Tg mice also exhibited impaired anterograde transport of
axonal mitochondria, mitochondrial dysfunction, and synaptic
deficiency, which could be attributed to the accumulation of
oligomeric Aβ in mitochondria (Calkins et al., 2011). Mitophagy
induction is associated with alterations in mitochondrial
motility. As a result of Parkin-mediated degradation of
Miro, mitophagy is accompanied by reduced anterograde
mitochondrial transport (Chan et al., 2011; Wang et al., 2011b;
Cai et al., 2012a,b; Liu et al., 2012b; Bingol et al., 2014; Birsa et al.,

2014). Our recent study showed that Parkin-mediatedmitophagy
is robustly induced in AD neurons of mouse models and patient
brains. Consequently, these neurons display reduced anterograde
transport of axonal mitochondria (Ye et al., 2015). Application
of a mitochondria-targeted antioxidant was shown to reverse
these defects and restore mitochondrial motility in AD neurons
(Calkins et al., 2011), likely by attenuating mitophagy and Miro
degradation. These studies show that abnormal mitochondrial
motility in AD neurons may be attributed to the induction
of mitophagy. Together, defective mitochondrial transport and
reduced mitochondrial density in distal axons and at synaptic
terminals may cause local energy depletion and toxic changes in
Ca2+ buffering, thus triggering synaptic dysfunction and loss in
the pathogenesis of AD.

ABNORMAL AUTOPHAGY AND
MITOPHAGY IN ALZHEIMER’S DISEASE

Mounting evidence has implicated defective autophagy in the
pathogenesis of AD (Nixon, 2007, 2013; Nixon and Yang, 2011).
This is evidenced in AD brains by the massive accumulation of
AVs in the soma and within large swellings along dystrophic
and degenerating neurites. These serve as major reservoirs
of intracellular Aβ and create conditions favorable for Aβ

accumulation (Nixon et al., 2005; Yu et al., 2005; Nixon,
2007). However, it is largely unknown what cellular basis
contributes to altered autophagy in affected AD neurons.
Previous studies reported prominent autophagic accumulation
of mitochondria in AD patient brains, suggesting increased
mitochondrial turnover by autophagy (Hirai et al., 2001; Moreira
et al., 2007a,b). These findings suggest that altered autophagy or
mitophagy contributes to mitochondrial defects in AD brains.
Despite enhanced autophagy induction, AD brains still exhibit
aberrant accumulation of ultrastructurally altered mitochondria
with reduced size and broken internal membrane cristae (Hirai
et al., 2001; Baloyannis, 2006; Moreira et al., 2007a,b; Trushina
et al., 2012).

Our recent study showed that enhanced mitophagy induction
contributes to increased autophagic flux in AD (Ye et al., 2015).
In both mutant hAPP neurons and AD patient brains, robust
induction of Parkin-mediated mitophagy was observed. In
the absence of mitochondrial membrane potential dissipation
reagents, hAPP neurons exhibit increased recruitment of
cytosolic Parkin to depolarized mitochondria. Under AD-
linked pathophysiological conditions, Parkin translocation
predominantly occurs in the somatodendritic regions,
coupled with reduced anterograde and increased retrograde
transport of axonal mitochondria. As the disease progresses, this
enhancement of mitophagy in AD patient brains is accompanied
by a depletion of cytosolic Parkin. Consistent with this,
overexpression of Parkin in an AD mouse model was shown to
enhance autophagic clearance of defective mitochondria and
prevent mitochondrial dysfunction (Khandelwal et al., 2011;
Martín-Maestro et al., 2015). Thus, these data indicate that
aberrant accumulation of defective mitochondria in AD-affected
neurons is likely caused by inadequate mitophagy capabilities for
eliminating the increased numbers of damaged mitochondria.
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Deficits in lysosomal degradation capacity have been
implicated in AD as well, as it leads to the accumulation of
proteolytic substrates in affected neurons (Boland et al., 2008;
Lee et al., 2010, 2011; Yang et al., 2011). One recent study
provided evidence showing that endolysosomal deficits augment
mitochondrial pathology in the motor neurons of an ALS mouse
model (Xie et al., 2015). Defective lysosomal proteolysis likely
impairs turnover of mitophagosomes, thereby contributing to
their aberrant accumulation in AD brains. While enhanced
mitophagy induction contributes to increased autophagic flux,
autophagy failure as a result of lysosomal deficits leads to
inadequate mitophagic clearance and therefore mitochondrial
pathology observed in AD.

ABNORMAL MITOCHONDRIAL QUALITY
CONTROL IN ALZHEIMER’S DISEASE

Mitochondrial quality control, essential for limiting
mitochondrial damage and maintaining mitochondrial integrity
and function, occurs at the molecular, organellar, and cellular
levels. Defects in each level interfere with the efficiency of quality
control, thus leading to mitochondrial dysfunction or abnormal
accumulation of damaged mitochondria. AD neurons have
been shown to exhibit mitochondrial abnormalities including
an imbalance in mitochondrial dynamics, impaired axonal
transport, and inadequate mitophagy capacity, all of which may
disrupt efficient elimination of dysfunctional mitochondria.
Thus, mitochondrial pathology in AD can likely be attributed to
impaired quality control (Figure 6).

Mitochondrial quality control at the molecular level is altered
in AD. The mitochondrial presequence protease (PreP) was
shown to degrade Aβ within mitochondria and thus reduce its
toxic effects on mitochondrial function (Falkevall et al., 2006;
Alikhani et al., 2011). However, in AD patient brains and mouse
models, studies showed that increased ROS production impairs
the proteolytic activity of PreP, thereby promoting accumulation
of Aβ and Aβ-mediated mitochondrial toxicity. A decrease in
proteasome activity could also compromise the quality control of
other presequence peptides and mitochondrial proteins (Gregori
et al., 1995; Keller et al., 2000; Tseng et al., 2008). As a result,
the potential toxic effect caused by accumulation of damaged
presequence peptides and mitochondrial proteins could further
exacerbate mitochondrial dysfunction in AD (Teixeira and
Glaser, 2013).

Mitochondrial quality control at the organellar
level—involving mitochondrial dynamics, motility, and
mitophagy—is also disrupted in AD. The important process of
mitochondrial fusion typically allows damaged mitochondria
to be repaired through fusion with healthy mitochondria,
while mitochondrial fission segregates severely and irreversibly
damaged mitochondria for their clearance via the autophagy-
lysosomal pathway. AD brains exhibit an imbalance in
mitochondrial fusion and fission, showing mitochondrial
fragmentation and reduced fusion (Cho et al., 2009; Du et al.,
2010; Calkins et al., 2011; Manczak et al., 2011; Manczak
and Reddy, 2012a). Mitochondrial fragmentation is likely
attributed to elevated Drp1 levels or activity and reduced

levels of Mfn1 and Mfn2. Its enhanced occurrence promotes
mitochondrial elimination via mitophagy, causing this process to
become dominant. Meanwhile, suppressed fusion may prevent
damaged mitochondria from being repaired through the fusion-
mediated mixture of contents with healthy mitochondria. Thus,
altered mitochondrial dynamics in AD neurons will interfere
with mitochondrial quality control.

Retrograde transport of axonal mitochondria facilitates
removal of aged and defective mitochondria from distal axons
and nerve terminals, since mature lysosomes are mainly located
in the soma (Overly and Hollenbeck, 1996; Cai et al., 2010,
2012a,b; Lee et al., 2011; Ye et al., 2015). Decreasedmitochondrial
motility has been observed in neurons exposed to Aβ or ADDLs,
or in neurons cultured from AβPP Tg mice, and in Drosophila
following Aβ overexpression (Rui et al., 2006; Du et al., 2010;
Vossel et al., 2010; Wang et al., 2010; Zhao et al., 2010; Calkins
et al., 2011). Such defects in axonal transport and mitochondrial
motility compromise mitochondrial quality control by hindering

FIGURE 6 | Abnormal mitochondrial quality control in Alzheimer’s
disease (AD). Mitochondrial quality control is impaired at multiple levels in AD.
At the molecular level, the mitochondrial presequence protease (PreP)
degrades Aβ within mitochondria and thus reduces its toxic effects on
mitochondria. However, the proteolytic activity of PreP is impaired as a result
of increased reactive oxygen species (ROS) production in AD, thereby
promoting accumulation of Aβ and Aβ-mediated mitochondrial toxicity. A
decrease in proteasome activity could contribute to altered quality control of
other presequence peptides and mitochondrial proteins. Mitochondrial quality
control at the organellar level is also disrupted in AD. Elevated Drp1 levels or
activity and reduced levels of Mfn1 and Mfn2 result in mitochondrial
fragmentation and reduced fusion, thus preventing damaged mitochondria
from being repaired through the fusion-mediated mixture of contents with
healthy mitochondria. Enhanced mitophagy induction and defective lysosomal
proteolysis result in aberrant accumulation of damaged mitochondria within
mitophagosomes and autolysosomes, which also contribute to impaired
mitochondrial quality control in AD. Moreover, defects in axonal transport and
mitochondrial motility compromise mitochondrial quality control by hindering
dysfunctional mitochondria from being returned to the soma for lysosomal
degradation.
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dysfunctional mitochondria from being returned to the soma for
lysosomal degradation. As a result, defective mitochondria are
abnormally accumulated in the distal regions of AD neurons.

The key pathway of mitochondrial quality control,
mitophagy, is also altered in AD. Among the various types
of mitophagy, the PINK1/Parkin-mediated mitophagy in AD
has been the focus of most current studies. Earlier studies
revealed autophagic accumulation of mitochondria in AD
patient brains (Hirai et al., 2001; Moreira et al., 2007a,b),
suggesting enhanced turnover of damaged mitochondria
via the autophagy-lysosomal pathway. We further showed
that Parkin-mediated mitophagy, is robustly induced in AD
patient brains and mouse models (Ye et al., 2015). However,
AD brains exhibit depletion of cytosolic Parkin throughout
the disease’s progression, which is consistent with a recent
study’s findings that Parkin is diminished in the fibroblasts and
brain biopsies of AD patients, leading to PINK1 accumulation
(Martín-Maestro et al., 2015). Overexpression of Parkin in
these cells rescues mitophagy failure by inducing recovery of
mitochondrial membrane potential, as well as reducing PINK1
levels and the accumulation of abnormal mitochondria. These
observations indicate that defective mitophagy in AD causes
the aberrant accumulation of dysfunctional mitochondria. In
addition, degradation of mitophagosomes relies on proper
lysosomal function. Deficits in lysosomal proteolysis of
autophagic substrates may further compromise mitophagic
elimination of defective mitochondria, thus exacerbating AD
pathology. Given that endolysosomal deficits were shown
to augment mitochondrial pathology in ALS (Xie et al.,
2015), it is possible that similar deficits may contribute
to mitochondrial dysfunction in AD. Moreover, altered
mitochondrial dynamics and reduced mitochondrial motility
may interfere with mitophagy in AD, although no studies
have yet confirmed this relationship. Therefore, the molecular
interplay between abnormal mitochondrial fission, fusion,
transport, and defective mitophagy must be further investigated
to advance our understanding of mitochondrial quality control
in AD. This represents an important research field, as a variety
of neurodegenerative diseases are associated with mitochondrial
dysfunction.

Altogether, alterations in mitochondrial fusion and fission,
transport, mitophagy, and lysosomal proteolysis lead to
disrupted mitochondrial quality control, thus augmenting
mitochondrial pathology in AD brains.

TAU-MEDIATED MITOCHONDRIAL
DEFECTS

Neurofibrillary tangle formation, composed mainly of
hypophosphorylated tau, is also a pathological hallmark
of AD. There is little information regarding tau-mediated
regulation of mitochondria, and it remains largely unknown
whether tauopathy contributes to mitochondrial dysfunction
in AD. It has been shown that expression of human tau results
in elongation of mitochondria in both Drosophila and mouse
neurons by blocking recruitment of Drp1 to mitochondria,
which is accompanied by mitochondrial dysfunction and cell

death (DuBoff et al., 2012). As these phenotypes can be rescued
by genetically restoring the proper balance of mitochondrial
fusion and fission, it suggests that tau plays a role in regulating
mitochondrial dynamics.

As for disease-related pathogenic taumutants, overexpression
of mutant tau—causing frontotemporal dementia with
Parkinsonism linked to chromosome 17 (FTDP-17)—decreased
fusion and fission rates due to reduced levels of OPA-1
and Drp-1. In contrast, overexpressing wild-type tau was
shown to have protective effects on both mitochondrial
dynamics and function, including the enhancement of
complex I activity (Schulz et al., 2012). One study reported
that hypophosphorylated tau induced mitochondrial fission and
excessive mitochondrial fragmentation in postmortem brain
tissues from patients with AD and mouse models by directly
interacting with Drp1 (Manczak and Reddy, 2012a). In addition
to its effects on fission, phosphorylated tau was shown to interact
with VDAC in AD brains, leading to mitochondrial dysfunction
likely by blocking mitochondrial pores (Manczak and Reddy,
2012b). These studies indicate that pathogenic forms of tau affect
mitochondrial function directly through interaction with VDAC
or indirectly through interference with Drp1-mediated fission.

Tau is a microtubule-associated protein (MAP) responsible
for stabilizing axonal MTs. It has also been shown to
regulate axonal transport of membranous organelles, including
mitochondria (Stamer et al., 2002). Overexpressing tau selectively
inhibits kinesin-driven anterograde mitochondrial transport in
N2a and NB2a/d1 neuroblastoma cell lines, primary cortical
neurons, and retinal ganglion neurons (Stamer et al., 2002; Dubey
et al., 2008; Stoothoff et al., 2009). These studies suggest that
tau preferentially competes with kinesin motors for binding
to MTs. One study showed that the binding of tau to MTs
can reverse the direction in which the dynein motor moves,
whereas the same process tended to cause kinesin to detach from
the MTs (Dixit et al., 2008). Interestingly, complete or partial
loss of tau expression in mutant neurons prevents Aβ-mediated
defects in axonal transport of mitochondria (Vossel et al., 2010).
This suggests that the ability of Aβ to inhibit mitochondrial
motility is dependent on tau expression levels. Thus, perturbing
tau expression and distribution in axons would impair axonal
transport and lead to neurodegeneration.

While mutant tau expression results in mitochondrial
dysfunction, deregulation of mitochondrial dynamics, and
impairedmitochondrial transport, one recent study reported that
pathogenic tau truncation might also contribute to abnormal
mitophagy in AD. A 20–22 kDa NH2-tau fragment detectable
in cellular and animal AD models and human AD subjects
was shown to be stably associated with Parkin and UCHL-1.
As a result, it led to aberrant recruitment of Parkin and
UCHL-1 to mitochondria and excessive Parkin-dependent
mitochondrial turnover (Corsetti et al., 2015). Suppression of this
improper mitophagy restores mitochondrial content at synapses
and results in partial, but significant, protection against the
NH2-htau-induced neuronal death. Altogether, the pathogenic
forms of tau-mediated mitochondrial alterations—including
impaired balance of mitochondrial fusion and fission, reduced
mitochondrial motility, and excessive mitophagy—ultimately

Frontiers in Cellular Neuroscience | www.frontiersin.org 11 February 2016 | Volume 10 | Article 24

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Cai and Tammineni Altered Mitochondrial Quality Control in AD

interfere with mitochondrial quality control, thus contributing to
mitochondrial dysfunction in AD.

CONCLUDING REMARKS

Mitochondrial dysfunction is a prominent feature in AD,
but it remains unclear whether the cellular mechanisms
maintaining mitochondrial quality are defective and further
augments mitochondrial pathology. Mitochondrial quality
control involves multiple levels of surveillance and protective
strategies to limit mitochondrial damage and efficiently
eliminate defective mitochondria for the maintenance
of mitochondrial homeostasis. Mitochondrial fusion and
fission control mitochondrial shape and function, while
mitochondrial transport plays a critical role in regulating
mitochondrial distribution and removing aged and damaged
mitochondrial from distal axons and synapses for lysosomal
degradation in the soma. These key features of mitochondria
operate strongly in conjunction with mitophagy as the key
pathways of mitochondrial quality control. Studies reviewed
here suggest that a complex network of dynamic and reciprocal
interactions among mitochondrial fusion, fission, transport,
and mitophagy governs mitochondrial integrity and function.
Accumulating evidence notes that perturbed mitochondrial
dynamics and abnormal mitophagy exist in AD brains (Chen
and Chan, 2009; Sheng and Cai, 2012), which may directly or

indirectly interfere with the quality control of mitochondria.
Further investigation into these mechanisms would advance
our understanding of mitochondrial dysfunction in AD.
Given that manipulation of genes controlling mitophagy
can ameliorate some phenotypes (Khandelwal et al., 2011;
Martín-Maestro et al., 2015), there is compelling reason to
hope that efforts to artificially manipulate mitochondrial
dynamics, motility, and mitophagy will enhance mitochondrial
surveillance mechanisms and attenuate the neuropathology of
AD, ultimately yielding new therapeutic approaches for the
devastating disease.
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