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A wide variety of studies have identified microglial activation in psychiatric disorders,
such as schizophrenia, bipolar disorder, and major depressive disorder. Relatively
fewer, but robust, studies have detected activation of peripheral monocytic cells in
psychiatric disorders. Considering the origin of microglia, as well as neuropsychoimmune
interactions in the context of the pathophysiology of psychiatric disorders, it is reasonable
to speculate that microglia interact with peripheral monocytic cells in relevance with
the pathogenesis of psychiatric disorders; however, these interactions have drawn little
attention. In this review, we summarize findings relevant to activation of microglia and
monocytic cells in psychiatric disorders, discuss the potential association between these
cell types and disease pathogenesis, and propose perspectives for future research on
these processes.
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INTRODUCTION

A variety of postmortem brain studies and recent positron emission tomography (PET)-based
studies have identified microglial activation in psychiatric disorders, such as schizophrenia (Bayer
et al., 1999; Radewicz et al., 2000; van Berckel et al., 2008; Tang et al., 2012; Fillman et al., 2013),
bipolar disorder (Haarman et al., 2014; Hercher et al., 2014), and major depressive disorder
(Torres-Platas et al., 2014). Several studies have also indicated an association between alterations
in monocytic features and psychiatric disorders (Rothermundt et al., 1998; Theodoropoulou et al.,
2001; Padmos et al., 2008; Drexhage et al., 2011).

By contrast, peripheral monocytes can differentiate into macrophages and dendritic cells in
peripheral tissues, both of which share similarities with microglia in their cellular morphology
and functions, such as phagocytic activities, the expression of cell surface markers and cytokine
production, and similar gene expression profiles (Schmitz et al., 2009; Beumer et al., 2012;
Shechter and Schwartz, 2013; Prinz and Priller, 2014). Under pathological conditions in brain
disorders, monocytes are recruited from peripheral blood into the brain, where they cooperate with

Abbreviations: CNS, central nervous system; LPS, lipopolysaccharide; NOD, non-obese diabetic.
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microglia in immune responses (Beumer et al., 2012; Shechter
and Schwartz, 2013; Prinz and Priller, 2014). Considering the
similarity and potency of the interactions between these two
cell types, it is reasonable to speculate that correlations and
interactions exist between the activation identified in microglia
and peripheral monocytic cells in patients with psychiatric
disorders, although these possibilities have drawn little attention.
In this review, we summarize the accumulated findings regarding
microglial and peripheral monocytic activation in psychiatric
disorders and discuss the potential mechanisms linking
microglial and monocytic activation with the pathogenesis of
psychiatric disorders. Finally, we propose directions for future
research on these potential associations.

ACCUMULATED FINDINGS OF
MICROGLIAL ACTIVATION IN
PSYCHIATRIC DISORDERS

Postmortem brain studies have suggested an association
between psychiatric disorders and microglial activation
(Bayer et al., 1999; Radewicz et al., 2000; Tang et al.,
2012; Fillman et al., 2013; Hercher et al., 2014; Torres-
Platas et al., 2014). Regarding the qualitative assessment of
microglial morphology, Hercher et al. (2014) observed that
activated microglial cells were increased in prefrontal white
matter from patients with schizophrenia, but not that from
patients with bipolar disorder. Torres-Platas et al. (2014)
showed that primed (activated) microglia were significantly
increased compared with ramified (resting) microglia in
the anterior cingulate cortices obtained from patients who
died of depressed suicides compared with healthy controls,
whereas the total densities of ionized calcium-binding adapter
molecule 1 (IBA1) positive microglia did not differ between
the depressed suicide cases and controls. Bayer et al. (1999)
and Radewicz et al. (2000) reported that the expression
of Human Leukocyte Antigen-antigen D Related (HLA-
DR), which reacts with activated microglia, was increased
in the frontal cortices of patients with schizophrenia in
immunostaining studies. Fillman et al. (2013) demonstrated
that the interleukin-6 (IL-6), IL8, and IL1β mRNA transcripts
were over-expressed in the dorsolateral prefrontal cortex,
and the density of major histocompatibility complex class II
(MHC-II) receptor-positive microglia (i.e., antigen-presenting
cells) was increased in the white matter of patients with
schizophrenia. Tang et al. (2012) found positive correlations
among several activated microglial markers in subjects
with schizophrenia. They also showed that changes in
the expression of genes that encode markers of activated
microglia were associated with inflammatory markers in
the arachidonic acid signaling pathway in patients with
schizophrenia.

Recent PET-based evaluations of microglial activation may
also be applicable to psychiatric patients (Veenman and
Gavish, 2000, 2012; Papadopoulos et al., 2006; van Berckel
et al., 2008; Doorduin et al., 2009; Takano et al., 2010;
Haarman et al., 2014). PET radioligands, such as C-PK11195

and DAA1106, are selective for the 18 kDa translocator
protein/peripheral benzodiazepine receptor, which is highly
expressed in activated microglia and is involved in multiple
cellular processes, such as apoptosis, the regulation of
cellular proliferation, immunomodulation and steroidogenesis
(Veenman and Gavish, 2000, 2012; Papadopoulos et al.,
2006). van Berckel et al.’s (2008) PET study showed a
significant increase in microglial activation in patients with
schizophrenia who had a disease onset within 5 calendar
years compared with controls, although all patients were
under treatment with atypical antipsychotics, and confounding
effects of drug treatments remain unexcluded. Interestingly,
Doorduin et al. (2009) in a PET study of patients who
had recovered from psychosis, observed no significant
microglial activation. Although Takano et al. (2010) found
no significant difference between [11C]DAA1106 binding in
normal controls and patients with schizophrenia, the patients
exhibited positive correlations between cortical [11C]DAA1106
binding, positive symptom scores and duration of illness.
Haarman et al. (2014) observed a significant increase in
11C-R-PK11195 binding potential in the right hippocampus of
patients with bipolar disorder type I compared with healthy
controls.

MICROGLIAL FUNCTION AND POTENTIAL
MECHANISMS UNDERLYING THE
PATHOGENESIS OF PSYCHIATRIC
DISORDERS

Microglia comprise ∼12% of cells in the central nervous
system (CNS; Vaughan and Peters, 1974); these cells are
not uniformly distributed (Schmitz et al., 2009). More
microglia are located close to neurons in the gray matter,
with the highest concentrations in the hippocampus,
olfactory telencephalon, basal ganglia, and substantia nigra
(Lawson et al., 1990).

Accumulating evidence from fate-mapping studies suggests
that the origin of most microglia is not the bone marrow
after birth but hematopoietic stem cells in the yolk sac
in the early developmental stage (Lassmann et al., 1993;
Ginhoux et al., 2010; Schulz et al., 2012; Kierdorf et al.,
2013; Prinz and Priller, 2014). Novel transgenic approaches
have shown clear differences in the cellular characteristics
of microglia and macrophages in the brain (Goldmann
et al., 2013; Parkhurst et al., 2013; Yona et al., 2013). In
contrast to macrophages, microglia are long-lived and are not
replaced by circulating peripheral monocytes under physiological
conditions.

Microglia can be polarized into two subtypes: M1 and M2,
responding to certain stimuli. For examples, lipopolysaccharide
(LPS) or interferon-γ induces polarization into M1, whereas
IL-4 or IL-13 induces M2 phenotype (Orihuela et al., 2016).
Microglia contain two subtypes: M1 and M2. The M1 subtype is
characterized by the production of pro-inflammatory cytokines,
such as IL-1β, IL-6, IL-8 and tumor necrosis factor alpha
(TNF-α; Barger and Basile, 2001; Boche et al., 2013). The
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M1 phenotype is activated by damage-associated molecular
patterns, such as ATP, S100 molecules, histones, and heat
shock proteins (Lu et al., 2014; Wiersinga et al., 2014). By
contrast, the M2 phenotype is characterized by the production of
anti-inflammatory cytokines, such as IL-10, insulin-like growth
factor 1 (IGF-1), transforming growth factor beta (TGF-β),
and neurotrophic factors (Ekdahl, 2012; Boche et al., 2013; Hu
et al., 2015). The M2 phenotype is activated by cytokines, such
as IL-4, IL-13 and IL-25 (Boche et al., 2013; Maiorino et al.,
2013).

Activated microglia retract their cellular processes and
transform from a ramified state into an ameboid morphology,
in which they respond to external stimuli induced by various
pathological conditions, such as trauma, infection, or other
damage to brain tissue (Marshall et al., 2013). Activated
microglial functions include phagocytosis and the production
and release of cytokines, reactive oxygen species and nitrogen
species (Barger and Basile, 2001; Takaki et al., 2012; Réus et al.,
2015). They express a profile of cell surface marker expression
that is similar to that of other mononuclear phagocytes
(specifically macrophages), such as cluster of differentiation 14
(CD14), MHC molecules and chemokine receptors (Rock et al.,
2004). Activation of microglia under pathological conditions
in the brain may exert neuroprotective effects by reducing
protein aggregates; however, they may exert cytotoxic effects by
secreting neurotoxic factors (Streit et al., 1999; Schmitz et al.,
2009).

PERIPHERAL MONOCYTIC ACTIVATION IN
PSYCHIATRIC DISORDERS

Several studies have suggested an association between monocyte
activity and psychiatric disorders (Rothermundt et al., 1998;
Theodoropoulou et al., 2001; Nikkilä et al., 2014). Some studies
have shown that circulating peripheral blood monocytes
are increased in patients with schizophrenia (Rothermundt
et al., 1998; Theodoropoulou et al., 2001). In addition, in
the cerebrospinal fluid of patients with schizophrenia, the
numbers of monocytes and macrophages were increased during
acute psychotic episodes (Nikkilä et al., 2014). In contrast
to schizophrenia, the number and level of CD14-positive
monocyte differentiation were not altered in patients with
bipolar disorder compared with healthy controls (Padmos et al.,
2008; Drexhage et al., 2011). Recently, Drexhage et al. (2010)
conducted a series of gene expression profiling studies using
monocytes from psychiatric patients (27 schizophrenia and
56 bipolar patients) and matched controls via a microarray
analysis, followed by quantitative polymerase chain reaction
(PCR) studies for validation (Padmos et al., 2008; Beumer
et al., 2012). The authors identified two main subsets of
strongly correlated genes: one subset was composed of
pro-inflammatory cytokines; the other subset consisted
mainly of adhesion/motility factors. The monocyte gene
expression profiles of the majority of the patients with bipolar
disorder showed dysregulation in both subsets, whereas
the monocyte gene expression profiles of the majority of
the schizophrenia patients showed dysregulation only in

the subset of pro-inflammatory cytokines (Drexhage et al.,
2010).

SUBPOPULATIONS OF PERIPHERAL
MONOCYTIC CELLS AND POTENTIAL
PATHOGENIC MECHANISMS
UNDERLYING THE INVOLVEMENT OF
PERIPHERAL MONOCYTES IN
PSYCHIATRIC DISORDERS

Monocytes are precursors of tissue macrophages, osteoclasts,
and antigen-presenting cells (Lawson et al., 1990; Schmitz and
Grandl, 2007). Monocytes, which comprise 5–10% of peripheral
blood leukocytes, are derived from myelomonocytic stem cells
in bone marrow and then released into the circulation, where
they have a half-life of up to 3 days in humans (Whitelaw,
1972; Fogg et al., 2006). The brain harbors several types of
monocyte-derived cells (Prinz and Priller, 2014). Macrophages
and blood-derived dendritic cells are both present in the outer
boundaries of the brain, such as the choroid plexus, perivascular
space, and meninges; however, the number of blood-derived
dendritic cells is small (Prinz and Priller, 2014).

There are five subsets of monocytes; they can be distinguished
by different surface markers (Schmitz et al., 1997; Stöhr
et al., 1998; Rothe et al., 1999; Gordon and Taylor, 2005;
Beumer et al., 2012). More than half of monocytes belong
to subset 1 and are characterized by surface marker profiles
with abundant CD14 and a lack of CD16 expression (Schmitz
et al., 1997; Stöhr et al., 1998). Both subsets 2 and 3 have
CD16 expression and comprise active phagocytic cells. The
expression of CD14 is increased in subset 2 compared with
subset 3 (Schmitz et al., 1997; Stöhr et al., 1998). Subset 4 is
a precursor of dendritic cells with high expression of CD40
(Schmitz et al., 1997; Stöhr et al., 1998). Subset 5, the smallest
subset, shares many surface markers with subset 1; however,
it differs in the additional expression of CD56, a marker of
immature monocytes (Schmitz et al., 1997; Stöhr et al., 1998).
Transformation between subsets among peripheral monocytes
can occur concomitant with the differentiation of microglia
in the brain under certain pathogenic conditions related to
psychiatric diseases, although these possibilities remain to be
elucidated.

POTENTIAL MECHANISMS LINKING
ACTIVATION OF MICROGLIAL AND
PERIPHERAL MONOCYTIC CELLS TO
PSYCHIATRIC DISORDERS

As previously described, many studies have investigated the
association between microglia and psychiatric disorders or
monocytes and psychiatric disorders. However, only a few
studies have investigated the direct association or interaction
between microglia and monocytes. Theoretically, there are
several potential mechanisms underlying these interactions, as
described below (Figure 1).
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FIGURE 1 | Potential mechanisms underlying the associations and/or interactions between microglia and monocytes. (1) Microglia and monocytes
exhibit similar responses to systemic stimuli. First, accumulated data have suggested strong associations between microglia and monocyte gene expression.
Second, the two cell types show similar profiles for cytokine production, such as interleukin (IL) 1β, IL-6, IL-8 or tumor necrosis factor (TNF)-α. Third, both cell types
express similar surface markers, such as cluster of differentiation 14 (CD14), major histocompatability complex (MHC) molecules, and chemokine receptors. (2) Local
stimuli in the brain facilitate the recruitment of circulating monocyte-derived macrophage/dendritic cells into the central nervous system (CNS). Immigrant monocytic
cells, which are short-lived, and localized in the outer boundaries of the brain compared with microglia (Prinz and Priller, 2014), may collaborate with microglia in the
innate immune response. (3) Signals are transduced between microglia and circulating monocytes through the blood-brain barrier (BBB). Even relatively large
molecules, such as cytokines, may comprise vehicles of signal transductions through circumventricular organs brain lymphatic pathways, BBB-relevant
transporters/receptors, or abnormal permeability of BBB. (4) Microglia and peripheral monocytic cells may exert related biological reactions through neuronal signal
transduction. Peripheral inflammation, induced by, for example, the peripheral administration of lipopolysaccharide (LPS), induces reactions in peripheral monocytic
cells and also triggers the production of pro-inflammatory cytokines in the brain. Such reactions in the brain are thought to be induced by the transduction of neural
excitability from peripheral nerves to the CNS because LPS rarely penetrates the BBB. Additionally, interactions between microglia and neuronal networks modulate
myeloid cell proliferation through the autonomic nervous system.

(1) Common Responses of Microglia and
Peripheral Monocytic Cells to Endogenous
or Exogenous Stimuli
As mentioned in the introduction, microglia and monocytes
have similar functions, such as phagocytosis and the release
of pro-inflammatory cytokines, as well as similar expression of

surface markers, such as CD14, MHCmolecules, and chemokine
receptors (Schmitz et al., 2009; Beumer et al., 2012; Shechter and
Schwartz, 2013; Prinz and Priller, 2014). They may also share
similar epigenetic marks, in addition to having the same genomic
sequence. Although limited data directly indicate epigenetic
similarities between microglia and peripheral monocytic cells,
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several previous studies have suggested similarities in the gene
expression profiles of both microglia and peripheral monocytic
cells. Schmitz et al. (2009) observed over-representation of
genes associated with Alzheimer’s disease among the expression
profiles specific to microglia andmonocytes (Thomas et al., 2006;
Lutter et al., 2008). The authors compared the microglial gene
expression profile with the microarray data of human blood
monocytes and in vitro macrophage colony-stimulating factor
(M-CSF) differentiated macrophages to assess the expression of
genes associated with Alzheimer’s disease. Of 379 Alzheimer’s
disease-related genes, 159 were expressed in microglia, 198
in monocytes and 206 in macrophages. Of these genes, the
expression of 128 Alzheimer’s disease-related genes were shared
by microglia, monocytes and macrophages.

In addition, we compared the gene expression profiles of
mouse microglia and monocytes in our preliminary microarray
study prior to evaluating the effect of lithium treatment on
microglia and peripheral monocytic cells (Yu et al., 2015).
These findings also suggested a strong association between
microglia and monocyte gene expression patterns. Among
45,281 transcripts on the microarray, 11,597 with average
signal intensities greater than 100 in microglia or monocytes
were reliably detectable. Of these transcripts, 7552 genes were
identified in both cell types, including 2832 that were expressed
only in microglia, and 1213 that were expressed only in
monocytes. The correlation coefficients among the microglia
samples were 0.94–0.98, compared with 0.97–0.98 for monocytes
and 0.71–0.76 between microglia and monocytes. By contrast,
the alterations in the gene expression profiles following lithium
treatment were quite different between the microglia and other
types of monocytic cells. Yu et al. (2015) investigated the effects
of lithium on two cell types: monocyte-derived dendritic cells
treated with lithium and microglia separated from lithium-
treated mice. They compared the gene expression profiles of
these cells with those of controls. They demonstrated that
the common gene significantly induced by lithium in both
monocyte-derived dendritic cells and microglia was only the
third component of complement. Taken together, these findings
indicate that microglia and monocytes have a similar gene
expression pattern under normal conditions; however, changes
in the pattern of expression profiles in response to stimuli are
quite different.

(2) Collaboration of Peripheral Monocytes
with Microglia in the Innate Immune
Response
Damage to the CNS commonly results in the recruitment
of circulating immune cells, including monocytes, which
results in an innate immune response that consists of
microglia and monocyte-derived macrophages/dendritic cells
(Prinz and Priller, 2014). The differential roles of these
myeloid cell populations in CNS disorders have only recently
been acknowledged and were nicely illustrated in a recent
review by Prinz and Priller (2014). In Alzheimer’s disease,
activated microglia have been associated with amyloid-β-
induced neurotoxicity, and microglia were also damaged by

amyloid species (Simard et al., 2006; Mildner et al., 2011; Prinz
and Priller, 2014). Transplantation of wild-type bone marrow
cells in transgenic mouse models of Alzheimer’s disease causes
the migration of bone marrow-derived phagocytes to the brain
after CNS preconditioning. Consequently, the amyloid load in
the brain is eliminated by bone marrow-derived phagocytes
(Simard et al., 2006; Mildner et al., 2011; Prinz and Priller,
2014). Similarly, recovery from spinal cord injury in mice has
been reported to depend more on infiltrating monocyte-derived
macrophages than on resident microglia (Shechter et al., 2009).

(3) Interactions Between Microglia and
Peripheral Monocytic Cells Through the
Blood-Brain Barrier
Interactions between microglia and monocytes may also be
regulated by cytokines. In a mouse model of amyotrophic
lateral sclerosis, Butovsky et al. (2012) demonstrated that
chemokine receptor-2 (CCR2) was over-expressed in splenic
Ly6Chi monocytes at disease onset, which was paralleled by
upregulation of chemokine ligand-2 (CCL2) in CD39+microglia.
Additionally, CCR2 was not expressed in CD39+ microglia,
and CCL2 was not expressed in Ly6Chi monocytes during
the pathological course of the disease. Therefore, the authors
suggested that the expression of CCL2 and other chemokines on
microglia caused the migration of Ly6Chi monocytes to the CNS.

Furthermore, both microglia and monocytes are activated by
and release pro-inflammatory cytokines, such as IL-1β, IL-6,
IL-8 or TNF-α (Chan et al., 2007; Schmitz et al., 2009; Beumer
et al., 2012). Studies have reported that these cytokines are
increased in the blood of psychiatric patients (Naudin et al.,
1997; Kim et al., 2000; Drexhage et al., 2008; Padmos et al., 2008;
Song et al., 2009). Therefore, it is reasonable to suspect that
these cytokine activation might underlie interactions between
microglia and monocytes, although there has not been direct
evidence to support the theory.

However, cytokines are relatively large molecules and rarely
cross the blood-brain barrier (BBB). There are several known
mechanisms and routes by which they can cross the barrier,
such as alterations in the barrier’s permeability (Esposito et al.,
2001; Stamatovic et al., 2006), crossing though circumventricular
organs (Anisman, 2009; Calderó et al., 2009; Banks and Erickson,
2010), or the use of specific transporters or receptors (Kastin
et al., 1999; Chesnokova and Melmed, 2002; Banks and Erickson,
2010). Also, recent studies discovered functional lymphatic
vessels lining the dural sinuses which can convey fluid, large
molecules, and even immune cells from the brain and are
connected to the deep cervical lymph nodes. Further researches
into the CNS lymphatic system may facilitate understanding of
interactions between microglia and peripheral monocytic cells
(Iliff et al., 2015; Louveau et al., 2015).

(4) Interactions Between Microglia and
Peripheral Monocytic Cells Through
Neuronal Networking
Peripheral inflammation, which is caused, for example, by
peripheral administration of LPS, induces peripheral reactions
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among immune cells, including monocytes. LPS also induces
pro-inflammatory cytokines in the brain; however, LPS rarely
crosses the BBB (Hayashi et al., 2015). This phenomenon may
reflect that activation of inflammatory responses in the brain is
induced by transduction of neural excitability from peripheral
nerves to the CNS (Banks and Robinson, 2010), as well as
LPS-induced dysfunction of vascular endothelial cells at the
BBB (Banks et al., 2015). These findings suggest that mild
peripheral inflammation, which contributes to the pathogenesis
of psychiatric disease-related events, including fatigue, may
induce microglial activation through neuronal networking.

Additionally, it is possible that interactions between microglia
and neuronal networks modulate myeloid cell proliferation
through the autonomic nervous system, although there is little
evidence (Mignini et al., 2003; Spiegel et al., 2008). Peripheral
monocyte activitiesmay reflectmicroglial activities through these
mechanisms.

PERSPECTIVES ON STUDIES LINKING
ACTIVATION OF MICROGLIAL AND
PERIPHERAL MONOCYTIC CELLS TO
PSYCHIATRIC DISORDERS

Several animal models are characterized by abnormalities in
both immune system function and behavior (Amrani et al.,
1994; Yirmiya, 1996; Bothe et al., 2005; Frenois et al., 2007;
Fu et al., 2010). These models have enabled us to observe the
activation of circulating monocytes and microglia in the brain
and to investigate their influence on behavior. The non-obese
diabetic (NOD) mouse spontaneously develops autoimmune
diabetes, which is similar to the onset of type 1 diabetes in
humans. Psychiatric diseases in humans have been associated
with autoimmune diseases, such as type 1 diabetes and
autoimmune thyroiditis (Kupka et al., 2002; Padmos et al.,
2004; Eaton et al., 2010). Interestingly, abnormal behaviors
have also been observed in NOD mice (Amrani et al., 1994;
Bothe et al., 2005). This model is useful for investigating
associations between microglial activation and monocytes in
pathological processes, as well as gene-environment interactions
in this association. In addition, ion channels have recently been
recognized to play important roles in the immune response
of neurological disorders (Eder, 2010). Local changes in cell

osmolality enable monocytes to migrate and invade the CNS
parenchyma, where they further differentiate into phagocytes
under pathological conditions (Fuentes et al., 1995; Bennett
et al., 2003; Mahad and Ransohoff, 2003; Schwab et al.,
2007). Ion channels also have important roles in the process
of microglia activation (Eder, 2010). Therefore, ion channel
inhibitors are good candidates for therapeutic interventions
to control immune responses in psychiatric diseases (Wulff
et al., 2000; Reich et al., 2005; Rangaraju et al., 2009; Eder,
2010).

CONCLUSION

Microglia and monocytes have similar functions, surface
markers, and gene expression profiles. Both cell types release
pro-inflammatory cytokines when activated in response to
stimuli in the brain under various pathological conditions.
Accumulating data also indicate interactions between monocytes
and microglia. Research into these interactions may lead to
new strategies to elucidate the pathogenesis of psychiatric
diseases, as well as to develop peripheral biomarkers that
reflect the pathological conditions in the brain, including
microglial activation related to the progression or modulation of
disease.
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