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Wallerian degeneration occurs immediately following injury to mammal peripheral nerves.

To better understand the molecular events occurring during Wallerian degeneration,

a rat model of sciatic nerve transection was used to assess differentially expressed

genes at 0.5, 1, 6, 12, 24 h, 4 days, 1, 2, 3, and 4 weeks post nerve injury (PNI).

Hierarchical clustering, Euclidean distance matrix, and principal component analysis

(PCA) collectively suggested three distinct phases within the post-injury period of

4 weeks. Gene ontology (GO) analysis suggested that phase I (0–6 h PNI), phase

II (6–24 h PNI), and phase III (4 days to 4 weeks) were associated with acute

response to injury, preformation of Wallerian degeneration, and complete execution of

Wallerian degeneration, respectively. Critical signaling pathways and transcriptional factor

networks responsible for the regulation of Wallerian degeneration were further identified

and integrated using Kyoto Enrichment of Genes andGenomes (KEGG) pathway analysis

and Ingenuity Pathway Analysis (IPA), respectively. Our results may help to elucidate some

molecular mechanisms of gene regulation associated with Wallerian degeneration that

occurs after traumatic injury to peripheral nerve axons in mammals.
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INTRODUCTION

Nerve injury is a common clinical occurrence with a steadily increasing incidence worldwide,
and may cause life-long disability and impair quality of life (Gu et al., 2011; Lee et al., 2014).
Following nerve injury, axons in the distal nerve stump are separated from neuronal cell bodies,
and undergoWallerian degeneration (Coleman, 2005). In the peripheral nervous system,Wallerian
degeneration is typically detectable within 1–3 days after injury.Morphological analysis of the distal
stumps of injured peripheral nerves showed that axon starts to disintegrate within hours after
injury; proliferating Schwann cells and macrophages then engulf and clear the axon and myelin
debris about three days later (Geuna et al., 2009).

However, in mammal central nerves, Wallerian degeneration initiates much slower (Vargas
and Barres, 2007). Additionally, Wallerian degeneration rarely occurs in many invertebrates and
lower vertebrates (Bittner et al., 2000, 2016). The different occurrences of Wallerian degeneration
in different nervous systems make the role of Wallerian degeneration obscure, and thus many
attempts have been made to investigate molecular basis underlying Wallerian degeneration.
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A genetic study on the slow Wallerian degeneration
(Wlds) mouse suggests that over-expression of nicotinamide
mononucleotide adenylyltransferase fusion protein slows down
Wallerian degeneration (Conforti et al., 2000; Mack et al., 2001).
Another study reports that midkine knockout mice exhibit
delayed axon degeneration and nerve regeneration following
peripheral nerve injury (Sakakima et al., 2009). It has also
been shown that activated potassium channel or inhibited
sodium channel retards Wallerian degeneration of injured
Drosophila axons (Mishra et al., 2013). And sterile alpha and
TIR motif containing 1 (SARM1), a Toll-like receptor, has
been demonstrated as an essential factor for triggering axon
degeneration (Gerdts et al., 2013; Loreto et al., 2015). Despite
these interesting findings, much is still unknown about the
molecular mechanisms involved in Wallerian degeneration. A
systems-level analysis may help to obtain a global understanding
of Wallerian degeneration from the perspective of gene
regulation.

Microarray analysis has been widely adopted to characterize
many differentially expressed genes in normal versus
experimental conditions. In our previous studies, we
performed microarray to identify differentially expressed
genes in the distal nerve stump following sciatic nerve
injury (Yao et al., 2012, 2013). By using the R software
platform and the limma package, we were able to re-annotate
and re-analyze these previous obtained microarray data.
In an earlier study, we used Ingenuity Pathway Analysis
(IPA) software program to analysis dynamic molecular
changes in the injured distal nerve stump and gained some
insights into Wallerian degeneration (Yu et al., 2016). In the
current study, we made the joint use of Euclidean distance
calculation, hierarchical clustering, principal component analysis
(PCA), Gene ontology (GO) analysis, Kyoto Enrichment of
Genes and Genomes (KEGG) pathway analysis, and IPA to
further access genetic changes occurring during Wallerian
degeneration.

MATERIALS AND METHODS

Animal Surgery
Adult male Sprague-Dawley (SD) rats were obtained from the
Experimental Animal Center of Nantong University. All animal
procedures were performed in accordance with Institutional
Animal Care guideline of Nantong University and ethically
approved by the Administration Committee of Experimental
Animals, Jiangsu Province, China. Animals were anesthetized
by injection of mixed narcotics (85 mg/kg trichloroacetaldehyde
monohydrate, 42 mg/kg magnesium sulfate, and 17 mg/kg
sodium pentobarbital), and underwent surgical transection
of sciatic nerves as previously described (Yu et al., 2012).
Briefly, the rat sciatic nerve was lifted through an incision
on the lateral aspect of the mid-thigh of the left hind
limb, and a 10-mm nerve segment was excised. Rats were
then randomly divided into ten groups according to different
time points post nerve injury (PNI). Rats were sacrificed
by decapitation at 0.5, 1, 6, 12, and 24 h, 4 days, and 1,
2, 3, and 4 weeks PNI and the distal nerve stumps were

collected, respectively. Rats in control group were sham-
operated and immediately (designated as 0 h PNI) sacrificed by
decapitation.

Microarray Analysis
Total RNA was extracted using Trizol (Life technologies,
Carlsbed, CA) according to the manufacturer’s instructions.
Contaminating DNA was removed using RNeasy spin columns
(Qiagen, Valencia, CA). The quality of isolated RNA samples
was evaluated with an Agilent Bioanalyzer 2100 (Agilent
technologies, Santa Clara, CA) and the purified RNA was
quantified using a NanoDrop ND-1000 spectrophotometer
(Infinigen Biotechnology Inc., City of Industry, CA). An
Affymetrix GeneChip Hybridization Oven 640 and Gene Array
Scanner 3000 were used to perform microarray analysis. The
R software (v.2.13.0) platform was applied to analyze the
microarray data, and the limma (linear regression model)
package was used to statistically analyze differentially expressed
genes (Ritchie et al., 2015; Xu and Sun, 2015). The expression
levels of mRNAs at each time point were compared with control.
Genes having a fold change> 2 or<−2 and an adjusted p< 0.05
were considered as differentially expressed.

Bioinformatic Analysis
Bioinformatic analysis tools, including Euclidean distance
calculation, hierarchical clustering, PCA, GO, KEGG, and
IPA, were applied to investigate differentially expressed genes
PNI. Briefly, Euclidean distance calculation was performed
using the HeatMapImage GenePattern module, and hierarchical
clustering was computed with the Euclidean distance measure
using the Hierarchical Clustering module from GenePattern.
PCA was performed using “Population PCA” tool from
HarvardMedical School. Database for Annotation, Visualization,
and Integrated Discovery (DAVID) bioinformatic resources
were used to systematically screen differentially expressed
genes and to enrich significant GO categories and KEGG
pathways (Huang da et al., 2009a,b). IPA was performed
to identify and connect differentially expressed transcription
factors.

Quantitative Real Time PCR (qPCR)
A total amount of 0.5 µg RNA samples were used as templates
and reverse transcribed to cDNA using the Prime-Script
reagent Kit (TaKaRa, Dalian, China). PCR was performed
using SYBR Green Premix Ex Taq (TaKaRa) with specific
primer pairs on an Applied Biosystems Stepone real-time
PCR System. The sequences of primer pairs were as follows:
FOSL1 (forward) 5′-GACCTCTGACCTATCCCCAGT-3′

and (reverse) 5′-GTCGTAGCTCTGCTCTGTGT-3′; SS18L1
(forward) 5′-TGCAGAGCCCATGAGTCAAC-3′ and (reverse)
5′-TCATCCTCCAACTTGTCGGTC-3′; and GAPDH (forward)
5′-CCTTCATTGACCTCAACTACATG-3′ and (reverse)
5′-CTTCTCCATGGTGGTGAAGAC-3′. The thermal cycler
program was as follows: 5 min at 95◦C; 40 cycles of 30 s at
95◦C, 45 s at anneal temperature, and 30 s at 72◦C; and 5
min at 72◦C. Relative quantification of mRNA was conducted
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using the comparative 2−11Ct method with GAPDH as the
reference gene.

Statistical Analysis
All data are expressed as means ± SEM, and analyzed by
using GraphPad Prism 6.0 (GraphPad Software, Inc.). Differences
between groups were tested using Student’s t-test or one-way
ANOVA.

RESULTS

Differentially Expressed Genes in the Distal
Nerve Stump Following Sciatic Nerve
Transection
Previous obtained microarray data (Yao et al., 2012, 2013) were
re-annotated and re-analyzed to identify the expression patterns
of more than 30,000 genes. The expression levels of these genes
at different time points PNI were compared with control (the
expression level at 0 h PNI) and differentially expressed genes
were determined according to fold change (> 2 or < −2) and
adjusted p < 0.05 (Table S1). Only a few genes were differentially
expressed at 0.5 and 1 h PNI. More genes were differentially
expressed at the ensuing time points PNI with a maximum
number of differentially expressed genes being about 300 at 4
weeks PNI (Figure 1A). Themost up-regulated gene was elevated

for more than 13-folds (log2 ratio > 3.7) while the most down-
regulated gene was reduced to ∼1/30 (log2 ratio < −4.9). Top
10 up-regulated or down-regulated genes at each time point were
listed in Table 1.

Three Transcriptional Phases of Wallerian
Degeneration
Cluster analysis was performed to compare the similarity in gene
expression profiles among different time points PNI. Data from
hierarchical clustering suggested that the gene expression profiles
could be separated into two major groups: one at 0–24 h PNI
and another at 24 h to 4 weeks PNI (Figure 1B). In the first
major group, 0, 0.5, and 1 h PNI were similar and 6, 12, and
24 h PNI were similar. In the second major group, 4 days and
1 week PNI were similar and 2, 3, and 4 weeks were similar
(Figure 1B). Euclidean distance matrix showed three different
phases following nerve injury; namely 0, 0.5, and 1 h PNI for
phase I; 6, 12, and 24 h PNI for phase II; 4 days, 1, 2, 3, and
4 weeks for phase III (Figure 1C). PCA analysis suggested that
the 4 weeks PNI could be clustered into three different phases
(Figure 1D). More detailed analysis indicated that within phase
III, 4 days and 1 week PNI seemed to be closer, while 2, 3, and 4
weeks PNI seemed to be closer. This result was consistent with
that from hierarchical clustering (Figures 1B,D). Since intra-
phase differences were not as obvious as inter-phase differences,

FIGURE 1 | Overview of the transcriptional pattern at the distal stumps following sciatic nerve transection. (A) The bar graph showing the number of

up-regulated (red) genes and down-regulated (green) genes at each time point following nerve transection as compared to control. (B) Euclidean distance heatmap,

(C) hierarchical clustering, and (D) principal component analysis of differentially expressed genes at different time points following nerve transection.
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FIGURE 2 | Enriched GO cellular component of differentially expressed genes. (A) GO cellular components with a p < 0.05 were labeled in red while cellular

components with a p > 0.05were labeled in white. (B) The expression profiles of differentially expressed genes involved in major cellular components related with the

nervous system.

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 February 2017 | Volume 11 | Article 22

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Yi et al. Transcriptional Mechanisms Underlying Wallerian Degeneration

FIGURE 3 | Enriched GO molecular functions of differentially expressed genes. (A) GO molecular functions with a p < 0.05 were labeled in red while

molecular functions with a p > 0.05 were labeled in white. (B) The expression profiles of differentially expressed genes involved in several critical molecular functions

related with nerve repair and regeneration.
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FIGURE 4 | Enriched GO biological processes of differentially expressed genes. (A) GO biological processes with a p < 0.001 were labeled in red while

biological processes with a p > 0.001 were labeled in white. (B) The expression profiles of differentially expressed genes involved in several critical biological

processes during nerve repair and regeneration.

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 February 2017 | Volume 11 | Article 22

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Yi et al. Transcriptional Mechanisms Underlying Wallerian Degeneration

FIGURE 5 | Enriched KEGG pathways of differentially expressed genes. KEGG pathways with a p < 0.05 are listed. The X-axis showed Rich Factor, the ratio of

differentially expressed gene numbers to all gene numbers annotated in the KEGG pathway. The number of differentially expressed gene annotated in the specific

KEGG pathway was expressed as the size of the circle. The p-value of KEGG pathway was corrected to Q-value ranging from 0 to 1.

the time period of 0 h to 4 weeks PNI was arbitrarily divided into
three phases for the sake of studying Wallerian degeneration.

Critical Cellular Components, Molecular
Functions, and Biological Processes
Involved in Wallerian Degeneration
DAVID database was used to annotate GO terms related to
differentially expressed genes. The GO analysis helped to identify
highly enriched categories of cellular components, molecular
functions, and biological processes.

The enriched categories of cellular components at different
time points PNI were identified with the p-value threshold set at
0.05 (Figure 2A). In brief, the categories of membrane fraction,
insoluble fraction, and cell fraction were enriched at 1 h PNI, and
the categories of extracellular region (part), extracellular space,
and plasma membrane (part) were enriched starting from 6 h
to 4 weeks PNI. To better analyze critical cellular components
involved in nerve regeneration, the expression levels related to
categories of cell soma, axon (part), dendrite, neuron projection,
cytoskeleton, and synapse (part) were examined. The expression
levels related to cell soma, axon (part), dendrite, and neuron
projection were exponentially increased between 24 h and 4 days
PNI and kept at a relatively high level at the ensuing time
points PNI, while the expression changes related to synapse
(part) seemed to lag several time points behind those related to
other cellular components, showing a curved shape with alternate
peaks and troughs (Figure 2B).

Molecular functions related to differentially expressed genes
were also identified by GO analysis according to p< 0.05, and the
results were shown in Figure 3A. The expression changes related
to some categories that are important for nerve regeneration,
including cytokine activity, growth factor activity, chemokines
activity, chemokines receptor binding, hormone activity, and
hormone binding, were analyzed. These key categories were
significantly enriched following nerve injury, reaching a peak
at about 12 h PNI (Figure 3B). Similar to the expression
changes related to cellular component categories of synapse
(part), the expression changes of differentially expressed genes
involved in two categories of neurotransmitter receptor activity
and neurotransmitter binding also showed a curved shape
(Figure 3B).

Biological processes related to differentially expressed genes
were also annotated by GO analysis. A relatively larger number
of significant biological processes with a p < 0.05 were involved,
and therefore only top enriched biological processes with a p
< 0.001 were displayed in Figure 4A. In an early stage (0.5
and 1 h PNI), few biological process categories were enriched.
Starting from 6 h PNI, many biological process categories, such as
response to wounding, defense response, inflammatory response,
immune response, regulation of apoptosis, and regulation of cell
death, were enriched (Figures 4A,B). These enriched categories
might contribute to the onset of Wallerian degeneration. In
the later stage, especially at 4 weeks PNI, several biological
process categories, such as homeostatic process, chemical
homeostasis, cellular homeostasis, cellular ion homeostasis, and
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ion homeostasis, were significantly enriched, suggesting that
Wallerian degeneration was close to the end and a homeostatic
state was reached (Figure 4A).

Critical Signaling Pathways Involved in
Wallerian Degeneration
GO analysis provided an overall insight into the cellular and
molecular regulation of Wallerian degeneration. KEGG analysis
was further performed to identify critical signaling pathways
in the distal nerve stump at each time point (Figure 5). Two
signaling pathways, cytokine-cytokine receptor interaction and
neuroactive ligand-receptor interaction, were significantly
involved in phases I and II of Wallerian degeneration,
respectively. Cytokine-cytokine receptor interaction was
activated as early as 1 h PNI and kept activated until 12 h PNI,
while neuroactive ligand-receptor interaction was activated
from 6 h to 4 weeks PNI. Besides these two pathways,
calcium signaling pathway, insulin signaling pathway, Jak-
STAT signaling pathway, and MAPK signaling pathway
were also significantly involved in the process of Wallerian
degeneration.

Regulatory Networks of Differentially
Expressed Transcription Factors during
Wallerian Degeneration
Differentially expressed transcription factors were specifically
screened out as they might play central roles in the regulation
of Wallerian degeneration and robustly affect diverse biological
processes. IPA database was further used to construct the
regulatory networks of differentially expressed transcription
factors (Figure 6A). Consistent with previous results that
few changes were observed in an early stage of Wallerian
degeneration (Figure 1A), there were no differentially expressed
transcription factors at 0.5 and 1 h PNI. Starting from phase
II, the expression levels of several transcription factors were
significantly changed. At 6 h PNI, FOSL1, BCL11A, SMAD3 were
up-regulated, while SS18L1 and CASKIN1 were down-regulated.
Moreover, these three transcription factors initiated the cascade
sequence of transcriptional factors to accompany and modulate
Wallerian degeneration. The temporal expression profiles of
FOSL1 and SS18L1 were further validated by qPCR. Results from
qPCR analysis were in agreement with the data from microarray
analysis (Figure 6B).

FIGURE 6 | Cascade network of differentially expressed transcription factors. (A) The interaction network of up-regulated (red) transcription factors and

down-regulated (green) transcription factors at each time point following nerve transection. (B) qPCR determination for mRNA expressions of FOSL1 and SS18L1.

The relative level was normalized to GAPDH. The data, obtained from 3 independent experiments, are expressed as means ± SEM. *p < 0.05, **p < 0.01, and ***p <

0.001.
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DISCUSSION

Wallerian degeneration consists of a series of complicated cellular
and molecular events and plays important roles in responses to
nerve injury and perhaps to regeneration. Since its description
by Waller in 1850 (Waller, 1850), many morphological studies
have described events in Wallerian degeneration. In the current
study, we systematically examined differentially expressed genes
in the distal sciatic nerve stump at different time points following
transection, aiming to have a better understanding of Wallerian
degeneration from the genetic aspect.

Hierarchical clustering, Euclidean distance calculation, and
PCA analysis results showed that the period of 0 h to 4 weeks PNI
could be divided to three distinct phases by similarity of gene
expression profiles among different time points. GO annotation
was used to correlate the differentially expressed genes with
cellular components, molecular functions, and biological
processes. Enriched categories of cellular components, molecular
functions, and biological processes at different time points were
further studied in terms of three transcriptional phases.

In phase I, only a few genes were differentially expressed,
and not many GO categories were altered correspondingly.
GO analysis also indicated that the most remarkable
change in this phase might be cellular fraction enrichment.
Accordingly, observations from photomicrograph suggested that
neurofilament and myelin disintegrate into fragments at 1 h post
injury (Sta et al., 2014). In phase II, relatively more numerous
genes were differentially expressed, and more numerous
GO categories were involved. Stimulus response-associated
biological processes, such as response to wounding, defense

response, inflammatory response, immune response, regulation
of apoptosis, and regulation of cell death, were significantly
activated. Increased inflammatory and immune response
identified by bioinformatic analysis were consistent with
morphological observations that phagocyte accumulated and
infiltrated in the injured nerves (Sta et al., 2014). Activity/binding
of cytokine, growth factor, chemokines, and hormone were
significantly activated in this phase. In phase III, many biological
processes were first activated, and then gradually declined to a
homeostatic state. Taken together, the results showed that the
time period PNI might be divided into three different phases,
which corresponded to the formation and characteristics of
Wallerian degeneration. In short, acute response to nerve injury,
pre-formation of Wallerian degeneration, and comprehensive
execution of Wallerian degeneration occurred in phase I (0–1 h
PNI), phase II (6–24 h PNI), and phase III (within 4 days to 4
weeks PNI), respectively (Figure 7).

Enriched signaling pathways during Wallerian degeneration
were also examined by KEGG analysis. Consistent with
our previous studies (Li et al., 2013, 2014; Yao et al., 2013),
cytokine-cytokine receptor interaction was activated in an early
stage of Wallerian degeneration. Neuroactive-ligand receptor
interaction was also significantly activated. Elevated activity
of neuroactive-ligand receptor interaction signaling pathway
has been linked with Parkinson’s disease, a neurodegenerative
disease (Hamza et al., 2011; Kong et al., 2015). Our current
finding that neuroactive-ligand receptor interaction signaling
pathway was activated during Wallerian degeneration might
provide some preliminary evidence for the similarity between
Wallerian degeneration and neurodegenerative disease. Besides

FIGURE 7 | Schematic diagram of the transcriptional changes during Wallerian degeneration.
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these two most enriched signaling pathways, some other
enriched pathways were also identified; for example, calcium
signaling pathway. Calcium has long been implicated in
Wallerian degeneration (Schlaepfer, 1974). Wlds mouse exhibits
an increased mitochondrial flux and an enhanced mitochondrial
calcium buffering compared with normal mouse, suggesting
the important roles of calcium in Wallerian degeneration
(Coleman, 2005; Avery et al., 2012; Freeman, 2014). The current
study, from the genetic level, demonstrated the involvement of
calcium signaling in Wallerian degeneration, especially at 12 and
24 h PNI.

Transcription factors are DNA-binding proteins able to
control the transcription rate of target genes (Karin, 1990;
Latchman, 1997). Differentially expressed transcription factors
mediate various physiological and pathological conditions
through affecting the expression levels of target genes. They are
usually incorporated in activation of multiple intracellular
signaling cascades, interlinking to create the complex
cascade networks (Patodia and Raivich, 2012). Based on their
significance, differentially expressed transcription factors and
their cascade networks were investigated in the current study.
Further studies will be performed to determine the biological
effects of these transcription factors on Wallerian degeneration.

CONCLUSIONS

In the current study, we generated an integrated global view
of gene expression patterns at the distal nerve stump following
peripheral nerve injury. Bioinformatic analysis further enabled us
to divide the phases and gain a comprehensive view of molecular
changes during Wallerian degeneration.
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Table S1 | Gene expression profiles at the distal stumps at each time point

following sciatic nerve transection. Gene expression values at each time point

were listed and their expressions at 0.5, 1, 6, 12, 24 h, 4 days, 1, 2, 3, and 4

weeks post nerve injury were compared with 0 h control. Genes with the absolute

value of fold change > 2 (the absolute value of log2FC > 1) and an adjusted

p-value < 0.05 were considered as differentially expressed.
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