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Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized
by deficits in social interaction, difficulties with language and repetitive/restricted
behaviors. Microglia are resident innate immune cells which release many factors
including proinflammatory cytokines, nitric oxide (NO) and brain-derived neurotrophic
factor (BDNF) when they are activated in response to immunological stimuli. Recent
in vivo imaging has shown that microglia sculpt and refine the synaptic circuitry
by removing excess and unwanted synapses and be involved in the development
of neural circuits or synaptic plasticity thereby maintaining the brain homeostasis.
BDNF, one of the neurotrophins, has various important roles in cell survival, neurite
outgrowth, neuronal differentiation, synaptic plasticity and the maintenance of neural
circuits in the CNS. Intracellular Ca2+ signaling is important for microglial functions
including ramification, de-ramification, migration, phagocytosis and release of cytokines,
NO and BDNF. BDNF induces a sustained intracellular Ca2+ elevation through the
upregulation of the surface expression of canonical transient receptor potential 3
(TRPC3) channels in rodent microglia. BDNF might have an anti-inflammatory effect
through the inhibition of microglial activation and TRPC3 could play important roles in not
only inflammatory processes but also formation of synapse through the modulation of
microglial phagocytic activity in the brain. This review article summarizes recent findings
on emerging dual, inflammatory and non-inflammatory, roles of microglia in the brain
and reinforces the importance of intracellular Ca2+ signaling for microglial functions in
both normal neurodevelopment and their potential contributing to neurodevelopmental
disorders such as ASDs.

Keywords: microglia, calcium signaling, BDNF, TRPC3 channels, proBDNF, oxytocin, synapse development,
autism spectrum disorders

INTRODUCTION

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by deficits in
social interaction, difficulties with language, and repetitive/restricted behaviors (Lai et al., 2014).
The etiology of ASDs is still largely unclear, but both immune dysfunction and abnormalities
in synaptogenesis have repeatedly been implicated as contributing to the disease phenotype
(Edmonson et al., 2016).

Microglia are immune cells which are derived from progenitors that have migrated from
the periphery and are from mesodermal/mesenchymal origin (Kettenmann et al., 2011).
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After invading the brain parenchyma, microglia transform into
the ‘‘resting’’ ramified phenotype and are distributed in the whole
brain. However, microglia revert to an ameboid appearance
when they are activated in the disturbances including infection,
trauma, ischemia, neurodegenerative diseases or any loss of
brain homeostasis (Aguzzi et al., 2013; Cunningham, 2013).
Microglia are the most active cytokine producing cells in the
brain and can release many factors including pro-inflammatory
cytokines (such as TNFα, IL-6), nitric oxide (NO) and
neurotrophic factors (such as brain-derived neurotrophic factor,
BDNF) when they are activated in response to immunological
stimuli (Kato et al., 2013; Monji et al., 2013, 2014; Mizoguchi
et al., 2014a; Smith and Dragunow, 2014). However, recent
in vivo imaging has shown that microglia constantly use
highly motile processes to survey their assigned brain regions
and phagocyte pathogens and cellular debris even in their
resting state, and are ready to transform to ‘‘activated’’ state
in responses to injury, ischemia or autoimmune challenges in
the brain (Wake et al., 2013). Microglia are also shown to
sculpt and refine the synaptic circuitry by removing excess
and unwanted synapses and be involved in the development
of neural circuits or synaptic plasticity thereby maintaining
the brain homeostasis (Schwartz et al., 2013; Hong et al.,
2016). By extension, neurodevelopmental disorders such as
ASDs might not need to involve a pathological gain in
microglial function but simply a disruption of their physiological
functioning in the regulation of synaptic circuits (Salter and
Beggs, 2014; Ziats et al., 2015; Macht, 2016). This review article
summarizes recent findings on emerging dual, inflammatory
and non-inflammatory, roles of microglia in the brain and
reinforces the importance of intracellular Ca2+ signaling for
microglial functions in both normal neurodevelopment and their
potential contributing to neurodevelopmental disorders such as
ASDs.

INFLAMMATORY AND
NON-INFLAMMATORY ROLES OF
MICROGLIA IN ASDs

Numerous studies of serum cytokines demonstrated lower levels
of transforming growth factor-β (TGF-β) and higher levels of
macrophage inhibitory factor, leptin, interleukin 1β (IL-1β), IL-6,
interferon-γ (IFN-γ) and IL-12 in various age groups of patients
with ASDs (Goines and Ashwood, 2013). Cerebrospinal fluid
(CSF) samples from patients with autism also showed an increase
in pro-inflammatory macrophage chemoattractant protein 1
(MCP-1; Vargas et al., 2005) and TNF-α (Chez et al., 2007).
Microglial abnormality could result from CNS or peripheral
immune signals, such as auto-antibodies (Wills et al., 2009), or
by peripheral chemokines/cytokines (such as IL-1β, IL-6 and
TNF-α) up-regulated in autism (Gupta et al., 1998; Vargas et al.,
2005).

The pioneer work by Vargas et al. (2005) and subsequent
studies revealed an active neuroinflammatory phenotype of
microglia in the post-mortem brains of patients with autism
(Morgan et al., 2010). Marked changes inmicroglial morphology,
accompanied by a unique profile of pro-inflammatory cytokines

were seen in the cerebral cortex, white matter and cerebellum
of patients with autism. Excessive microglia activation in
young adults (age 18–31 years) affected by ASDs was also
confirmed with PET using [11C]-(R)-PK11195. In this study,
ASD brain regions showing increased binding potentials of the
radiotracer included the cerebellum, midbrain, pons, fusiform
gyri, and the anterior cingulate and orbitofrontal cortices.
The most prominent increase was observed in the cerebellum
(Suzuki et al., 2013). In the cerebellum, activated microglia
were observed to be intimately associated with Purkinje cells
undergoing apoptosis in cerebellar organotypic cultures during
normal development. This could be consistent with a role
for microglia in developmentally regulated neuronal death by
promoting Purkinje cell apoptosis (Marín-Teva et al., 2004),
an important physiological activity that could be impaired in
autism.

A deficit in microglia/complement-mediated synaptic
pruning might be fundamental to the cognitive effects associated
with ASDs (Voineagu et al., 2011). The chemotactic/phagocytic
activity of microglia could also be impaired, further aggravating
the symptoms by insufficient clearance of debris (Derecki
et al., 2013). The complement cascade, normally associated
with removal of pathogens and cellular debris, is also crucial
to microglial-mediated synaptic pruning and refinement
of neuronal connectivity in the normal brain (Stephan
et al., 2012). Evidence points to convergence on C3 and its
microglial receptor C3 receptors (C3R). The initiator of the
complement cascade is C1q, which induces C3 secretion
via C4. The presence of C3 on unwanted synapses ‘‘tags’’
them for recognition by microglia to be eliminated. In
addition, decreased C4 leading to reduced synaptic pruning
in early life, mediated through reduced C3 synaptic tagging,
is implicated in ASD-like behaviors (Estes and McAllister,
2015). Furthermore, mice deficient in the CX3CR1, a
chemokine receptor expressed in the brain exclusively by
microglia, have increased densities of immature synapses
caused by delayed synaptic pruning, resulting in excessive
and electrophysiologically immature synapses and deficits
in functional connectivity (Zhan et al., 2014). Altogether,
recent findings on emerging dual, inflammatory and non-
inflammatory, roles of microglia in the brain suggest that
abnormal secretion of inflammatory cytokines and abnormal
or exaggerated execution of normal developmental microglial
functions, including incorrect synaptic pruning, failure of
phagocytosis of apoptotic neurons might be underlying
mechanisms of neurodevelopmental disorders such as ASDs
(Edmonson et al., 2016).

NEURONAL INTRACELLULAR Ca2+

SIGNALING MEDIATED BY VGCCs AND
ASDs

The electrical activity of neurons (i.e., excitable cells) depends
on a number of different types of voltage- or ligand-gated
ion channels that are permeable to inorganic ions such as
sodium, potassium, chloride and calcium. While the former
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three ions predominantly support the electrogenic roles, Ca2+

are different in that they can not only alter the membrane
potential but also serve as important intracellular signaling
entities by themselves. In the CNS, intracellular Ca2+ signaling
regulates many different neuronal functions, such as cell
proliferation, gene transcription and exocytosis at synapses
(Berridge, 1998). In neurons, because the prolonged elevation
of intracellular Ca2+ concentration ([Ca2+]i) is cytotoxic, [Ca2+]i
is tightly regulated by intrinsic gating processes mediated
by voltage-gated calcium channels (VGCCs) and NMDA
receptors (NMDARs; Simms and Zamponi, 2014). In addition,
dysregulation of neuronal Ca2+ signaling have been linked
to neurodevelopmental disorders including ASDs (Krey and
Dolmetsch, 2007). CaV1.3 channels are a major class of
L-type VGCCs which constitute an important calcium entry
pathway implicated in the regulation of spine morphology
and then contribute to the rhythmicity of brain (Stanika
et al., 2016). In the brain, VGCCs are vital for coupling
of neuronal excitation-transcription, synaptic plasticity and
neuronal firing, and de novo missense mutation A760G of
CaV1.3 channels has been linked to ASDs (Pinggera et al.,
2015). CaV1.3 channels employ two major forms of feedback
regulation, voltage-dependent inactivation (VDI) and Ca2+-
dependent inactivation (CDI). Limpitikul et al. (2016) recently
found that introduction of missense mutation A760G to
CaV1.3 severely suppressed the CDI but also potentiated the
VDI of CaV1.3 channels, suggesting that deficits of these
two feedback regulation appear to increase the [Ca2+]i, thus
potentially disrupting both neuronal development and synapse
formation, ultimately leading to ASDs. There are many other
reports showing that functional mutations in genes encoding
VGCCs can lead to ASDs (Splawski et al., 2004; Li et al.,
2015). In addition, disruption of the BKCa gene KCNMA1
which encodes the α-subunit of the large conductance Ca2+-
activated K+ channel (BKCa) led to both haplo-insufficiency
and reduced BKCa activity (Laumonnier et al., 2006). Thus,
the reported decrease in BKCa channel activity, together
with the reduced inactivation of VGCCs in autistic patients,
suggests that ASDs are caused by abnormally sustained
increases in intracellular Ca2+ levels (Krey and Dolmetsch,
2007).

MICROGLIAL INTRACELLULAR Ca2+

SIGNALING AND IMPORTANCE OF TRP
CHANNELS

Elevation of [Ca2+]i is also important for the activation
of microglia, including proliferation, migration, ramification,
de-ramification and release of NO, proinflammatory cytokines
and BDNF (Kettenmann et al., 2011). In addition, disruption
of microglial Ca2+ homeostasis triggers activation of death
programs, which are regulated by the microglia activation
status. Treatment of primary cultured microglial cells with
thapsigargin or ionomycin induced apoptosis, whereas the same
agents applied to lipopolysaccharide (LPS)-activated microglia
resulted in necrotic cell death (Nagano et al., 2006). Both
apoptotic and necrotic pathways are regulated by [Ca2+]i

because the treatment of cultures with BAPTA-AM reduced
microglial cell death (Nagano et al., 2006). However, inmicroglial
cells, an application of high [K+]out or glutamate does not
elevate [Ca2+]i. This observation is supported by the fact that
both VGCCs and NMDARs are not expressed in microglia
(Kettenmann et al., 2011). For electrically non-excitable cells
including microglia, the primary source of intracellular Ca2+ is
the release from intracellular Ca2+ stores and the entry through
the ligand-gated and/or store operated Ca2+ channels (Möller,
2002). Microglia contain at least two types of intracellular
Ca2+ stores: the endoplasmic reticulum (ER) and mitochondria.
The main route for the generation of intracellular Ca2+

signaling is associated with inositol 1,4,5-trisphosphate (InsP3)
receptors on the ER membrane. Stimulation of G protein-
coupled metabotropic or tyrosine kinase receptors results in
the activation of the phospholipase C (PLC), production of
two second messengers including the diacylglycerol (DAG)
and the InsP3 and the release of Ca2+ from the ER.
Importantly, the depletion of ER activates the store-operated
Ca2+ entry (SOCE), known as a capacitative Ca2+ influx,
mediated by plasmalemmal channels such as calcium release-
activated Ca2+ (CRAC) channels and/or transient receptor
potential (TRP) channels (Parekh and Putney, 2005). In
addition, STIM1, one of ER membrane proteins, senses the
filling state of ER Ca2+ and delivers the ER to the plasma
membrane where it directly activates Orai1/CRAC channels,
thereby facilitating the re-uptake of Ca2+ to ER through
the sarco(endo)plasmic reticulum Ca2+-ATPases (SERCA). The
concentration of Ca2+ in the ER is precisely controlled
by SERCA. Recently, Schmunk et al. (2015) found that
dysregulation of InsP3/ER signaling in primary, untransformed
skin fibroblasts derived from patients with Fragile X (FXS)
or tuberous sclerosis syndromes. This suggests that ASDs
might also affect the status of the ER-Ca2+ store in microglial
cells.

The influx of Ca2+ through the TRP channels could play
some important roles in many inflammatory processes including
the activation of microglia (Nilius and Szallasi, 2014). There are
seven transient receptor potential canonical (TRPC) channels in
mammalian species. Among them, TRPC2 is a pseudogene in
humans. The remaining members of the TRPC subfamily are
classified into three groups according to sequence homology,
TRPC1, canonical TRPC3/C6/C7 and TRPC4/C5. Quantitative
comparisons of mRNA expression using real-time RT-PCR
showed that TRPM7 > TRPC6 > TRPM2 > TRPC1 > TRPC3
≥ TRPC4 > TRPC7 > TRPC5 > TRPC2, where ‘‘>’’ denotes a
significant difference from the preceding gene, and ‘‘≥’’ indicates
a non-significant difference, in microglial cells cultured from rats
(Ohana et al., 2009).

IMPORTANCE OF BDNF SIGNALING IN
ASDs

BDNF, one of the neurotrophins, has various important roles
in cell survival, neurite outgrowth, neuronal differentiation and
gene expression in the brain (Thoenen, 1995; Park and Poo,
2013). BDNF is most abundantly expressed in the hippocampus

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 March 2017 | Volume 11 | Article 69

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Mizoguchi and Monji Microglial Ca2+ Signaling and Neurodevelopment

and cerebral cortex and is also involved in the pathophysiology
of psychiatric disorders (Sen et al., 2008). Two meta-analysis
studies recently showed that neonates diagnosed with ASDs
later in life had no association with blood levels of BDNF,
while children in the ASD group demonstrated significantly
increased BDNF levels compared with healthy controls (Qin
et al., 2016; Zheng et al., 2016). These suggest that peripheral
BDNF levels might serve as a potential biomarker for the
diagnosis of ASDs and further studies are needed to clarify
the causal relationship between the symptoms of ASDs and
peripheral levels of BDNF.

BDNF binds to the tropomyosin-related kinase B (TrkB)
receptor and induces the activation of intracellular signaling
pathways, including PLC-γ, phosphatidylinositol 3-kinase
(PI3K) and mitogen activated protein kinase-1/2 (MAPK-1/2;
Patapoutian and Reichardt, 2001). BDNF rapidly activates
the PLC pathway, leading to the generation of InsP3 and the
mobilization of intracellular Ca2+ from the ER (Mizoguchi
et al., 2003a,b). TRPC3 channels are shown to be necessary
for BDNF to increase the density of dendritic spines in
rodent hippocampal CA1 pyramidal neurons (Amaral and
Pozzo-Miller, 2007). Rett syndrome (RTT) is caused by loss-of-
function mutations in MECP2, encoding methyl-CpG-binding
protein 2 (Amir et al., 1999). The TRPC3 mRNA and protein
levels are lower in CA3 pyramidal neurons of symptomatic
Mecp2 mutant mice and chromatin immunoprecipitation
(ChIP) identified Trpc3 as a target of MeCP2 transcriptional
regulation. BDNF mRNA and protein levels are also lower in
Mecp2 mutant hippocampus and dentate gyrus granule cells,
which is reflected in impaired activity-dependent release of
endogenous BDNF. These results identify the gene encoding
TRPC3 channels as a MeCP2 target and suggest a potential
therapeutic strategy to boost impaired BDNF signaling in RTT
(Li et al., 2012).

POSSIBLE INVOLVEMENT OF
MICROGLIAL INTRACELLULAR Ca2+

SIGNALING MODULATED BY BDNF IN
ASDs

In the rodent brain, microglial cells express BDNF mRNA
(Elkabes et al., 1996) and secrete BDNF following stimulation
with LPS (Nakajima et al., 2001). BDNF released from
activated microglia then induces the sprouting of nigrostriatal
dopaminergic neurons (Batchelor et al., 1999), causing a shift
in the neuronal anion gradient (Coull et al., 2005), or promotes
the proliferation and survival of microglia themselves (Zhang
et al., 2003). In addition, Parkhurst et al. (2013) showed that the
Cre-dependent removal of BDNF frommicroglia induces deficits
in multiple learning tasks mediated by reduction in learning-
dependent spine elimination/formation. These suggest that
microglia serve important physiological functions in learning
and memory by promoting learning-related synapse formation
through the BDNF signaling.

We have reported that BDNF induced a sustained increase in
[Ca2+]i through binding with the truncated tropomyosin-related

kinase B receptor (TrkB-T1), resulting in activation of the
PLC pathway and SOCE in rodent microglial cells. Sustained
activation of SOCE occurred after a brief BDNF application
and contributed to the maintenance of sustained [Ca2+]i
elevation. Pretreatment with BDNF significantly suppressed
the release of NO from activated microglia. Additionally,
pretreatment of BDNF suppressed the IFN-γ-induced increase
in [Ca2+]i, along with a rise in basal levels of [Ca2+]i in
rodent microglial cells (Mizoguchi et al., 2009). Thereafter, we
observed that TRPC3 channels contribute to the maintenance
of BDNF-induced sustained intracellular Ca2+ elevation.
Immunocytochemical technique and flow cytometry also
revealed that BDNF rapidly up-regulated the surface expression
of TRPC3 channels in rodent microglial cells. BDNF-induced
up-regulation of surface expression of TRPC3 channels also
depends on activation of the PLC pathway, as previously
shown by others (van Rossum et al., 2005). In addition,
pretreatment with BDNF suppressed the production of NO
induced by TNFα, which was prevented by co-administration
of a selective TRPC3 inhibitor, Pyr3. These suggest that
TRPC3 channels could be important for the BDNF-induced
suppression of the NO production in activated microglia.
We first showed direct evidence that rodent microglial cells
are able to respond to BDNF and TRPC3 channels could
also play important roles in microglial functions. Hall et al.
(2009) have previously demonstrated the implication of the
basal level of [Ca2+]i in the activation of rodent microglia,
including NO production. BDNF-induced elevation of basal
levels of [Ca2+]i could regulate the microglial intracellular
signal transduction to suppress the release of NO induced
by IFN-γ (Hoffmann et al., 2003; Mizoguchi et al., 2009).
We observed that pretreatment with BDNF also suppressed
the production of NO in murine microglial cells activated by
TNFα, which was prevented by co-administration of Pyr3. We
also found that pretreatment with both BDNF and Pyr3 did
not elevate the basal [Ca2+]i in rodent microglial cells. These
suggest that BDNF-induced elevation of basal levels of [Ca2+]i
mediated by TRPC3 channels could be important for the
BDNF-induced suppression of NO production in rodent
microglial cells. Although the mechanism underlying the
activation of TRPCs via PLC stimulation is still not completely
resolved, TRPC3, like TRPC6 and TRPC7, can be activated
directly by DAG. The trafficking of TRPC3 channels to the
plasma membrane depends on interactions with Cav-1, Homer1,
PLC-γ, VAMP2 and RFN24 (de Souza and Ambudkar, 2014). In
addition, phagocytic activity is suppressed by pharmacological
inhibitors of SOCE in murine microglial cells (Heo et al.,
2015). Altogether, these suggest that BDNF might have an
anti-inflammatory effect through the inhibition of microglial
activation and TRPC3 could play important roles in not only
inflammatory processes but also formation of synapse through
the modulation of microglial phagocytic activity in the brain. We
need additional studies to identify the molecular mechanisms
that determine the trafficking and activity of TRPC3 channels
and what underlies the BDNF-induced up-regulation of surface
TRPC3 channels in these mechanisms (Mizoguchi et al.,
2014a,b).
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FIGURE 1 | Schematic illustration representing the microglial intracellular Ca2+ signaling mediated by canonical transient receptor potential 3
(TRPC3) channels and the tripartite synapse. In microglia, brain-derived neurotrophic factor (BDNF) induces a sustained increase in [Ca2+]i through binding of
the truncated TrkB receptors (TrkB-T), resulting in activation of the phospholipase C (PLC) pathway. Up-regulation of cell surface TRPC3 channels occurs after a brief
treatment with BDNF and contributes to the maintenance of BDNF-induced sustained intracellular Ca2+ elevation. BDNF-induced elevation of basal levels of [Ca2+]i
mediated by TRPC3 channels could be important for the BDNF-induced suppression of nitric oxide (NO) production induced by TNFα or IFNγ. Microglial intracellular
Ca2+ signaling is also important for microglial functions such as phagocytosis in the brain. The tripartite synapse consists of the presynaptic (glutamatergic) terminal,

(Continued)
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FIGURE 1 | Continued
postsynaptic terminal, astrocytes and microglia. Dysregulation of normal
microglial functions including incorrect synaptic pruning, failure of
phagocytosis of apoptotic neurons and abnormal secretion of inflammatory
cytokines might be underlying mechanisms of neurodevelopmental disorders
such as autism spectrum disorders (ASDs). On the other hand, the effects of
proBDNF on microglial functions are not fully understood. Further work will be
needed to elucidate the role of proBDNF on microglial cells by focusing on
intracellular Ca2+ signaling mediated by TRPC channels.

Using multiple models including individual’s dental pulp
cells (DPCs), neural cells derived from induced pluripotent
stem cell (iPSCs) and mouse models, Griesi-Oliveira et al.
(2015) recently reported that loss-of-function mutations of
TRPC6 is a novel predisposing factor for ASDs, suggesting that
dysfunction of Ca2+ signaling mediated by TRPC6 contributes
to altered neuronal development, neuronal morphology
and synaptic function in ASDs. It is not well known
whether TRPC6 channels of microglia also serve important
physiological roles in the alteration of synaptic function in
ASDs.

FUTURE PROSPECTS

Elevation of intracellular Ca2+ is important for the activation
of microglial cell functions, including proliferation, release of
NO, cytokines and BDNF. It has been shown that alteration
of intracellular Ca2+ signaling underlies the pathophysiology of
neurodevelopmental disorders including ASDs. BDNF induces a
sustained intracellular Ca2+ elevation through the upregulation
of the surface expression of TRPC3 channels in rodent
microglial cells. Microglial cells are able to respond to BDNF,
which may be important for the regulation of inflammatory
responses, and may also be involved in the normal development
of CNS. BDNF is first synthesized as proBDNF protein.
ProBDNF is then either proteolytically cleaved intracellularly
or by extracellular proteases, such as metalloproteinases and
plasmin, to mature BDNF. Interestingly, interaction of mature
neurotrophins with Trk receptors leads to cell survival, whereas
binding of proBDNF to p75NTR leads to apoptosis. In
addition, mature BDNF and proBDNF facilitates long-term
potentiation (LTP) and long-term depression (LTD) at the
hippocampal CA1 synapses, respectively. Thus, Trk and
p75NTR preferentially bind mature- and pro-neurotrophins,
respectively, to elicit opposing biological responses in the
CNS (Greenberg et al., 2009). Indeed, a recently published
report shows that pruning of spines promoted by proBDNF
is mediated by the p75NTR-RhoA, while maturation of
spines induced by BDNF is through the stimulation of
TrkB-Rac1 signaling (Orefice et al., 2016). However, the effects
of proBDNF on microglial cells are not fully understood.
Thus, further work will be needed to elucidate the role of
proBDNF on microglial cells by focusing on TRPC channels
(Figure 1).

Oxytocin (OT) is a pituitary neuropeptide hormone
synthesized from the paraventricular and supra-optic nuclei
within the hypothalamus. Like other neuropeptides, OT can

modulate a wide range of neurotransmitter and neuromodulator
activities. OT is secreted into the systemic circulation to act
as a hormone, thereby influencing several body functions. OT
plays a pivotal role in parturition, milk let-down and maternal
behavior and has been demonstrated to be important in the
formation of pair bonding between mother and infants as well
as in mating pairs. Furthermore, OT has been proven to play
a key role in the regulation of several behaviors associated
with neuropsychiatric disorders, including social interactions,
social memory response to social stimuli, decision-making in
the context of social interactions, feeding behavior, emotional
reactivity, etc. An increasing body of evidence suggests that
dysregulation of the oxytocinergic system might be involved
in the pathophysiology of neurodevelopmental disorders such
as ASDs (Romano et al., 2016). Using functional magnetic
resonance imaging, single-dose intranasal administration of
OT was shown to improve the frequency of the nonverbal
information-based judgments with a shorter response time
and the brain activity of the medial prefrontal cortex in
participants with ASDs (Watanabe et al., 2014). Thus, there is
a significant potential for OT to ameliorate some aspects of the
persistent and debilitating social impairments in individuals
with ASDs (Alvares et al., 2016). Although there is no clinical
use of minocycline in ASDs, prenatal minocycline treatment
can alter the expression of PSD-95 and ameliorate abnormal
mother-infant communication in oxytocin receptor (Oxtr)-
deficient mice (Miyazaki et al., 2016). This finding suggests that
minocycline has a therapeutic potential for the development of
OT/Oxtr-mediated ASD-like phenotypes (Nakagawa and Chiba,
2016). In addition, OT suppressed both the mRNA expression
of TNFα, IL-1β, COX-2 and iNOS and the elevation of [Ca2+]i
in LPS-stimulated microglia cells (Yuan et al., 2016). These
suggest that OT would be a potential therapeutic agent for
alleviating neuro-inflammatory processes in ASDs. However,
the effects of OT on microglial intracellular Ca2+ signaling are
not fully understood. Thus, it will be important to study the
effect of OT on microglial cells especially by focusing on TRPC
channels.

CONCLUSIONS

There is increasing evidence suggesting that pathophysiology
of neurodevelopmental disorders is related to the inflammatory
responses mediated by microglial cells. In addition, recent
advances in the understanding of microglial functions suggest
an important role for these cells in the normal development
of CNS in addition to their traditional role as immune cells of
the brain. Dysregulation of normal microglial functions such as
regulation of programmed cell death and/or synaptic pruning
is supposed to be increasingly implicated in ASDs associated
with cognitive deficits. These findings have resulted in a new
model of the synapse as ‘‘tripartite,’’ recognizing the important
role of not just neurons and astrocytes but also microglia
in the normal physiological function of the brain. We now
need to explore the emerging dual, inflammatory and non-
inflammatory, roles of microglia in the brain and recent findings
reinforce the importance of intracellular Ca2+ signaling for
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microglial functions in both normal neurodevelopment and their
potential contributing to neurodevelopmental disorders such
as ASDs.
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