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In realistic neuronal modeling, once the ionic channel complement has been defined,

the maximum ionic conductance (Gi-max) values need to be tuned in order to match the

firing pattern revealed by electrophysiological recordings. Recently, selection/mutation

genetic algorithms have been proposed to efficiently and automatically tune these

parameters. Nonetheless, since similar firing patterns can be achieved through different

combinations of Gi-max values, it is not clear how well these algorithms approximate the

corresponding properties of real cells. Here we have evaluated the issue by exploiting a

unique opportunity offered by the cerebellar granule cell (GrC), which is electrotonically

compact and has therefore allowed the direct experimental measurement of ionic

currents. Previous models were constructed using empirical tuning of Gi-max values to

match the original data set. Here, by using repetitive discharge patterns as a template,

the optimization procedure yielded models that closely approximated the experimental

Gi-max values. These models, in addition to repetitive firing, captured additional features,

including inward rectification, near-threshold oscillations, and resonance, which were not

used as features. Thus, parameter optimization using genetic algorithms provided an

efficient modeling strategy for reconstructing the biophysical properties of neurons and

for the subsequent reconstruction of large-scale neuronal network models.

Keywords: granule cell, cerebellum, modeling, optimization techniques, intrinsic electroresponsiveness

INTRODUCTION

Realistic modeling allows a faithful reconstruction of neuronal excitable properties based on the
principles of neuronal biophysics (Koch, 1999; De Schutter, 2001). This approach requires a precise
representation of the electrotonic structure of neurons and of their ionic membrane mechanisms
through a variety of ionic channels. Thus, realistic modeling is, in essence, a modern expansion of
the approach developed by Hodgkin and Huxley (1952) for the action potential (AP) in the squid
giant axon. Despite the amount of parameters populating realistic models is huge, most of them
are constrained by experimental measurements and the parameters that remain free are basically
the maximum ionic conductances (Gi-max). Experimentally, Gi-max can rarely be measured reliably
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due to space-clamp problems. Moreover, the ionic current
identified by electrophysiological and pharmacological tools
often reflects activation of a blend of different channel molecules
rather than correspond to a single type of genetically identified
channel. Thus, once the ionic conductances in a neuron have
been identified and represented in a Hodgkin-Huxley-like style
(HH), what is usually done is to empirically adjust their
Gi-max until matching the neuronal firing pattern. This “iterative
multiparametric matching” with large experimental datasets can
lead to precise models (e.g., see D’Angelo et al., 2001; Solinas
et al., 2007a,b; Diwakar et al., 2009; Subramaniyam et al., 2014;
Masoli et al., 2015), but it is slow and laborious.

A recent technique that allows rapid and automatic parameter
estimation is based on multi-objective evolutionary algorithms
(MOEA), such as the “Non-dominated Sorting Genetic
Algorithms-II” (NSGA-II; Deb et al., 2002) and “Indicator-
Based Evolutionary Algorithm” (IBEA) (Zitzler and Künzli,
2004). These are based on a genetic approach, in which the
unknown parameters are treated like the genes forming a
chromosome (Deb et al., 2002; Zitzler and Künzli, 2004;
Druckmann et al., 2007, 2008). To find the solutions, these
algorithms require specific target parameters, for example
“features” extracted from experimental traces. The features are
used to define the basic properties of APs (such as amplitude and
hyperpolarization depth), of neuron discharge (e.g., frequency
and first-spike delay) and of subthreshold responses, in order
to assess the fitness function. From the features one or multiple
“objective” functions can be computed, that have to beminimized
simultaneously and represent the “fitness” of the individuals.
Each individual carrying a specific combination of parameters is
part of a population. In each generation, the algorithm performs
a ranking of the individuals of the population and removes
a predefined number of the worst individuals. This makes
room for new individuals derived from the retained individuals
using genetic principles (e.g., cross-over, mutation, elitism).
Retained and new individuals make up the next generation.
While evolutionary algorithms can lead to fast approximation
of neuronal firing patterns, some Gi-max combinations could
be non-physiological (e.g., non-unique solutions). Therefore, a
stringent test is required to assess whether, among the solutions
provided by the optimization procedure, there are (at least) some
that match the biological Gi-max distribution.

In order to face the issue, we need a neuron in
which the Gi-max values have been precisely estimated in
electrophysiological recordings providing stringent constraints
to the mechanisms of AP generation. The GrC offers this
unique opportunity. The GrC is one of the smallest neurons of
the brain and this has allowed to achieve exceptionally good
voltage-clamp conditions leading to a precise determination of
ionic current gating kinetics and Gi-max values. These include
the high-voltage activated Ca2+ current (Ca-HVA; Rossi et al.,
1994), the Na+ current (Na, Nap, Nar) (Magistretti et al., 2006;
Goldfarb et al., 2007; Dover et al., 2010), the inward rectifier K+

current (Kir) (Rossi et al., 1998, 2006), the A-type K+ current
(KA), the voltage-dependent outward-rectifier K+ current (KV),
and the K+ calcium dependent (KCa) (Bardoni and Belluzzi,
1994), the M-type slow K+ current (Kslow; D’Angelo et al.,

2001). In addition, some models that have been previously
developed using iterative multiparametric matching can be used
for comparison (Gabbiani et al., 1994; D’Angelo et al., 2001;
Nieus et al., 2006; Diwakar et al., 2009). Therefore, the question
is whether advanced optimization procedures can capture the
whole set of GrC properties through a set of maximum ionic
Gi-max values compatible with those measured experimentally.

Here we show that an automatic parameter estimation
procedure, the Optimizer Framework (OF) which is based on
Druckmann et al. (2007, 2008, 2011) and improved to run with
IBEA (Zitzler and Künzli, 2004), can indeed provide GrC models
with a biologically plausible set of Gi-max values. These models
can predict electroresponsive properties like inward rectification,
near-threshold oscillations, theta-frequency resonance and AP
conduction velocity that were not set as features. These results
indicate that the OF generates biophysically accurate models
endowed with appropriate ionic mechanism, providing the basis
for reconstructing large-scale neuronal networks operating with
arbitrary firing patterns.

METHODS

In this paper, a pipeline was developed to generate families of
GrC mono-compartmental and multi-compartmental models,
to optimize their Gi-max complement, and to validate the
models through the simulation of electroresponsive properties
not considered for model construction. The features used as
templates were extracted from GrC spike discharges under the
assumption that these contain all the information required to
optimize Gi-max values. The present models can be defined
“realistic” as far as they reflect a modeling strategy that
implements neuronal membranes with biophysically-detailed
mechanisms (see discussion in De Schutter, 2001; Santamaria
et al., 2007; D’Angelo et al., 2016).

Physiological Data and Feature Extraction
In vitro patch-clamp recordings were performed from GrCs
in acute cerebellar slices obtained from juvenile rats (postnatal
day 21), as previously described (D’Angelo et al., 1998). The
experiments reported in this paper were conducted according to
the international guidelines from the European Union Directive
2010/63/EU on the ethical use of animals and approved by the
local ethical committee of the University of Pavia, Italy.

The GrC showed typical electrophysiological properties
consisting of regular firing in response to step current injection.
Three different current steps (10, 16, and 22 pA) were used,
which were deemed to appropriately represent the GrC discharge
pattern. The experimental traces were then used as templates
to define the features required for modeling. The features were
extracted with eFEL (http://bluebrain.github.io/eFEL), an open
source module for Python (Van Geit, 2015). Each feature was
translated into a single objective and used to guide the OF (Deb
et al., 2002; Zitzler and Künzli, 2004; Druckmann et al., 2007,
2008).

The features were chosen to parameterize typical aspects of
GrCs electroresponsiveness. GrCs are silent at rest (with a resting
membrane potential around −65 mV), and their subthreshold
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responsiveness is regulated by a fast inward rectifier K+ current.
In the near-threshold region, a complex interaction between a
persistent Na+ current and a slow M-like K+ current generates
low-frequency oscillations. Following current injection, GrCs
generate rapid APs showing relatively small amplitude in the
soma and two phases of after-hyperpolarization (AHP) reflecting
the intervention of a Ca2+-dependent K+ current and a slow
voltage-dependent K+ current (D’Angelo et al., 1998, 2001).
As defined in eFEL, the fast AHP depth was calculated as
absolute voltage ad AHP depth, while the slow AHP depth was
calculated as the minimum between two neighboring spikes
(the first 5 ms excluded). The delay to initial discharge is
tuned by an A-type current. The neuron generates regular high-
frequency discharges and the firing frequency raises rapidly
with current injection due to the high GrC input resistance.
Accordingly, the features comprised resting membrane potential,
AP width and height, fast and slow AHP depth, mean AP
frequency and time-to-first spike, adaptation and coefficient of
variation of the interspike interval (ISI-CV) (see Table 1). In
aggregate, the features were carefully selected to match the
fundamental parameters measured experimentally (documented
in (D’Angelo et al., 1995, 1998).We therefore decided to use these
as the minimal number of features that can provide a typical
characterization of cerebellar granule cell spikes and firing. The
features were considered for three different current injections.
Each objective consisted of a single feature.

Models Construction and Simulation
The GrC models were reconstructed using Python-NEURON
scripts (Python 2.7; NEURON 7.3) (Hines et al., 2007,
2009). The models consisted of either one or multiple
compartments generating morpho-electrical equivalents of the
GrC. The voltage- and Ca2+-dependent mechanisms were
distributed among the compartments when required (see
Tables 2–4). With this approach, the models could reproduce
GrC electroresponsiveness elicited by somatic current injection.
Here we have reconstructed “canonical” GrC models, which

simulate the most typical electrophysiological behavior of GrCs.
The gating kinetics were taken from previous models, in which
they have been normalized to 30◦C and represented in HH
style (D’Angelo et al., 2001) and subsequent upgrades (Nieus
et al., 2006; Diwakar et al., 2009; Solinas et al., 2010). The
Nernst equilibrium potentials were pre-calculated from ionic
concentrations used in current-clamp recordings andmaintained
fixed, except for the Ca2+ equilibrium potential, which was
updated during simulations according to the Goldman-Hodgkin-
Katz equation. The maximum ionic conductances were the
unknowns and their values were optimized in the OF (see below).

In each compartment, membrane voltage was obtained as the
time integral of the equation (Yamada and Adams, 1989):

dV

dt
= −

1

Cm
×

{

∑

i

[

gi× (V− Vi)
]

+ Iinj

}

TABLE 2 | Ionic mechanisms in the mono-compartment GrC model.

Conductance/

location

Range Gi-max

(mS/cm2)

Erev (mV) Description

of channel

Na Soma 10.4–15.6 87.39 HH

Nap 1.60e-2 to 2.40e-2

Nar 0.4–0.6

KV 2.4–3.6 –84.69

KA 3.2–4.8

Kslow 0.28–0.42

Kir 0.72–1.1

KCa 3.2–4.8

Ca-HVA 0.37–0.55 129.33

Lkg1 4.54e-2 to 6.82e-2 –58

The table shows, for the different ionic channel types, the default conductance ranges
and the specific reversal potential. The corresponding gating equations were written in HH
style. The decay value of the Ca2+ concentration was βCalc = 1.5/ms (for full description
of the gating mechanisms refer to D’Angelo et al., 2001).

TABLE 1 | Features.

10 pA 16 pA 22 pA

Exp Models Exp Models Exp Models

Resting voltage (mV) −68.5 ± 12.5 −64 ± 0.5 −68.77 ± 11.68 −62.69 ± 0.44 −69.13 ± 11.67 −61.41 ± 0.5

AP height (mV) 20.93 ± 1.58 24.59 ± 9.22 19.25 ± 1.5 31.43 ± 1.61 17.7 ± 1.85 33.59 ± 1.32

AP width (mV) 0.67 ± 0.06 0.62 ± 0.02 0.69 ± 0.05 0.69 ± 0.02 0.71 ± 0.06 0.7 ± 0.02

AP half width (ms) 0.54 ± 0.07 0.49 ± 0.18 0.55 ± 0.067 0.51 ± 0.01 0.58 ± 0.07 0.49 ± 0.01

AHP depth (mV) −59.21 ± 0.6 −63 ± 0.4 −58.3 ± 0.6 −62.69 ± 0.44 −57.19 ± 0.7 −61.41 ± 0.49

AHP depth slow (mV) −52.69 ± 2.0 −50.96 ± 2.2 −48.93 ± 5.1 −55.56 ± 0.62 −32.7 ± 12.1 −50.28 ± 0.75

Time to first spike (ms) 31.9 ± 16.2 70.56 ± 25.97 19 ± 11.2 8.47 ± 3.67 14.65 ± 9.4 4.25 ± 2.78

Mean frequency (hz) 30 ± 16.2 12.795 ± 5.16 45 ± 21.2 56.95 ± 5.43 60 ± 39.4 95.09 ± 5.37

Adaptation index (ms) 0.1 ± 0.1 0.2 ± 0.3 0.3 ± 0.3 0.6 ± 0.2 0.3 ± 0.03 0.1 ± 0.05

ISI CV (ms) 0.2 ± 0.19 0.2 ± 0.2 0.2 ± 0.1 0.1 ± 0.3 0.2 ± 0.1 0.5 ± 0.1

The table shows the mean values of features, obtained from experimental traces (Exp) using eFEL (Van Geit, 2015), and the corresponding values measured in the simulated traces
obtained from optimized mono-compartment GrC models (these latter are reported as mean ± s.d. from 19 valid individuals). Note that simulated parameters fall close or around the
mean features value.
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TABLE 3 | Electrotonic compartments in the multi-compartment GrC

model.

Section

name

Diameter

(µm)

Length

(µm)

No. of

sections

Specific cm

(uF/cm2)

Dendrites 0.75 15 4 1

Soma 5.8 5.6 1

AIS 1.5 2.5 1

Axon 0.3 70 1

The table shows the sections of the multi-compartment GrC model along with their
number, diameter and length.

TABLE 4 | Ionic mechanisms in the multi-compartment GrC model.

Conductance/

location

Range Gi-max

(mS/cm2)

Erev (mV) Description of

channel

Na AIS 179.1–388.6 87.39 Markovian

Axon 1.74–2.9

KV AIS 26.7–44.5 −84.69 HH

Axon 3.3–5.59

KA Soma 4–10

Kslow Soma 0.18–0.31

Kir Soma 1.91–3.18

KCa Dendrites 2.85–4.76

Ca-HVA Dendrites 4.38–14.3 129.33

Leak Dendrites 1.6908e-2 to

2.4798e-2

–16.5

Soma 8.04e-2 to 0.13

AIS 7.214e-2 to 0.25

Axon 6.4319e-3 to

1.071e-2

The table defines the ionic channels, their location and the default range for each channel
and the reversal potential. The corresponding gating equations were written in HH style.
The decay value of the Ca2+ concentration was βCalc = 1.5/ms for soma and βCalc =

0.6/ms for dendrites (for full description of the gating mechanisms refer to Diwakar et al.,
2009).

Where V is membrane potential, Cm membrane capacitance,
gi are ionic conductances and Vi reversal potentials (the
subscript i indicates different channels), and Iinj is the injected
current. Adjacent compartments communicated through an
internal coupling resistance (Diwakar et al., 2009). The ionic
conductances, gi, depend on Gi-max which are the OF unknowns,
as well as on the kinetics of the gating particles for each individual
channel, that are themselves functions of V and t. The whole
mathematical description of the models and of the ionic channels
is reported in previous papers (D’Angelo et al., 2001; Nieus et al.,
2006; Diwakar et al., 2009; Solinas et al., 2010) and is not repeated
here.

Model Morphologies
In order to run the models in OF, special transformations to
neuron morphology were needed, since in Neurolucida format
(ASC) the soma has to be defined with a contour rather than
a cylinder like in NEURON. Thus, a contour of the GrC
soma with surface area equivalent to the original cylindrical

compartment was created with a custom python script and
added to the ASC file. For the mono-compartmental model,
the equivalent spherical radius of 9.76 µm was used (D’Angelo
et al., 2001). For the multi-compartmental model, the GrC
morphology was derived from a previous model (Diwakar et al.,
2009) and the equivalent spherical radius was 5.8 µm. As for the
remaining compartments representing dendrites, initial segment
an axon, the morphology was first exported from NEURON
into NeuroML format (XML), and then into the final format
using NLMorphologyConverter V0.9 (http://www.neuronland.
org/NL.html).

In the multi-compartmental model, GrC morphology was
simplified with respect to the previous model of (Diwakar
et al., 2009). The dendrites were represented as four single
compartments (15 µm length, 0.75 µm diameter). The axon
initial segment (AIS) was represented as a single compartment
(2.5 µm length, 1.5 µm diameter). The ascending axon was
maintained unaltered with the same length (70 µm), diameter
(0.3 µm), and number of segments but parallel fibers were
not included. The original ion mechanisms were maintained
unaltered and redistributed over the same (though simplified)
model sections.

The granule cell is a very compact neuron with an electrotonic
length L = 0.04 (Silver et al., 1992; D’Angelo et al., 1993), a
value 2 orders of magnitude smaller than in neurons like Purkinje
and pyramidal cells. Accordingly, the decay of membrane
potential from soma to the end of a dendrite during an
EPSP or a spike was shown to be <2% (D’Angelo et al.,
1995). Therefore, dendritic branching is not an issue in terms
of electrotonic decay, also considering that the dendrites are
short (on average 13 µm; Hámori and Somogyi, 1983) and
branches (at most consisting in a bifurcation) are uncommon.
As far as compartmentalization is concerned, model reduction
to a minimum effective number of compartments was tested
beforehand (Diwakar et al., 2009). Again, the granule cells pose
a very different situation from complex neurons (like pyramidal
or Purkinje cells), for which much higher detail and fine-
grain compartmentalization is needed to successfully account
for complex dendritic branching and electrotonic properties.
Therefore, more detailed reconstructions are not required in this
context, in which we are testing the impact of ionic channel
redistribution through compartments during the optimization
process.

Model Passive Properties and Active Mechanisms
The granule cell passive properties were kept as in previous
models (D’Angelo et al., 2001; Diwakar et al., 2009). Membrane
capacitance (Cm) was set at 1 µF/cm2, membrane resistance
was determined by 1/Gtot �/cm2 (at rest the value is mostly
determined by GLeak and GKir), axial resistance (Ra) was
set at 100 �∗cm. The input Resistance (Rin) calculated
from current transients in voltage-clamp mode was 1.3 �

in the monocompartmental model and 2.1 � in the multi
compartmental model.

The mathematical reconstructions of ionic channels were
those reported previously (see D’Angelo et al., 2001; Diwakar
et al., 2009) and were kept unaltered in their kinetics and
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temperature to facilitate comparisons of results with previous
models obtained using iterative multiparametric matching.
Thus, the ionic channels of the mono-compartmental and
multi-compartmental models were the same except for the
Na+ channels. In the mono-compartmental model, three
different representations were used for the resurgent (Nar),
persistent (Nap), and transient (Nat) Na+ channels. In the
multicompartmental model, Na+ channel gating was reproduced
with a unified 13 state sodium channel (Raman and Bean, 2001;
Khaliq et al., 2003; Magistretti et al., 2006).

Model Simulations
Model simulations were performed on a 4-cores AMD FX 7500
CPU (8 GB ram) and on a single blade of a cluster, composed
by 12 cores/24 threads (two Intel Xeon X5650 and 24 Gigabyte
of DDR3 ram per blade). The simulations were all performed
with variable time step (Hines and Carnevale, 2008) allowing to
simulate the final population of models in <60 min. The results
of each simulation was saved as a plain text file containing the
time series of voltage as well as other relevant parameters (e.g.,
ionic current and Ca2+ concentration).

Model Optimization
The optimization procedure was performed using the IBEA
genetic algorithm (Druckmann et al., 2007, 2008; Markram
et al., 2015). The optimization procedure started from a default
parameter range of Gi-max ± 50% derived from experimental
measurements (see Figure 1B; KA, KV, KCa: Bardoni and
Belluzzi, 1994; Na: D’Angelo et al., 1998; Goldfarb et al., 2007; Ca-
HVA: Rossi et al., 1994; Kir: Rossi et al., 2006; Kslow: D’Angelo
et al., 2001). Through a systematic variation of Gi-max, OF
produced populations formed by 150 individuals for the mono-
compartmental or 200 individuals for the multi-compartmental
models, respectively. During an iteration, the individuals were
simulated and ranked by comparing the features extracted from
the firing pattern of models to those of experimental templates
in response to the same three positive current steps (10, 16, and
22 pA). The individuals best matching the prescribed features
were automatically selected by an indicator function to seed the
Gi-max parameter range of the next generation and so forth for 50
generations. This optimization cycle required 40 min for mono-
compartmental and 90 min for multi-compartmental GrCs. The
cycles were repeated 10 times. At the end of each cycle, the best
individuals were selected and the range was reset to run the next
cycle, and so forth. The final population was composed by the
individuals of the last generation of the last cycle and was then
fully simulated for validation (see results). In summary:

(1) The initial range for parameter optimization was set based
on the experimental Gi-max values (mean ± 50%) (see
Figure 1B).

(2) When OF was run, there was no supervision whatsoever
while moving from one generation to the next, and
parameter adjustment was automatically performed by OF.

(3) Then, the Gi-max range was updated according to
parameters estimated in these individuals and a new
optimization cycle was started.

(4) This process continued until the 10th cycle, in which the
best individuals of the last generation were taken as the final
population of models.

(5) The individuals of the last generation were simulated and
only those that generated spikes in response to all the three
test current injections were considered. This criterion is
more stringent than just ranking the best individuals since it
selects only biologically valid solutions (indeed, the models
that do not make spikes are not granule cells).

Documentation of the optimization algorithm used in
the OF is available at http://www.tik.ee.ethz.ch/sop/pisa/
selectors/ibea/ibea_documentation.txt and in the Zitzler
paper (Zitzler and Künzli, 2004). We started by using the
standard parameters provided by the simulation platform and,
since there was a rapid convergence toward a stable solution
and there were numerous models revealing a biophysically
plausible parameter set (our target), we did not explore
other parameter combinations. We used individual mutation
probability = 0.5, individual recombination probability
= 0.5, swap probability of 0.25. No elitism criteria were
adopted. The slow convergence of genetic algorithms and
the impact of stopping criteria are issues that have been
clearly demonstrated previously for pyramidal neuron models
(Druckmann et al., 2007). However, with granule cells, solutions
converged rapidly and were almost at steady-state already
after 20 iterations. After doing preliminary tests with 1,000
iterations, we decided to stop the optimization after 50 iterations
(Figure 1C).

Model Validation
The validation procedure consisted in two simulation protocols.
The first protocol repeated somatic current injections using 6 pA
steps from 10 to 34 and 3 pA steps from −3 to −9 pA. This
allowed to assess the voltage responses over both the negative
and positive membrane potential range. The second protocol
was a ZAP (Solinas et al., 2007a; Proddutur et al., 2013) used
to determine the resonance properties of the neuron. The ZAP
current injection was defined as A × sin (B × t2), where A =

10 pA is the oscillation amplitude and B (Hz/s) is a constant
determining the oscillation speed. The input-output relationship
was analyzed by calculating the interspike interval (ISI) and the
instantaneous frequency for every couple of adjacent spikes. The
average ISI per cycle was then plotted against the input frequency.

Data Analysis
Custom Python-NEURON scripts automatically transferred the
set of parameters of the best individuals at the end of each cycle
to the GrC model (either mono- or multi-compartmental), run
the simulations and extracted the features. The voltage traces
simulated using step current injections were passed to the same
eFEL module used to analyze the experimental traces. Then the
same features considered for the experimental traces were also
extracted from model traces. The voltage traces simulated using
ZAP current injections were analyzed using MATLAB scripts.
Statistical analysis was performed with MS Excel obtaining mean
± s.d. of parameters.
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FIGURE 1 | Optimization of GrC firing pattern. (A) The experimental data used for optimization were taken from GrC whole-cell current-clamp recordings (top).
These data represented templates, from which the features describing AP shape and AP firing were extracted. The OF implemented a search in the parameter space

that was able to find Gi-max combinations able to reproduce the experimental data. These Gi-max data-sets were used to reconstruct a population of individual GrC

models and to simulate their AP and AP firing properties (bottom). The example shows experimental traces obtained with 10 pA current injection and their precise

reproduction by a mono-compartmental GrC model. (B) The Gi-max values derived from experimental measurements: KA, KV, KCa: (Bardoni and Belluzzi, 1994); Na:

(D’Angelo et al., 1998; Goldfarb et al., 2007); Ca-HVA: (Rossi et al., 1994); Kir: (Rossi et al., 2006); Kslow: (D’Angelo et al., 2001); are plotted against the Gi-max

values obtained in the models (left). The values obtained using OF are the average obtained from all the individuals validated in the final generation (this paper). The

values of the previous models are also reported (D’Angelo et al., 2001; Diwakar et al., 2009). For multicompartmental models, local ionic channel density was

calculated from the experimental conductance values divided by the somato-dendritic surface in µm2. Note the strict correspondence of model and experimental

values. The Gi-max deviation of model from experimental values and from optimized model form previous models is reported in the bar graphs (right). (C) The graphs

show fitness evolution (in arbitrary units) during the optimization process. Note that either models required about 20 generation to halve the fitness attaining a non-0

steady state value.

Comparison with Experimental Data
The values of the experimentally assessed ionic channel densities
Gi-max were derived from published papers (Bardoni and
Belluzzi, 1994; Rossi et al., 1994, 2006; D’Angelo et al., 1998, 2001;
Goldfarb et al., 2007). These values data were compared to the
homologous model parameter values (Figure 1B). In this figure

local ionic channel density was calculated from the experimental
conductance values divided by the somato-dendritic surface in
µm2. Suppose for example that the same number of Na channels
are localized either in the AIS or in the soma: this would
result in different densities, since the corresponding surfaces are
different. It should also be noted that it is unpractical to obtain
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experimental measurements of local ionic current densities in
cellular compartments, except when these are physically isolated.
This advanced procedure has been used in combination with
patch-clamp recordings (both single-channel and whole-cell) and
immunolabeling to determine the localization and density of
Na currents in granule cells (Magistretti et al., 2006; Goldfarb
et al., 2007; Dover et al., 2016). As a whole, the combination
of data on channel subcellular localization and conductance
densities provides a remarkable set of constraints for the present
conductance-based realistic models.

RESULTS

In this work we used OF (Druckmann et al., 2007, 2008; Van Geit
et al., 2016) to generate optimized GrCmodels that accounted for
the ionic currents of real GrCs and to compare them to previous
mono-compartmental [D’Angelo et al. (2001); updated in Nieus
et al. (2006); Solinas et al. (2010)] and multi-compartmental
GrC models [Diwakar et al. (2009); updated in Dover et al.,
2016] tuned by iterative multiparametric matching. The features
used here for optimization addressed GrC resting membrane
potential, spike shape and firing pattern (Table 1). The matching
of optimized model responses with the template is illustrated
in Figure 1A. The correspondence of Gi-max in the optimized
models with those measured experimentally in GrCs is shown
in Figure 1B, along with a comparison of parameters in the
optimizedmodels with respect to previous models. Strikingly, the

experimental and modeled Gi-max values (both for the optimized
and previous models) showed an almost linear correspondence
across 4 orders of magnitude, ranging from about 10−2 to
102 mS/cm2. This precise correspondence implied that in
most cases model parameters differed from the experimental
ones by <20%, and the same was true for the difference
between model parameters obtained using OF or procedures
of iterative multiparametric matching. The largest variations
were observed for the multicompartmental models, probably
reflecting an imperfect knowledge about the localization of
some ionic channels. The solutions converged rapidly and were
almost at steady-state already after about 20 iterations for
either models (Figure 1C). It should be noted that the non-0
steady-state level demonstrated a continuous remixing of genes
over the entire population and the maintenance of genetic
variability.

Optimization of the Mono-Compartment
GrC Model
As a first step, we optimized a mono-compartment GrC model
using the ionic current mechanisms and passive properties
reported previously (D’Angelo et al., 2001); updated in Nieus
et al. (2006) and Solinas et al. (2010). The OF produced models
ranging from those non-responsive to any current injections,
to others showing either irregular firing, responses to low
injected currents only or proper GrC firing. Among all the
individuals of the final generation, only a limited number (12.7%)
generated appropriate resting membrane potential, spike shape

FIGURE 2 | Electroresponsive properties of a GrC mono-compartmental model. (A) Simulation of AP firing of a GrC model selected among the individuals

composing the final population. The simulation consisted of three current injections of 10, 16, and 22 pA lasting a total of 5 s. (B) Frequency/intensity relationships and

delay to first spike at different current injections (10, 16, 22 pA). A previous model (D’Angelo et al., 2001) is compared to 19 GrC models resulting from OF (left). Note
the close similarity between the original data-set and the OF models.
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and firing pattern (Figures 1A,B). In particular, these models
had resting membrane potential around −65 mV, were silent
at rest and generated regular firing above about 10 pA current
injection (Figure 2A). By increasing the injected current, firing
increased with a slope f/I = 7 ± 1 spikes/pA and spike
delays decreased from about 100 to 1 ms, showing therefore
the typical behavior of real GrCs (Figure 2B) (cf. D’Angelo
et al., 1995, 1998; Brickley et al., 1996; Cathala et al., 2003).
In these models, the distance of Gi-max from experimental
values estimated previously was lower than 12.3% (Figure 3A).
Moreover, intracellular Ca2+ and ionic currents underlying spike
generation (Figure 3B) were strictly corresponding to those
obtained through direct parameterization of Gi-max on the
experimental data (D’Angelo et al., 2001). Likewise, the dynamics
of two specific currents, INap and IKslow, generated a close
cycle both in the near-threshold and supra-threshold regime
(Figure 3C), providing the basis for low-frequency oscillations
(D’Angelo et al., 2001).

Interestingly, in order to optimize Gi-max values, we used
features extracted from GrC discharge in response to three
depolarizing current pulses of increasing intensity. In theory,
the information needed to parameterize the whole set of
Gi-max values is all contained in these template traces, but in
practice it may be difficult to extract appropriate parameters
for those response regimens that are not explicitly represented
in the templates. Nonetheless, OF was able to predict not just
resting membrane potential, f/I relationship, first-spike delay and
spike shape, but also inward rectification (Figure 4A), resonance
(Figure 4B) and near-threshold oscillations (Figure 4C) in the
appropriate frequency range (4–6 Hz). These were observed in all
the neurons accepted on the basis of comparison with templates
and can be considered as emerging properties deriving from
the biophysical plausibility of model mechanisms. Therefore, the
voltage traces elicited by current injection contained enough
information to fully recover the fundamental electroresponsive
properties of the neuron as a whole.

FIGURE 3 | Electroresponsive mechanisms in mono-compartmental models. (A) The conductance value of each ionic channel was normalized and reported in

columns for the valid model, allowing the comparison among individuals. Each channel type is defined by its name, except for “Calc” which was used to indicate the

decay value of the Ca2+ concentration (D’Angelo et al., 2001). (B) Membrane voltage, Ca2+ concentration and ionic currents generated by an individual model. (C)

Phase plots of the interaction between IKslow and INap currents during firing (top) and during subthreshold oscillations (bottom).
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FIGURE 4 | Emerging properties of mono-compartmental models. (A) A series of negative current pulses reveals the emergence of inward rectification. (B)

Sinusoidal current injection (10 pA from rest from 0 to 10 Hz) reveals the presence of theta-frequency resonance. The plot shows peak response frequency around 4.5

Hz. The traces on the right (1, 5, and 10 Hz) illustrate the enhancement in instantaneous frequency at the resonance peak. (C) Step current injection reveals the

emergence of oscillations in the near-threshold region.

Optimization of the Multi-Compartment
GrC Model
As a second step, we optimized amulti-compartment GrCmodel.
This was a simplified version of the (Diwakar et al., 2009) model,
in which the number of compartments in dendrites and axon
was purposefully reduced in order to facilitate control over ionic
channel distribution. The only additional constraint imposed
to the model was channel localization, that was derived from
previous experimental observations, so that Na+ channels were
placed in the AIS and axon (Magistretti et al., 2006; Goldfarb
et al., 2007) but not in soma or dendrites. The remaining ionic
channels were distributed between soma and dendrites (Tables 3,
4). Therefore, the OF had to find solutions balancing Gi-max

values of Na+, Ca2+, and K+ channels among dendrites, soma,
AIS, and axon.

Also in this case, as with the mono-compartmental model,
the OF was able to find GrC models (6.5%) generating proper
firing patterns, resting membrane potential and spike shape
(Figure 5A). In particular, starting from a resting membrane
potential around −76 mV, these models showed appropriate
firing rates (mean 12± 6 spikes/s) and ranges of first-spike delays
(8–30ms; mean 15± 8ms) (Figure 5B). All thesemodels showed
a similar balance among their Gi-max values and appropriate
activation of ionic currents (Figure 6). As well as the mono-
compartmental model, in these multi-compartmental models
there were inward rectification and resonance (Figures 7A,B),
while near-threshold oscillations were not evident. In general,
the spike generation process was more explosive in the multi-
compartment than in the mono-compartment models, a fact that

could be due to the incomplete description of the AIS and axon
structure and mechanisms (see Diwakar et al., 2009; Dover et al.,
2016). Importantly, the spikes arose in the AIS, traveled at the
proper speed (0.2 mm/ms) in the axon and back propagated
rapidly (0.2 ms) in the dendrites (Figure 7C).

DISCUSSION

This paper shows that feature extraction from firing pattern
templates combined with IBEA optimization/selection methods
(OF; Druckmann et al., 2007, 2008) allow to generate neuronal
models with ionic mechanisms that closely reflect those of real
cerebellar GrCs (cf. Figure 1). These models are capable of
uncovering properties that were not evident in the templates
and derive uniquely from the appropriateness of the whole set
of Gi-max values. To our knowledge, this is amongst the first
OF applications to neurons other than those of the neocortex
and hippocampus (for a recent application see Eyal et al.,
2016).

The use of OF to parameterize cerebellar GrC models,
for which a previous experimental determination of Gmax−i

is available (D’Angelo et al., 2001; Diwakar et al., 2009),
illustrates some general aspects of the procedure. First, firing
patterns recorded from the soma were sufficient to provide
the information needed to fully parameterize the whole
set of Gi-max values. The average Gi-max fluctuation was
12.3% for the mono-compartment models and 19.7% for
the multi-compartment models. In both cases, most channels
Gi-max fluctuations are between the variation limits suggested
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FIGURE 5 | Electroresponsive properties of a GrC multi-compartmental model. (A) Simulation of AP firing of a GrC model selected among the individuals

composing the final population. The simulation consisted of three current injections of 10,16, and 22 pA lasting a total of 5 s. (B) Frequency/intensity relationships and

delay to first spike at different current injections (10, 16, 22 pA). A previous model (Diwakar et al., 2009) is compared to 13 GrC models resulting from OF (left). Note
the close similarity between the original data-set and the OF models.

as acceptable for realistic modeling (≤ ± 20%, Bower and
Beeman, 2007). Secondly, the OF neuron models proved
correct against a set of properties used as features, including
the spike shape and the dependence of firing frequency
and first-spike delay on the injected current. This is akin
with the empirical practice of matching features by adjusting
model parameters by trial-and-error iterations and parametric
fitting (e.g., Solinas et al., 2007a,b; Subramaniyam et al.,
2014; Masoli et al., 2015). Thirdly, the model predicted
properties not represented in the firing pattern and not
used as features, including inward rectification, resonance and
near-threshold oscillations. This is a proof of the plausibility
of the underlying biophysical mechanisms, that allowed the
whole set of neuronal properties to emerge. Consistently,
Gi-max and membrane currents were similar to those recorded
experimentally. Of particular relevance are the size and temporal
dynamics of small ionic currents, that do not contribute
remarkably to the total current (INap and IKslow are 3 orders
of magnitude smaller than the INa and IKV currents) but
were non-etheless matched by OF. Finally, with the GrC
multi-compartmental model, indications about ionic channel
localization had to be anticipated in order to allow OF to
appropriately reconstruct the spike generation mechanism. This
was an essential constraint, otherwise the models may still be able
to generate a seemingly good firing pattern but the underlying

mechanism would be incorrect (for example Na+ channels
may well-generate spikes while staying in the soma, data not
shown).

Beside the effectiveness of this optimization approach, there
are some aspects that deserve attention. The identification
of models with plausible biophysical properties required a
validation going beyond the matching of features characterizing
the firing pattern. For example, for the GrC models to be
valid, the presence of resonance and near-threshold oscillation
needs to be ascertained even if it is not included into the
features. Therefore, following a selection process based on quality
indicators (Sutskever et al., 2015), the final validation can further
limit realistic models to a subset of all optimized models.
Validation proved critical for both the multi-compartment
and the mono-compartment models, with the percentage of
neurons showing a plausible firing and spike shape being 13
and 6.5%, respectively. The rendering and requirements for
validation in very complex neuron models (e.g., in the pyramidal
neuron; Traub et al., 1991; Druckmann et al., 2011) or in the
Purkinje cell neuron models (De Schutter and Bower, 1994a,b;
Achard and De Schutter, 2006; Masoli et al., 2015) needs to be
evaluated.

Given that all granule cells normally show stereotyped
firing patterns under a unified mechanism, the fact that not
all models in the final population do the same raises a relevant
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FIGURE 6 | Electroresponsive mechanisms in multi-compartmental models. (Top) The conductance value of each ionic channel was normalized and reported

in columns for valid models, allowing the comparison among individuals. Each channel type is defined by its name, except for “Calc” which was used to indicate the

decay value of the Ca2+ concentration (Diwakar et al., 2009). (Bottom) Membrane voltage, Ca2+ concentration and ionic currents generated by an individual model.

Gi-max were divided based on the actual distribution in the dendrites, soma, AIS and axon. The bottom traces show membrane voltage, Ca2+ concentration and ionic

currents in the different sections.

issue. Is it possible that, in biology, specific mechanisms
constrain the solution toward the ionic channel asset needed
to reach a specific firing pattern? These mechanisms may
reside in yet undiscovered feed-back biochemical processes
regulating Gi-max values through channel expression or
modulation. Moreover, the fact that we have accepted
only those solutions conforming to the most typical or
“canonical” description of GrCs might have restricted
the acceptance criteria. The OF may actually be able to
predict model variants, whose correspondence with existing
biological states is currently unclear and requires experimental
assessment.

Special consideration deserves the AP generating process. The
careful investigation of GrC electrophysiology has revealed that
Na+ channels are almost absent from soma and are maximally
concentrated in the AIS (Magistretti et al., 2006; Goldfarb et al.,

2007). In the present model, AP passive back propagation to
soma and dendrites occurred with proper delay and the active
propagation in the axon occurred at the proper speed. These
can again be considered as emerging properties depending on
model structure and ionic channel distribution and density. A
very recent study showed that the GrC axon contains Na+

channels that have different gating kinetics from those of the
AIS and that the specific axon leak resistance is several times
higher than in AIS, soma and dendrites (Dover et al., 2016).
This allows the axon to lower by several time the energy
consumption compared to the classical HH mechanism. These
special properties of the axon, that have not been considered
here, may be used as further constraints in the optimization
process.

One may speculate on the way the optimization algorithm
predicted the emerging phenomena. Probably, as far as inward
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FIGURE 7 | Emerging properties of multi-compartmental models. (A) A series of negative current pulses reveals the emergence of inward rectification. (B)

Sinusoidal current injection (10 pA from rest from 0 to 10 Hz) reveals the presence of theta-frequency resonance. The plot shows a peak response frequency around

4.5 Hz. The traces on the right (1, 5, and 10 Hz) illustrate the enhancement in instantaneous frequency at the resonance peak. (C) Spikes in the soma and axon. The

inset shows that the spike is generated first in the AIS and then back-propagates into the soma and dendrites with sub-millisecond delay. The distance between the

soma and the middle of the axon is 45 µm and the conduction speed is 0.23 ms/mm.

rectification is concerned, the Kir conductance was set by
extracting information from the current needed to move from
rest to AP threshold and from the anomalous slow-down in
first spike delay as the current injection was increased. And
since the same feature is also controlled by KA, this could have
generated some uncertainty in the conjoint estimation of these
two parameters. Likewise, the INap/IKslow balance was probably
determined by setting the firing threshold and the subsequent
f/I relationship. Therefore, given representative templates of the
firing patterns, the OF could predict the cell response in the
subthreshold and near-threshold functional regimes, that were
not considered as features. The same consideration applies to
resonance, which depends on IKslow and is amplified by INap.

In conclusion, the OF using IBEA provided an objective
automatic strategy for reconstructing the biophysical properties
of neurons through a realistic set of ionic currents, reducing
optimization times by orders of magnitude compared to
traditional operator-guided procedures (days vs. months or
years). The OF-derived models required a validation accounting
for response patterns not used for model construction. This
validation, by being itself based on biological constraints,
does not introduce any arbitrary selections. The unsupervised

optimization through OF confirmed the precision of multi-
parametric matching procedures used previously for the same
neurons. The ability of the OF models to respond to low-
frequency oscillations and bursts of various frequency and
duration makes them suitable for reconstructing large-scale
models of neuronal microcircuits.
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