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A significant number of studies support the idea that inflammatory responses are
intimately associated with drug-, noise- and age-related hearing loss (DRHL, NRHL and
ARHL). Consequently, several clinical strategies aimed at reducing auditory dysfunction
by preventing inflammation are currently under intense scrutiny. Inflammation, however,
is a normal adaptive response aimed at restoring tissue functionality and homeostasis
after infection, tissue injury and even stress under sterile conditions, and suppressing it
could have unintended negative consequences. Therefore, an appropriate approach to
prevent or ameliorate DRHL, NRHL and ARHL should involve improving the resolution
of the inflammatory process in the cochlea rather than inhibiting this phenomenon.
The resolution of inflammation is not a passive response but rather an active,
highly controlled and coordinated process. Inflammation by itself produces specialized
pro-resolving mediators with critical functions, including essential fatty acid derivatives
(lipoxins, resolvins, protectins and maresins), proteins and peptides such as annexin
A1 and galectins, purines (adenosine), gaseous mediators (NO, H2S and CO), as well
as neuromodulators like acetylcholine and netrin-1. In this review article, we describe
recent advances in the understanding of the resolution phase of inflammation and
highlight therapeutic strategies that might be useful in preventing inflammation-induced
cochlear damage. In particular, we emphasize beneficial approaches that have been
tested in pre-clinical models of inflammatory responses induced by recognized ototoxic
drugs such as cisplatin and aminoglycoside antibiotics. Since these studies suggest
that improving the resolution process could be useful for the prevention of inflammation-
associated diseases in humans, we discuss the potential application of similar strategies
to prevent or mitigate DRHL, NRHL and ARHL.

Keywords: drug-induced hearing loss, noise-induced hearing loss, age-related hearing loss, inflammation,
resolution of inflammation, lipid mediators, annexin A1, galectin

INTRODUCTION

The most important paradigm recognized and highlighted in this article is that inflammation
in any tissue, organ and system, behaves as a beneficial host reaction aimed at protecting
individuals from infections and tissue injury. Moreover, inflammation can help to
establish an immunological memory that the organism can use later to generate a better
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FIGURE 1 | Potential fates for acute inflammation.

response to a particular infectious agent (Gilroy and De Maeyer,
2015; Headland and Norling, 2015). Therefore, rather than to
prevent inflammation, any clinical strategy should be aimed at
facilitating its rapid, safe and complete resolution.

Mammals are able to detect the presence of pathogen
agents and tissue injury, and initiate complex tissue repair
and wound healing programs. At the front line of the
host defense mechanism is acute inflammation, a short-term
physiologic response aimed to return, at least in part, the
organism to the normal phenotype. Not surprisingly, when
the timely resolution of inflammation fails, it progresses
to chronic inflammation, a condition that can persist for
months and even years (Figure 1). Chronic inflammation
is linked to the pathogenesis of a number of diseases such
as atherosclerosis, type 2 diabetes, rheumatoid arthritis and
Alzheimers (Medzhitov, 2008, 2010; Tabas and Glass, 2013),
and likely act as a predisposing factor to carcinogenesis (Lee
et al., 2013). Thus, the resolution of inflammation may be a
crucial target for new therapeutic avenues, and we believe that
clinical strategies seeking the timely resolution of inflammatory
processes in the cochlea should be considered an important
part of the conceptual framework needed to prevent auditory
dysfunction.

THE INFLAMMATORY RESPONSE AND ITS
RESOLUTION

General Concepts
Until recently, the common view on chronic inflammation
was that it resulted from exaggerated pro-inflammatory signals
during the acute phase, and that its resolution was a passive
process mediated by metabolites of the same pro-inflammatory
mediators. In other words, that chemo-attractants and other
molecules associated with the inflammatory response would
eventually dissipate, and the system would automatically
reset to its initial stage (Robbins and Cotran, 1979; Tauber
and Chernyak, 1991; Serhan, 2011). Studies in the last
two decades, however, have led to the formulation of a

new paradigm based on the premise that resolution of
inflammation results from the engagement and activation of
specific genetic, cellular and molecular programs (Perretti,
2015). Thus, it is currently accepted that acute inflammation
is terminated by a biosynthetically active process, regulated
by endogenous signaling pathways driven by specialized
pro-resolving mediators and receptors that: (1) switch from the
production of pro-inflammatory mediators to pro-resolution
mediators; (2) turn off pro-inflammatory signaling pathways;
(3) induce apoptosis of previously recruited inflammatory cells;
(4) stimulate the clearance of apoptotic cells by phagocytes;
and (5) reinstate, either partially or totally, homeostatic
conditions (Alessandri et al., 2013). It has now become evident
that the peak of the acute inflammatory response is the
beginning of resolution (Serhan and Savill, 2005), with the
simultaneous presence of pro-inflammatory and pro-resolution
mediators in order to ensure safe cell death and removal,
that is, preventing the activation of inflammatory and immune
effectors (Gilroy et al., 2004; Hallett et al., 2008; Maderna and
Godson, 2009; Perretti and D’Acquisto, 2009; Iqbal et al., 2011;
Figure 2). This concept suggests a complex balance between
pro-inflammatory and anti-inflammatory events taking place, at
least partly, in parallel (Serhan and Savill, 2005; Sugimoto et al.,
2016a). Moreover, it strongly corroborates that inflammation is
programmed to stay within limits, both spatially and temporally,
and to ultimately lead to an active process of completion
(Perretti, 2015).

The current mainstay approach for treating inflammation-
induced diseases is based on inhibiting the synthesis or activities
of the pro-inflammatory mediators. Although there has been
success with some of these anti-inflammatory therapies, there
are considerable limitations. In particular, the advantages of
anti-inflammatory drugs are usually decreased by three factors:
redundancy, compensatory pathways and necessity (Tabas and
Glass, 2013). For example, many molecules are at work in an
inflammatory process, some of them with identical function
(redundancy), and targeting one or a few of them may not
be enough to obtain significant beneficial results. Likewise,
inhibition of one pro-inflammatory pathway may just trigger
a compensatory response involving an alternative pathway.
Finally, inflammation is a protective reaction (necessity) and,
even if the previous two challenges are successfully overcome,
the risks associated with inhibiting a natural defense mechanism
are often unacceptable (Tabas and Glass, 2013). Thus, there is
an increasing awareness that pro-resolution-based strategies may
have even more potential than anti-inflammatory therapies for
the treatment of multiple diseases (Gilroy et al., 2004; Rossi et al.,
2007; Hallett et al., 2008; Serhan et al., 2008; Duffin et al., 2010).

Pro-Resolution Mediators and their
Receptors
In recent years, interest for the resolution phase of inflammatory
responses led to the discovery of several specific pro-resolving
mediators of diverse nature, including lipids (Serhan et al.,
2014), proteins and peptides (Perretti and Dalli, 2009), a
purine (Köröskényi et al., 2011; Csóka et al., 2012; Haskó
and Cronstein, 2013), gaseous mediators (Wallace et al., 2015),
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FIGURE 2 | Temporal representation of the biochemical events associated with the onset and resolution of inflammation. The early phase of inflammation is
characterized by the up-regulation (green arrows) of pro-inflammatory mediators such as leukotrienes (LTs), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β),
prostaglandin D2 (PGD2) and thromboxanes (TXs). Importantly, the anti-inflammatory mediator PGE2 is also up-regulated at this phase, indicating the controlled
nature of inflammatory responses. The peak of the inflammatory response coincides with the start of the resolution phase, with down-regulation (blue arrows) of TXs,
IL-1β, LTs and TNF-α, and up-regulation of anti-inflammatory cytokines such as PGE2, IL-10 and TGF-β; simultaneously, the synthesis and/or release of
pro-resolution mediators (e.g., LX, resolvins, protectins, maresins, ANXA1) stop further infiltration of leukocytes and facilitate the removal of apoptotic cells, leading to
the successful termination of the inflammatory response and the return to the tissue to its homeostatic condition. Modified from Maderna and Godson (2009).

FIGURE 3 | Scheme showing the formation of lipoxins and aspirin-triggered lipoxins from arachidonic acid. The 2-D structures were obtained from the PubChem
Substance and Compound database with the following chemical structure identifiers (CID): 444899 (AA), 5280914 (LXA4), 5280915 (LXB4), 9841438 (ATLXA4),
9928453 (ATLXB4; National Center for Biotechnology Information, 2017).

and neuromodulators (Pavlov and Tracey, 2012; Mirakaj et al.,
2014). Specialized pro-resolving mediators not only work in
inflammatory responses, but they also have important functions
in host defense, pain, organ protection and tissue remodeling
(Serhan et al., 2015a). More important, synthetic forms of these
mediators have potent effects when administered in vivo (Serhan
et al., 2014), increasing their clinical value.

To date, the most important pro-resolution mediators
described in the literature are:

– Lipoxins (lipoxygenase interaction products; LX), eicosanoids
generated in vivo from arachidonic acid (Serhan, 2005;
Ryan and Godson, 2010; Figure 3). LX are involved in
the inhibition of neutrophil and eosinophil recruitment
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FIGURE 4 | Scheme showing the biosynthesis of D-resolvins and E-resolvins from docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), respectively. The
2-D structures were obtained from the PubChem Substance and Compound database with the following CID: 52921992 (17HpDHA), 16061135 (RvD1), 11383310
(RvD2), 53477497 (RvD3), 53477505 (RvD4), 16061139 (RvD5), 25073193 (RvD6), 446284 (18HpETE), 91820117 (RvE1), 16061125 (RvE2), 56848721 (RvE3;
National Center for Biotechnology Information, 2017).

and activation, while enhancing the recruitment of
monocytes to sites of injury (Papayianni et al., 1995;
Maddox et al., 1997; Wada et al., 2001). In addition,
they are able to directly stimulate the expression
of anti-inflammatory and pro-resolution genes (Qiu
et al., 2001) as well as to regulate NF-kB activation
(Decker et al., 2009). Further, they are known to
stimulate the clearance of apoptotic cells by macrophages

(Reville et al., 2006). Chronic inflammation has been
associated with deficient LX biosynthesis, which makes
tissues unable to resolve acute inflammatory reactions
(Bandeira-Melo et al., 2000; Pouliot et al., 2000; Bonnans
et al., 2002; Karp et al., 2004). Importantly, it has
been shown that LX can stimulate the expression of
ZO-1, claudin and occludin in cultured epithelial cells
(Grumbach et al., 2009), suggesting that they could
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FIGURE 5 | Scheme showing a simplified biosynthetic pathway for protectin 1 and protectin 2 from DHA. The 2-D structures were obtained from the PubChem
Substance and Compound database with the following CID: 16061141 (16,17-epoxide-protectin), 16042541 (PRD1), 16061147 (PRD2; National Center for
Biotechnology Information, 2017).

have a protective role in the maintenance of the tight-
junction barrier at the reticular lamina of the organ of
Corti.

Preeminent amongst lipoxins are the positional isomers
LXA4 and LXB4 (Pettitt et al., 1991; Rowley et al., 1991;
Serhan, 2005; Figure 3). Interestingly, aspirin-mediated
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acetylation of the COX-2 enzyme led to the generation of
15-epi-LX, known as aspirin-triggered LX (ATL; Serhan,
2005). Thus, part the beneficial effects of aspirin in humans
may be associated with the endogenous biosynthesis of
ATL mimicking the bioaction of native LX. While adequate
stimulation induces the near immediate generation of LX and
ATL, they are also rapidly inactivated by dehydrogenation
and reduction to form triene-containing compounds (e.g.,
LXA4 into the biologically inactive compounds 15-oxo-
LXA4, 13,14-dihydro-15-oxo-LXA4 and 13,14-dihydro-
LXA4) by metabolic enzymes present in leukocytes of
the monocyte/macrophage lineage, mainly monocyte/MΦ

(Serhan et al., 1993; Maddox and Serhan, 1996; Clish et al.,
2000; Romano, 2006). Although ATL are also converted to
their biologically inactive 15-oxo-metabolites, the process
is slower, suggesting that they possess an extended activity
in vivo (Serhan et al., 1995). As a result of the short lives
of the endogenous mediators, stable analogs for both
LX and ATL were developed that can resist metabolism,
maintaining their structural integrity (Chiang et al.,
2005). Studies in animal models suggest that LX analogs
could also be useful in humans, providing the rationale
for development of innovative anti-inflammatory drugs
(Romano, 2005) and ‘‘resolution-targeted’’ therapies (Chiang
et al., 2005).

LX are known to bind the G-protein coupled receptor
ALX/FRP2 (Chiang et al., 2006). This receptor has been
detected on human neutrophils, eosinophils, airway
epithelium, monocytes, macrophages, T cells, synovial
fibroblasts and intestinal epithelial cells (Fiore et al.,
1994; Maddox et al., 1997; Bonnans et al., 2006; Chiang
et al., 2006; Barnig et al., 2013). Importantly, these
receptors have also been localized in guinea pig cochlear
cells (Kalinec et al., 2009). ALX/FRP2 expression is
regulated by inflammatory mediators, transcription
factors and epigenetic mechanisms, and LXA4 is known
to increase ALX/FRP2 expression by activating its
promoter in a positive-feedback fashion (Simiele et al.,
2012).

– Resolvins (resolution phase interaction products) are ω-3
essential fatty acids derivatives with powerful multilevel
anti-inflammatory and pro-resolving properties (Serhan
et al., 1984, 2000a; Pettitt and Rowley, 1991; Arita et al.,
2005). They are termed D-series resolvins (RvD) if
generated from docosahexaenoic acid (DHA; 22:6ω-3),
or E-series resolvins (RvE), if the biosynthesis is initiated
from eicosapentaenoic acid (EPA; 20:5ω-3; Serhan et al.,
2000a; Serhan and Chiang, 2008; Figure 4). Aspirin is
known to oxidize DHA (Kusunoki et al., 1992; Serhan
et al., 2004a,b), generating aspirin-triggered D-resolvins
(ATR-D; Kusunoki et al., 1992; Serhan et al., 2000b; Serhan
and Chiang, 2004). A novel resolvin subfamily, generated
from docosapentaenoic acid (DPA; 22:5ω-3) and termed
T-series (RvT), has also been recently described (Dalli et al.,
2015a).

Resolvins have a key role in the resolution of inflammatory
responses, regulating the migration of neutrophils and

resolution macrophages to sites of inflammation as well as
reducing the levels of pro-inflammatory mediators (Serhan
et al., 2015a). RvDs and RvEs also promote phagocytosis of
apoptotic neutrophils (Schwab et al., 2007; Krishnamoorthy
et al., 2010), reduce activation and aggregation of platelets
(Dona et al., 2008), and regulate the function of T and
B cells (Ariel et al., 2006; Ramon et al., 2012). The just
discovered RvTs, on the other hand, could be crucial in the
resolution of inflammation triggered by bacterial infection
(Dalli et al., 2015a). In mice, the local application of
RvD1 significantly decreases the number of apoptotic cells
and macrophages in diabetic wounds, accelerating wound
closure and granulation tissue formation (Spite et al., 2014).
In animal models of sterile inflammation, RvE1 decreases
the expression of the genes encoding TNF-α, IL-1β and
VEGF (Jin et al., 2009) as well as IL-12 production (Poorani
et al., 2016). RvEs and RvDs are more active than their
precursors EPA and DHA, and they are known to induce
significant effects even at nanomolar concentrations. They
have potent in vivo actions in many important human
pathologies, such as obesity and diseases affecting the vascular
(Miyahara et al., 2013), airway (Levy and Serhan, 2014), and
ocular systems, as well as in reactions involving pain, fibrosis
and wound healing (Serhan and Chiang, 2013; Spite et al.,
2014).

RvD1 and its aspirin-triggered epimer RvD1 (ATR-D1)
bind the ALX/FRP2 receptor, just like LX (Fiore et al.,
1994; Chiang et al., 2006; Krishnamoorthy et al., 2012).
Interestingly, RvD1 and ATR-D1, as well as RvD3, and RvD5,
have also been shown to bind and signal through a specific
receptor termed RvD1-R (Sun et al., 2007; Krishnamoorthy
et al., 2010, 2012; Chiang et al., 2012; Dalli et al., 2013b).
It appears that RvD1 differentially interacts with RvD1-R
during periods of homeostasis and with ALX/FRP2 during
the resolution phase of inflammation (Krishnamoorthy et al.,
2012). In turn, RvD2 and RvE have specific receptors termed,
respectively, RvD2-R (Chiang et al., 2015) and RvE-R (Arita
et al., 2005; Campbell et al., 2007; Parolini et al., 2007;
Cash et al., 2008; Du and Leung, 2009; Barnig et al.,
2013).

– Protectins also derive from DHA (Hong et al., 2003; Serhan
et al., 2006; Figure 5). Protectins, like resolvins, control
the magnitude and duration of inflammation in animal
models (Schwab et al., 2007; Serhan and Petasis, 2011),
fight bacterial and viral infections (Chiang et al., 2012),
and can increase animal survival (Serhan and Chiang,
2013).

Two members of the family have been described,
protectin-D1 and protectin-D2 (Dalli et al., 2013a). PD1,
originally identified in neural tissues (murine brain cells and
human microglial cells), is also known as neuroprotectin
(Kohli and Levy, 2009). The identity of the protectin
receptor/s is not yet known, although it has been proposed
that, in humans, they bind to high affinity sites in the
plasma membrane of neutrophils (Marcheselli et al., 2010).
Interestingly protectins have been shown to regulate the
expression of the Peroxisome Proliferator-Activated Receptor-
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FIGURE 6 | Scheme showing a simplified biosynthetic pathway for maresins. Macrophages convert DHA to the 13S-14S-epoxy-maresin intermediate, and from
there MaR1, Mar2 and MaR3 are generated via soluble hydrolases. The 2-D structures were obtained from the PubChem Substance and Compound database with
the following CID: 53477498 (14S-HpDHA), 60201795 (MaR1), 101894912 (MaR2), 52921996 (MaR3; National Center for Biotechnology Information, 2017).

γ (PPAR-γ; White et al., 2015), a member of a nuclear
hormone receptor superfamily that, acting as transcription
factors, regulate inflammation, immune responses and
metabolic processes that influence lipid metabolism, glucose
homeostasis, cell differentiation, obesity and cancer (Chinetti
et al., 2003; Moraes et al., 2006).

– Maresins (macrophage mediators in resolving inflammation)
are anti-inflammatory and pro-resolving lipid mediators
generated by macrophages from DHA (Serhan et al., 2009;
Figure 6). To date, three members of the family have been
described, MaR1, MaR2 and MaR3 (Dalli et al., 2013a), which
display potent anti-inflammatory and pro-resolving actions
even at the nanogram range (Poorani et al., 2016). Maresins
are known to stimulate phagocytosis of polymorphonuclear
(PMN) by macrophages (Serhan et al., 2015b), increase the
number of regulatory T cells and decrease the production
of interleukins 5 and 13 (IL-5, IL-13; Krishnamoorthy et al.,
2015), as well as inhibit the production of leukotriene B4
(LTB4; Serhan et al., 2015b), contributing to the completion
of the resolution phase of inflammatory responses.

The identity of the receptor/s through which maresins
signal is still unknown.

NOTE: Several sulfido-conjugates of maresins, protectins
and D-resolvins are also biologically active (Dalli et al., 2014,
2015b). These sulfido-conjugates are usually produced from
DHA by activated phagocytes, and they are very effective in
stimulating inflammatory resolution and tissue regeneration
(Duvall and Levy, 2016).

– Annexin A1 (ANXA1) is a powerful anti-inflammatory
and pro-resolving protein. ANXA1 synthesis and release is
regulated by glucocorticoids (Sugimoto et al., 2016b), and
it is considered a pivotal homeostatic mediator (Perretti
and Dalli, 2009), and an important modulator of both
the innate and adaptive immune systems (D’Acquisto
et al., 2008; Perretti and D’Acquisto, 2009). Experimental
evidence suggests that ANXA1, in addition to decreasing
pro-inflammatory cytokines while increasing the production
of immunosuppressive and pro-resolving molecules, is
able to induce macrophage reprogramming toward a
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FIGURE 7 | Anti-inflammatory and pro-resolving effects of annexin A1 (ANXA1). Pharmacological administration of ANXA1 or its mimetic N-terminal peptides results
in decreased migration and adhesion of leukocytes to the endothelium and inhibition of their passage through the walls of the blood vessels (diapedesis). In addition,
ANXA1 is able to induce apoptosis, and clearance of apoptotic leukocytes by macrophages. Furthermore, ANXA1 promotes the reprogramming of macrophages
toward a pro-resolving phenotype, and even the generation of non-professional phagocytic cells. Modified from Sugimoto et al. (2016b).

resolving phenotype, and even converting somatic cells
into non-professional macrophages (Sugimoto et al., 2016a;
Figure 7). Several studies indicate that the anti-inflammatory
and pro-resolution activity of ANXA1 is associated with its
N-terminus. Importantly, short synthetic peptides from this
domain retain the receptor binding specificity of the full
protein and have most of their effects, but they are more
resistant to inactivation (Perretti and D’Acquisto, 2009).

Since many of the cellular and molecular processes
associated with the anti-inflammatory properties of
glucocorticoids are, actually, modulated by ANXA1,
pharmacologic interventions based on ANXA1 could be
equally effective as steroids without their negative side effects.
The association of ANXA1 with lipid droplets in auditory
Hensen cells from guinea pigs, as well as its potential role in
the resolution of cochlear inflammation, have been discussed
in a recent review (Urrutia and Kalinec, 2015).

ANXA1, as well as short synthetic peptides from its
N-terminal domain, specifically bind to ALX/FPR2, the same
receptor that binds LXA4 and resolvins D1/E1(Perretti and
D’Acquisto, 2009). Thus, the ALX/FPR2 receptor is shared
by a variety of peptide/protein and lipid ligands, mediating
many functions of relevance for inflammation (Anong et al.,
2009). The promiscuity of ALX/FPR2 seems to be linked
to a network of both pro-inflammatory and pro-resolving
signaling pathways (Le et al., 2007; Brancaleone et al., 2011).
It was demonstrated that distinct ALX/FPR2 domains are
required for signaling by different agonists; for instance,
while ANXA1-mediated signaling involves the N-terminal
region and extracellular loop II of ALX/FPR2, LXA4 activates

ALX/FPR2 by interacting with the extracellular loop III and
its associated transmembrane domain (Bena et al., 2012).

– Galectins, a family of glycan-binding proteins, are currently
considered key players in several programs that control
maturation, activation, differentiation, polarization,
trafficking, cytokine synthesis and viability of immune
cell populations (Rabinovich and Toscano, 2009; Mendez-
Huergo et al., 2014; Rabinovich and Conejo-García, 2016).
By crosslinking specific glycoconjugates, different members
of the galectin family (15 members identified to date) behave
as either pro-inflammatory or anti-inflammatory agents,
regulating the initiation, amplification and resolution of acute
and chronic inflammatory responses (Rabinovich et al., 2002;
Rubinstein et al., 2004). Several studies identified Gal-1, Gal-3
and Gal-9 as direct players in the modulation of acute and
chronic inflammatory diseases, autoimmunity and cancer, and
are increasingly used as targets for drug discovery (Norling
et al., 2009). Gal-1 has been associated with a range of
anti-inflammatory effects on various cells types (Rabinovich
et al., 2000; Dias-Baruffi et al., 2003; La et al., 2003). Gal-3, in
turn, is widely pro-inflammatory, and it appears to be involved
in the transition to chronic inflammation (Henderson and
Sethi, 2009). Gal-3 is known to enhance the phagocytic
capabilities of neutrophils, a fact that may in part account
for its protective role in infections (Farnworth et al., 2008).
Finally, the ability of Gal-9 to induce T-cell apoptosis makes it
a potent anti-inflammatory protein (Tsuchiyama et al., 2000;
Zhu et al., 2005; Katoh et al., 2007), with several pro-resolution
properties including the increase of leukocyte apoptosis and
phagocytic clearance (Iqbal et al., 2011).
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After being secreted galectins bind to glycoprotein
targets, forming galectin–glycan complexes that regulate
the organization of glycosylated receptors as well as their
internalization and signaling (Rabinovich and Croci, 2012;
Thiemann and Baum, 2016). Thus, they are able to stimulate
different signaling cascades associated with inflammation
(Norling et al., 2009; Rabinovich and Toscano, 2009; Blidner
et al., 2015) and regulate the activity of immune cells by
controlling the function of relevant glycosylated receptors.

– Adenosine is a ubiquitous metabolite of ATP generated as a
result of cellular injury or stress, and is released from cells
via specific transporters or during apoptosis or necrosis
(Haskó and Cronstein, 2013). Adenosine is an important
immunosuppressive and tissue-healing factor, and its
production and extracellular concentrations are significantly
increased in inflammation (see Aherne et al., 2011 and
references therein). In the auditory system adenosine has
been associated with protective mechanisms against noise-
and drug-related hearing loss (for a review, see Vlajkovic
et al., 2009). In mice, adenosine release is known to be
induced by aspirin (Cronstein et al., 1999), and it is possible
that adenosine could be the real effector of some of the
pro-resolution properties of aspirin.

Adenosine interacts with purinergic receptors type 1 (P1)
on the plasma membrane of inflammatory and immune cells
(Bours et al., 2006), regulating their function and limiting
inflammatory tissue destruction (Haskó and Cronstein,
2004). Adenosine-activated P1 receptors are further divided
into A1, A2 and A3 subtypes, with A1 and A3 inhibiting
and A2 stimulating adenyl cyclase after being activated by
adenosine; in addition, the A2 subtype is subdivided into A2A
(high-affinity) and A2B (low-affinity) adenosine receptors
(Ralevic and Burnstock, 1998). Since the particular effects
of adenosine depend on which receptor is activated, the
physiological effects of adenosine will depend on the relative
expression of their receptors in a particular cell, tissue, or
organ (Ralevic and Burnstock, 1998). In mammalian cochleae,
adenosine receptors A1 and A2A are abundantly expressed
in inner hair cells (IHCs), Deiters cells and spiral ganglion
neurons, whereas A3 is localized in IHCs and outer hair cells
(OHCs), as well as in Deiters, pillar, Hensen, Claudius, spiral
ganglion, inner and outer sulcus cells (Vlajkovic et al., 2009).

– NO, H2S and CO, nitric oxide, hydrogen sulfide and carbon
monoxide, respectively, are gaseous substances that can act
as signaling molecules (Wallace et al., 2015). NO has the
ability to regulate apoptosis of inflammatory cells, with lower
concentrations of NO usually being cytoprotective, while
supra-physiological concentrations trigger cell death (Kim
et al., 1999; Brüne, 2005). These pro- and anti-apoptotic
properties are cell-specific, and depend largely on the NO
isoforms involved (Taylor et al., 2003). In inflammatory cells,
low concentrations of endothelial and neuronal isoforms
of NO synthase (eNOS and nNOS) have a protective effect,
whereas higher concentrations from the inducible isoform
(iNOS) are more likely to induce apoptosis (Nicotera et al.,
1997). Since the resolution of inflammatory processes requires
death and clearance of inflammatory cells, NO-mediated

regulation of apoptosis may be critical for ensuring the return
to homeostasis.

H2S exerts potent inhibitory effects on a wide range
of leukocyte functions (Zanardo et al., 2006; Pálinkás et al.,
2015). Importantly, H2S is an avid scavenger of other cytotoxic
substances, including peroxynitrite (Whiteman et al., 2004),
superoxide anion (Muzaffar et al., 2008), hypochlorous acid
(Whiteman et al., 2005) and hydrogen peroxide (Whiteman
et al., 2010), all of them important for oxidative stress. In
addition, ANXA1 mediates some of the anti-inflammatory
actions of H2S (Brancaleone et al., 2014), and there is
strong evidence that H2S helps to restore tissue function by
up-regulating enzymes that drive tissue repair and preserve
mitochondrial function (Goubern et al., 2007; Lagoutte et al.,
2010; Mimoun et al., 2012).

CO is produced via the inducible isoform of the enzyme
heme oxygenase (HO-1), which is a sensor of cellular stress,
and it has been shown that the CO it generates may limit tissue
injury (Motterlini and Foresti, 2014). Like NO and H2S, CO
has anti-apoptotic, anti-inflammatory and anti-proliferative
effects, and these functions seem to be associated, at least in
part, with their influence on oxidative stress, redox signaling
and cellular respiration (Motterlini and Foresti, 2014). In the
clinic, in addition to the oral administration of CO-releasing
molecules (‘‘CO-RMs’’ or ‘‘CORMs’’), it is relatively common
to use CO as an inhaled gas (Wallace et al., 2015). It has been
reported that inhaled CO reduces neutrophil infiltration and
stimulates the activity of HO-1 and phagocytosis by resolution
macrophages (Chiang et al., 2013). Importantly, inhaled
CO also increases the production of RvD1 and Mar1 while
decreasing LTB4 (Chiang et al., 2013).

The gaseous mediators NO, H2S and CO, in contrast
to other signaling molecules, do not have specific receptors.
Their effects result from direct interaction with a great number
of different proteins and genes (Wallace et al., 2015).

– Neuromodulators, like acetylcholine and netrin-1, control
immune function and anti-inflammatory responses via a
vagus nerve-mediated reflex (Pavlov and Tracey, 2012).
Acetylcholine receptors, including α7nAChR, act as molecular
targets for the vagus-mediated signals, and several α7nAChR
agonists have shown anti-inflammatory properties in human
volunteers (Kitagawa et al., 2003). The local expression of
netrin-1, an axonal guidance molecule known to stimulate the
production of resolvins, is also regulated by the vagus nerve
(Ly et al., 2005; Mirakaj et al., 2010, 2011; Aherne et al., 2012).
In addition to promoting the generation of resolvins, Netrin-1
activates resolution by decreasing the recruitment of PMN
cells in vitro and in vivo while increasing the recruitment
of monocytes and its uptake of apoptotic PMNs (Mirakaj
et al., 2014). Interestingly, netrin-1 was localized in the early
postnatal rat and mouse cochlea, and it has been suggested
that it could have an important role in promoting the growth
of spiral ganglion cells’ neurites as well as guiding their axons
(Gillespie et al., 2005; Lee and Warchol, 2008). Moreover,
it has been shown that insulin-like growth factor 1 (IGF-1)
up-regulates the expression of netrin-1 in the neonatal mouse
inner ear (Hayashi et al., 2014), and recent results suggest
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that netrin-1 could be a key mediator of the protective role
of IGF-1 against the ototoxic effects of aminoglycosides
(Yamahara et al., 2017).

– Aspirin as a pro-resolution mediator
Aspirin is a potent inhibitor of cyclo-oxygenases (COX)

and lipoxygenases (LOX), interfering with the synthesis of
pro-inflammatorymediators (Forge and Schacht, 2000; Gilroy,
2005b). However, unlike many other anti-inflammatory
agents considered resolution-toxic because they delay
complete resolution (Gilroy et al., 1999; Schwab et al., 2007),
aspirin promotes resolution mechanisms (Gilroy and Perretti,
2005; Serhan, 2007). At high doses (∼1 g), aspirin is anti-
inflammatory, but it is pro-resolution at lower doses (∼81 mg)
because of the synthesis of the pro-resolution mediator
ATLA4 and up-regulation of its receptor ALX/FRP2. Since
ATLA4 inhibits the pro-thrombotic eicosanoid thromboxane,
a low dose aspirin is commonly used for the prevention of
vascular diseases (Morris et al., 2009).

In addition to these effects, and as already mentioned,
aspirin-acetylated COX-2 is the origin of ATL and
ATR (Serhan, 2005). Thus, it is argued that the most
important mechanism of action of aspirin is the induction of
pro-resolution mediators (Gilroy and Perretti, 2005; Gilroy,
2005a,b). Importantly, aspirin may acetylate COX-2 in one
cell type and ATL and ATR be generated in a different one
in a process known as transcellular metabolism (Serhan et al.,
2000a; Gilroy et al., 2004; Gonzalez-Períz and Claria, 2007).
For example, 15-hydroxyeicosatetraenoic acid (15-HETE),
generated by aspirin acetylation of COX-2 in endothelial
cells, may be released and then metabolized to ATL by
inflammatory cells. These relatively unrecognized pathways
and compounds may represent new ways to develop novel
‘‘resolution-targeted’’ therapeutics (Chiang et al., 2005).

There is no receptor for aspirin, but it is known to stimulate
a variety of receptor-mediated signaling pathways, for
example, by the production of ATL and ATR (Gilroy, 2005b).
The main receptor for ATL and ATR-D1 is ALX/FRP2,
the same molecule that binds LX, ANXA1 and RvD1/E1
(Fiore et al., 1994; Chiang et al., 2006; Krishnamoorthy et al.,
2012). Moreover, ATR-D1 also activates RvD1-R, the specific
receptor known to bind RvD1, RvD3 and RvD5 (Sun et al.,
2007; Krishnamoorthy et al., 2010, 2012; Chiang et al., 2012;
Dalli et al., 2013b). Thus, indirectly through the activation of
the signaling pathways mediated by these receptors (as well as
others mechanisms such as the release of adenosine), aspirin
has a unique ability to induce a variety of pro-resolution
effects.

There is considerable interest in elucidating whether
aspirin also favors resolution in humans (Morris et al.,
2009, 2010). It is already known that, in humans, low-dose
aspirin triggers ATL production just like in animal models
(Chiang et al., 2004). Thus, the combination of aspirin with
ω-3 essential fatty acids might have a beneficial impact
on diseases associated with inflammation in many organs,
including the cochlea. Moreover, it has been suggested that
aspirin could slow down the progression of age-related
hearing loss (ARHL; Lowthian et al., 2016).

Resolution of Inflammation in the
Mammalian Cochlea—General Concepts
For many years, the cochlea was considered an ‘‘immune-
privileged’’ organ because of the presence of a tight junction-
based blood-labyrinth barrier (BLB; Harris, 1983, 1984; McCabe,
1989). A number of more recent studies, however, showed
that resident macrophages are always present in the cochlear
lateral wall as well as in the spiral limbus and the scala
tympani (ST) side of the basilar membrane (Frye et al.,
2017), and they are activated by various types of insults,
including noise exposure, ischemia, mitochondrial damage and
surgical stress (Hirose et al., 2005; Zhang W. et al., 2012;
Fujioka et al., 2014; Figure 8). Moreover, experimental data
suggests that BLB permeability is regulated by inflammatory
cytokines released by macrophages in the spiral ligament and
macrophage-like melanocytes in the stria vascularis (Zhang
W. et al., 2012; Fujioka et al., 2014), and that inflammation would
increase BLB permeability to some ototoxic drugs (Koo et al.,
2015).

The association of inflammation with ototoxicity was
originally based on evidence that glucocorticoids protected
against sensorineural hearing loss (Kanzaki and Ouchi, 1981).
Later studies demonstrated that the cochlea can mount
inflammatory responses not only in response to pathogens
but also to toxic insults mediated by drugs, noise or immune
challenges (sterile inflammation; Rock et al., 2010). For example,
several ototoxic drugs are known to induce cell apoptosis
and inflammation in the cochlea both directly or through the
generation of reactive oxygen species (ROS; Kaur et al., 2011;
Oh et al., 2011). Noise trauma also induces an inflammatory
response in the inner ear (Fujioka et al., 2006), and studies in
mice suggest that chronic environmental noise exposure could
induce cochlear damage and hearing loss via inflammatory
processes (Tan et al., 2016). Moreover, it has been suggested
that low-grade inflammation may be also linked to some of
the auditory problems usually associated with aging (Lowthian
et al., 2016), otitis media, meningitis and autoimmune inner
ear disease (Gloddek et al., 1999; Trinidad et al., 2005; Caye-
Thomasen et al., 2009). Furthermore, cochlear inflammation
is a common result of cochlear surgery and the insertion
of cochlear implants (Backhouse et al., 2008; Okano et al.,
2008).

Akin to pathogen-induced inflammation, the resolution
phase in sterile inflammation is also initiated by
apoptosis and clearance of damaged cells (Medzhitov,
2008). The similar response is due to the fact that
pathogens and the byproducts of cellular damage, known
as damage-associated molecular patterns (DAMPs),
stimulate the same pattern recognition receptors (PRRs;
Kono and Rock, 2008; Zitvogel et al., 2010). Early inflammation
caused by DAMP-PRR signaling is considered an evolutionarily
preserved mechanism for controlling the spread of pathogens
or necrotic tissue (Wood and Zuo, 2017). Interestingly,
until recently the accepted paradigm was that apoptosis, the
physiological form of cell death, occurred without DAMPs;
necrosis, in contrast, was thought to lead to the generation
of DAMPs, followed by activation of inflammatory and
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FIGURE 8 | Diagram of a section of the cochlea. Note the three cochlear ducts, the scala vestibule (SV), the scala media (SM) and the scala tympani (ST). The
auditory organ, the organ of Corti, sits at the SM. At the onset of inflammation, leukocytes and resident macrophages in the lateral wall and the spiral limbus migrate
to the SV and the ST but, except in cases of extreme cochlear damage, they do not penetrate into the SM. Modified from Urrutia and Kalinec (2015).

immune pathways (Kono and Rock, 2008). However, the
idea that accidental necrosis would always elicit inflammation
and immune responses, and that apoptosis would be anti-
inflammatory, is a misconception. In some cases apoptotic cells
trigger immune responses (Green et al., 2009), whereas cell
necrosis can be executed in a regulated and safe manner (Garg
et al., 2010).

Thus, in the cochlea, PRR activation rapidly leads to
the activation of resident macrophages, the release of
pro-inflammatory cytokines, and ROS production, causing
apoptosis of damaged cells and infiltration of immune cells
into the scala vestibule (SV) and the ST. The nature of the
immune cells infiltrating the cochlea has been discussed
in a recent review (Wood and Zuo, 2017), and will not be
addressed here. The infiltrating cells transform into activated
macrophages and express pro-inflammatory proteins (Yang
et al., 2015). Whereas leukocytes are essential elements of the
immune system, providing the first line of defense against
invading pathogens, they require appropriate regulation to
avoid tissue damage (Hallett et al., 2008; Headland and Norling,
2015). This is particularly important in the cochlea, where
migrant leukocytes may disrupt the tight junction barrier at

the reticular lamina in the organ of Corti. Without tight-
junctions, the endolymph of the scala media (SM) would
mix with the perilymph of the ST, eliminating the differences
in electrical potential between these two chambers, shutting
off the cochlear amplification mechanism and inducing
apoptosis of outer hair cells (Kalinec et al., 2009). Consistent
with this idea, leukocytes and macrophages are never found
in the SM except in cases of extreme, irreversible cochlear
damage (Hirose and Liberman, 2003; Hirose et al., 2005;
Tornabene et al., 2006). Therefore, inflammatory responses
in the cochlea must also be aimed at suppressing leukocyte
migration and activation as well as promoting the clearance
of apoptotic cells in the organ of Corti by non-professional
phagocytes.

To the best of our knowledge, there is only one work
exploring the presence of resolution mediators and receptors
in the cochlea (Kalinec et al., 2009). Looking at the inner
ear of guinea pigs, ANXA1 was localized in several cell
populations lining the SM, particularly in Hensen cells of
the organ of Corti (Kalinec et al., 2009). The majority of
ANXA1 within cochlear Hensen cells was found stored inside
lipid droplets, and experimental evidence suggests that it is
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released to the external milieu by a glucocorticoid-activated
mechanism (Kalinec et al., 2009). ALX/FPR2, the receptor for
ANXA1, LX A4/B4, RvD1/E1 as well as ATL and ATR, was
also found expressed in the SM and cells lining the ST and
the SV of the guinea pig cochlea, being particularly abundant
in sensory IHCs and OHCs, Deiters and Pillar cells (Kalinec
et al., 2009). It was speculated that ANXA1 released by Hensen
cells could target these receptors to induce pro-resolution
effects. Importantly, although low concentrations of LXA4 were
detected, no evidence was found of glucocorticoid-induced
release of LXA4 from any organ of Corti cells (Kalinec et al.,
2009).

The absence of professional phagocytic cells during
inflammatory responses in the SM and the organ of
Corti supports the idea that supporting cells, working as
non-professional phagocytes, would be responsible for clearing
apoptotic hair cells (Abrashkin et al., 2006). However, the signals
that mediate the clearance of dead organ of Corti cells are
still unknown. Interestingly, ANXA1 has been implicated in
promoting phagocytosis in two ways: by acting as an ‘‘eat me’’
signal on apoptotic cells (Arur et al., 2003) and as a receptor
on the surface of professional and non-professional phagocytic
cells to recognize exposed phosphatidylserine (PS) on cells
undergoing apoptosis (Fan et al., 2004). It has been suggested
that ANXA1 molecules might act as bridging proteins, linking
apoptotic cells to neighbor cells, promoting the transformation
of these adjacent cells into non-professional phagocytes, and
then inducing the phagocytosis of the apoptotic cells (Fan
et al., 2004). Thus, the massive release of ANXA1 from Hensen
cells induced by glucocorticoids could be important for both
stopping leukocyte migration into the SM and for facilitating the
clearance of apoptotic hair cells by inducing the transformation
of supporting cells in the organ of Corti to non-professional
macrophages (Kalinec et al., 2009).

Resolution of Inflammation and
Drug-Related Hearing Loss
Drug ototoxicity, defined as a temporary or permanent inner ear
dysfunction after drug exposure, is one of the most preventable
causes of deafness (Yorgason et al., 2011). While several classes
of drugs are ototoxic, platinum-based chemotherapy agents
(e.g., cisplatin) and aminoglycoside antibiotics (e.g., gentamicin,
streptomycin) are known to induce irreversible hearing loss;
others like macrolide antibiotics, antimalarial medications, loop
diuretics and some NSAIDs are known to cause reversible inner
ear toxicity (Yorgason et al., 2006). Although their ototoxicity is
well known, these drugs are frequently used in the clinic because
in many cases their benefits outweigh their negative side effects.

Here, we will only review cisplatin and aminoglycoside
antibiotics since, as central components of many
pharmacotherapies, they are arguably the most clinically
relevant ototoxic drugs.

Cisplatin
Cisplatin is a potent chemotherapeutic agent used in the
treatment of a variety of cancers. Its administration, however,
is commonly associated with severe nephrotoxicity, peripheral

neuropathy and ototoxicity (Coradini et al., 2007). The
association of inflammation with cisplatin treatment has been
suggested mostly by the beneficial effect of glucocorticoids
on cisplatin ototoxicity (Murphy and Daniel, 2011; Parham,
2011), and the reduction of cisplatin nephrotoxicity by the
pro-resolution mediators aspirin and adenosine (Okusa, 2002;
Ramesh and Reeves, 2004).

In the inner ear the toxic effects of cisplatin are characterized
by progressive, bilateral and irreversible hearing loss,
preferentially affecting high frequencies and characterized
essentially by damage to the cochlea (Nakai et al., 1982). The
primary site of cochlear toxicity is the OHC, but IHCs, spiral
ganglion neurons and stria vascularis cells are also affected.
At the cellular level, cisplatin induces a complex network
of events, including generation of ROS and activation of
inflammatory cytokines and stress signaling pathways (Boulikas
andVougiouka, 2003; Rybak et al., 2007). These events eventually
lead to cell death, mostly via induction of apoptosis (Boulikas
and Vougiouka, 2003).

Currently, oxidative stress –not inflammation—is considered
the major cause of cisplatin-induced hearing loss. However, the
use of anti-oxidants as a single clinical strategy for cisplatin-
induced hearing loss is risky and many times ineffective,
most likely because of the multiple physiological roles of
ROS (discussed below, see ‘‘Anti-Oxidants’’ Section). On the
other hand, cisplatin is able to induce endoplasmic reticulum
stress in association with the unfolded-protein response (UPR;
Mandic et al., 2003; Liu and Baliga, 2005; Yu et al.,
2008), and UPR-triggered inflammation is now thought to be
fundamental in the pathogenesis of several diseases (Zhang and
Kaufman, 2008). Cisplatin is also known to induce apoptosis
in proliferating cells by damaging the DNA through the
formation of adducts (between different strands) and cross-
links (in the same strand). However, DNA damage could
be less critical in cochlear hair cells, since they do not
proliferate.

Using a proteomic approach in HeLa cells, it was
demonstrated that cisplatin is able to change the expression
of nuclear proteins as well as to induce alternative splicing
(Wu et al., 2010; Zhang G. et al., 2012). Importantly, one of
the proteins identified as changing its expression pattern was
the pro-resolution mediator ANXA1, which was found to
significantly increase its expression after cisplatin exposure.
Moreover, it was shown that ANXA1 knockdown significantly
increased cisplatin-induced DNA damage (Zhang G. et al.,
2012), a response consistent with the up-regulation of ANXA1 in
the cisplatin-resistant cell line CNE2-CDDP (Chow et al., 2009).
These results suggest that ANXA1-based pharmacological
strategies could protect against cisplatin-induced cell damage.

Aminoglycoside Antibiotics
Aminoglycosides are one of the most frequently employed
antibiotics in the clinic. In addition to their potent bactericidal
activities, aminoglycosides possess less bacterial resistance, more
post-antibiotic effects and, perhaps most important, they are
inexpensive. However, they have serious side effects, including
nephrotoxicity and irreversible hearing loss (Forge and Schacht,
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2000). Although these drugs are most frequently used in Third-
World countries, where they usually are the only economically
affordable antibiotics, their toxicity is also a problem in
industrialized countries where they are not only used by the
poorer segments of the society, but also in the treatment of
cystic fibrosis (Prayle et al., 2016), in renal dialysis (Sowinski
et al., 2008), and in emergencies. TheWorld Health Organization
recommends the use of aminoglycosides as part of the treatment
against multidrug resistant tuberculosis (WHO, 2005).

It is generally accepted that, in vivo, aminoglycosides
predominantly cross the BLB into the stria vascularis and, from
there via marginal cells, into the endolymph (Li and Steyger,
2011). Once in the endolymph, these drugs would rapidly enter
cochlear hair cells via mechanoelectrical transduction channels
located on the stereocilia hair bundle, at their apical pole, and
induce hair cell death (Marcotti et al., 2005; Alharazneh et al.,
2011; Li and Steyger, 2011). Importantly, recent results suggest
that inflammation boosts BLB permeability to aminoglycoside
antibiotics, increasing the probability of drug-induced hearing
loss (Koo et al., 2015). A number of studies in animal models,
supported by studies in vitro, have established that ROS
participate in the etiology of aminoglycoside-induced hearing
loss (Forge and Schacht, 2000). From a clinical perspective, the
more appealing result in support of this idea is the significant
attenuation of gentamicin ototoxicity in humans by concurrent
administration of aspirin detected in prospective, randomized,
double-blind trials (Chen et al., 2007; Behnoud et al., 2009).

Another agent with recognized protective effects against
aminoglycosides ototoxicity is the IGF1, a protein known to
control cell proliferation, differentiation and apoptosis in various
tissues and organs (Varela-Nieto et al., 2007). IGF1 is able to
induce supporting cells in the mammalian organ of Corti to
release the pro-resolution mediator netrin-1, which binds to one
of its receptors (UNC5B) expressed on sensory hair cells and
inhibits aminoglycoside-provoked apoptosis (Yamahara et al.,
2017). Importantly, the efficacy of IGF1 in treating idiopathic
sudden sensorineural hearing loss in humans has been confirmed
in clinical trials (Nakagawa et al., 2010, 2014).

Based on the aforementioned studies, it is apparent that
aminoglycoside-induced toxicity involves high oxidative
stress and associated pathological signaling mechanisms like
modulation of pro- and anti-apoptotic cell responses (Jiang et al.,
2005). Thus, agents having strong antioxidant properties may
have the ability to halt aminoglycosides’ toxicity. However, as
we discuss below, the use of anti-oxidants is a double-edge
sword because ROS are important signaling molecules
and intermediaries in triggering specific anti-inflammatory
responses. The efficacy of aspirin and netrin-1, on the
other hand, suggest that pro-resolving therapies could be
the answer to prevention and/or amelioration of aminoglycoside
ototoxicity.

Resolution of Inflammation and
Noise-Related Hearing Loss
Although noise-related hearing loss (NRHL) remains associated
with oxidative stress (Haase and Prasad, 2016), strong evidence

suggest that inflammation is also a major contributor to
this disorder. Several studies have demonstrated inflammatory
responses in the cochlea following exposure to traumatic noise
involving up-regulation of pro-inflammatory mediators and
rapid recruitment of inflammatory cells from the vascular
system (Derebery, 1996; Hirose et al., 2005; Fujioka et al., 2006;
Tornabene et al., 2006; Tan et al., 2008; Wakabayashi et al.,
2010). Within mere hours following acoustic overstimulation,
leukocytes from the lateral wall and spiral limbus infiltrate the
SV and the ST (Hirose et al., 2005; Sautter et al., 2006; Tornabene
et al., 2006; Wakabayashi et al., 2010; Du et al., 2011), the SV side
of the Reissner’s membrane (Sautter et al., 2006), and the ST side
of the basilarmembrane (Tornabene et al., 2006; Yang et al., 2015;
Figure 8); importantly, no phagocytic cells are usually found in
the SM (Hirose et al., 2005; Sautter et al., 2006; Tornabene et al.,
2006; Miyao et al., 2008; Du et al., 2011).

Several inflammation-related genes and proteins have been
implicated in the cochlear response to noise (Fujioka et al.,
2006; Kirkegaard et al., 2006; Tornabene et al., 2006; Shi
and Nuttall, 2007; Yamamoto et al., 2009; Wakabayashi et al.,
2010; Gratton et al., 2011; Nakamoto et al., 2012), yet the
precise molecular mechanisms and the role of inflammation in
the development of cochlear injury remain to be elucidated.
One recent study reports an early increased expression and
a latter peak of pro-inflammatory mediators in mice exposed
to acute traumatic noise (Tan et al., 2016). The first peak
was associated by the authors with the recruitment of
inflammatory cells into the cochlea, whereas the second was
related to reparative processes in response to cochlear damage.
Chronic environmental noise exposure has also been linked
to inflammatory processes in the cochlea (Tan et al., 2016).
Interestingly, it was recently reported that a variable number
of OHCs die immediately after exposure, while IHCs initially
die in much smaller numbers but their death is spread
out over days to months after noise exposure. Sometimes,
noise damages supporting cells before sensory hair cells, and
they may continue to degenerate for months after noise
exposure (Bohne et al., 2017). It has been proposed that this
delayed death of auditory cells is associated with inflammatory
responses.

Since NRHL is frequently a predictable form of hearing
loss, prevention through therapeutic intervention is feasible,
and reduction or fast resolution of inflammation has the
potential to be effective. The TNF-α inhibitor etanercept has
been shown to reduce noise-induced threshold shifts in animals
(Wang et al., 2003). Similarly, it was found that an anti-IL-6-
receptor antibody protected mice from NRHL (Wakabayashi
et al., 2010). The anti-inflammatory and pro-resolution
glucocorticoid dexamethasone (DEXA), delivered to the round
window membrane, has also been shown to reduce hearing loss
in patients after noise exposure (Zhou et al., 2013; Harrop-Jones
et al., 2016).

Recent animal experiments have shown that noise exposure
can lead to the degeneration of specific subsets of the nerve
terminals in the ear without affecting thresholds (Kujawa and
Liberman, 2009). This loss in synaptic ribbons, which could be
the primary initial event in the degenerative cascade observed
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after noise, has been termed cochlear synaptopathy (Hickox et al.,
2017; Liberman and Kujawa, 2017). Importantly, in addition to
noise exposure, cochlear synaptopathy has also been associated
with both aging (Sergeyenko et al., 2013; Altschuler et al., 2015;
Möhrle et al., 2016) and the administration of ototoxic drugs
(Bourien et al., 2014; Li et al., 2016). The confirmation of the
presence of synaptopathy in human populations, and its potential
association with inflammatory mechanisms, is currently under
investigation (Hickox et al., 2017).

Resolution of Inflammation and
Age-Related Hearing Loss
Although ARHL (aka presbycusis) is the most common form of
hearing loss in adults, their cellular and molecular mechanisms
are still poorly understood (Huang and Tang, 2010). ARHL is
variably expressed, with large differences in hearing threshold
levels and hearing disability between individuals (Davis, 1989). It
is currently accepted that this variability is due to a combination
of environmental and genetic factors (Uchida et al., 2011), further
complicated by association with other forms of age-related
morbidity including cardiovascular diseases (Hutchinson et al.,
2010; Karpa et al., 2010), and dementia (Lin et al., 2011).

Another key contributor to several age-related diseases,
including ARHL, is the state of chronic inflammation in the
elderly known as ‘‘inflammaging’’ (Capri et al., 2006; Hunt et al.,
2010; Leng et al., 2011; Baylis et al., 2013; Verschuur et al., 2014).
Inflammaging is a consequence of immune-senescence, the aging
of the immune system (Capri et al., 2006; Hunt et al., 2010).
A potential link with inflammaging may be very important for
ARHL, providing new approaches to prevent the development of
this condition.

As a matter of fact, ARHL severity has already been linked
to some factors associated with inflammation and inflammaging
(Gates et al., 1993; Gates and Mills, 2005; Frisina et al., 2006;
Verschuur et al., 2014). For instance, it has been shown that
spiral ganglion cell damage can be caused by changes in the
immune system (Iwai et al., 2003, 2008), while vascular and
metabolic changes may affect the stria vascularis and, indirectly,
cause inflammatory damage (Saitoh et al., 1995; Ohlemiller,
2009; Fetoni et al., 2011). In a clinical trial an association was
found between serum immunoglobulin G and hearing loss in
individuals over 60 years of age (Lasisi et al., 2011). Thus, there
is a high probability that inflammation and inflammaging could
play a role in ARHL.

Studies in a mouse model of age-related sensory cell
degeneration showed four major findings (Frye et al., 2017).
First, it is mature, fully differentiated tissue macrophages that
are the major type of macrophage populations responsible for
the cochlear immune response in ARHL, and newly infiltrated
monocytes are rare. Second, the mature tissue macrophages
display a site-dependent change in their morphology and
numbers and these changes are related to the dynamic
progression of sensory cell degeneration. Third, apical and
basal macrophages display different phenotypes under steady
state conditions and have different response patterns to sensory
cell degeneration. Finally, mature tissue macrophages are a
sensitive internal sensor for early sensory cell degeneration.

Together, these results suggest that the macrophage-mediated
immune response is an integral part of the cochlear response
to age-related chronic sensory cell degeneration (Frye et al.,
2017), and suggest that pro-resolution therapeutic intervention
targeting macrophages could be important for ameliorating
ARHL.

Importantly, a 3-year double-blind, randomized controlled
trial, aimed at determining whether aspirin slows development or
progression of ARHL, is currently being conducted in Australia
(Lowthian et al., 2016).

CURRENT AND POTENTIAL NEW
CLINICAL STRATEGIES

Glucocorticoids
The glucocorticoid DEXA has been shown to protect auditory
hair cells against inflammatory cytokines by activating cell
survival pathways (Haake et al., 2009). In addition, DEXA would
be able to suppress drug toxicity associated with the production
of free radicals by up-regulating antioxidant enzyme activity
(Himeno et al., 2002; Paksoy et al., 2011). It was suggested that a
single intratympanic injection of a DEXA solution administered
immediately prior to cisplatin treatment had an otoprotective
effect in rats (Daldal et al., 2007), and repeated intratympanic
injections provided significant otoprotection when initially
administered at the time of cisplatin treatment (Hill et al., 2008).
In the clinic, however, inconsistent responses are commonly
observed due to variable and limited exposure with aqueous
solutions (Bird et al., 2007, 2011). Since DEXA is cleared
rapidly from the middle ear down the Eustachian tube, it
was suggested that a better clinical efficacy could be achieved
by maintaining therapeutic drug levels for prolonged periods
of time (Fernandez et al., 2016). It was recently reported
that using a hydrogel containing DEXA (OTO-104) facilitates
the presence of DEXA at therapeutic levels in the inner
ear compartment for weeks to months in guinea pigs and
sheep (Wang et al., 2009; Piu et al., 2011), and that a single
intratympanic injection of 6% OTO-104 almost completely
protected guinea pigs from cisplatin ototoxicity (Fernandez et al.,
2016).

As noted before, DEXA is known to work, at least in
part, through the stimulation of synthesis and release of the
pro-resolutionmediator ANXA1. Thus, pharmacologic strategies
based on ANXA1 or its synthetic peptides could be as effective as
DEXA without its negative side effects.

Anti-Oxidants
Oxidative stress, a condition characterized by intracellular levels
of ROS that impair the work of lipids, proteins and DNA,
has been linked to many inner ear pathologies. Therefore,
the use of anti-oxidants to diminish ROS levels appears as a
no-brainer clinical strategy to protect the auditory function.
However, ROS also work as mediators of many important
physiological functions in a process termed redox biology
(D’Autréaux and Toledano, 2007; Finkel, 2011; Schieber and
Chandel, 2014). For example, mammalian cells respond to
ROS by activating metabolic pathways that either provide
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cell stress protection or trigger cell apoptosis as a clearance
mechanism for damaged tissues (Chen et al., 2009; Schieber
and Chandel, 2014). Thus, ROS have two faces: redox biology,
where ROS activate signaling pathways to initiate physiological
processes, and oxidative stress where excessive amounts of
intracellular ROS may lead to cell damage or death (Finkel,
2011; Schieber and Chandel, 2014). A critical point is that
‘‘low’’, ‘‘right’’, or ‘‘excessive’’ levels of ROS are not only cell-
and tissue-dependent, but they are also associated with the
physiological condition of the whole organism at the time
of the pharmacological intervention. For instance, the balance
between ROS and antioxidant defenses change during the
reproductive process in mammals, with the high ROS levels
required for appropriate fertilization, embryonic implantation,
embryogenesis and placental development (Al-Gubory et al.,
2010; Leghi and Muhlhausler, 2016) decreasing later on to
diminish the risk of pregnancy disorders, including first trimester
miscarriage (Jenkins et al., 2004), preeclampsia (D’Souza et al.,
2016) and intrauterine growth restriction (Scifres and Nelson,
2009), associated with the excessive formation of reactive free
radicals. In inflammation, significant evidence suggest that ROS
are essential second messengers in innate and adaptive immune
cells (West et al., 2011; Kamínski et al., 2013), but high levels
of ROS aggravate inflammatory responses, resulting in tissue
damage and different pathologies (Mittal et al., 2014). Therefore,
while excessive levels of ROS are often directly responsible
for cell death, their complete neutralization with antioxidant
agents may be counterproductive by preventing the activation
of natural cell defense mechanisms (Schieber and Chandel,
2014).

The association of ROS to cell and tissue protection
mechanisms, such as optimal pathogen clearance, suggest that
antioxidants should not be administered in healthy individuals
that have a robust anti-oxidant defense and a healthy immune
system. In addition, the timing of antioxidant treatment is
crucial. This is certainly the case with patients in the intensive
care unit, with multiple clinical trials consistently showing no
efficacy or even increasing mortality in patients with critical
illness that have been treated with antioxidants (Szakmany
et al., 2012). Moreover, since different immune cell’s subsets
seems to have differential responses to ROS, it might be
beneficial in the amelioration of cisplatin effects to increase
a particular subset of T cells or macrophages by either
increasing or decreasing ROS levels (Schieber and Chandel,
2014).

Aspirin
As already mentioned aspirin is a unique drug with, among
others, anti-inflammatory, pro-resolution and anti-oxidant
properties. Importantly, aspirin can work in combination
with other drugs inducing a synergic effect. For example, it
has been shown that aspirin has the potential to reduce the
severity of cisplatin-induced side effects related to hearing
and balance, by inducing several anti-inflammatory cytokines
(Grilli et al., 1996; Yin et al., 1998). Thus, a combination of
cisplatin and aspirin is an attractive strategy for managing
solid tumors whilst protecting the auditory system. However,

major obstacles in administering free-drug formulations
include the definitive exposure to the targets of interest,
individual pharmacokinetics and bio-distribution parameters.
These factors are extremely difficult to control when drugs
are individually administered. Recently, single pro-drugs
containing a drug combination that can potentially overcome
these challenges have been generated (Pathak et al., 2014). It
is expected that a cisplatin + aspirin treatment in the form
of a single pro-drug might increase efficiency and reduce
ototoxic side effects of chemotherapy. A similar approach
could be valid for reducing aminoglycosides ototoxicity, since
aspirin is the only drug to date that has showed beneficial
effect in clinical trials (Sha et al., 2006; Behnoud et al.,
2009).

Adenosine
A role for adenosine in auditory function was suggested by
experiments in frogs several decades ago (Bryant et al., 1987).
Subsequent studies in chinchilla cochleae provided evidence
that administration to rats of R-phenylisopropyladenosine (R-
PIA), an agonist of the purinergic adenosine receptor A1AR,
increased the activity of antioxidant enzymes and reduced
lipid peroxidation (Ford et al., 1997a), while cisplatin exposure
significantly increases the expression of adenosine receptors
(Ford et al., 1997b). Studies in rats have also shown that
RPIA protects cochlear explants from damage induced by
cisplatin and noise (Hu et al., 1997; Hight et al., 2003).
A potential role for adenosine in cochlear protection has
been substantiated by more recent studies. For example,
it has been shown that administration of adenosine amine
congeners (ADAC) protect against noise-induced hearing loss
(Vlajkovic et al., 2010), and elevation of adenosine levels
protect against ARHL by inhibition of adenosine kinase
(Vlajkovic et al., 2011). Furthermore, experimental results
suggest that A1AR ameliorates cisplatin ototoxicity by inhibiting
the NOX3/STAT1-mediated inflammatory pathway (Kaur et al.,
2016).

Thus, drugs that increase the concentration of endogenous
adenosine or directly activate adenosine receptors could play
a pivotal role in the protection of the organ of Corti against
cisplatin cytotoxicity. Once more, mediators of inflammatory
resolution could serve as ideal targets for otoprotective therapies.

CONCLUDING REMARKS

Decades of intensive research have not delivered successful
clinical strategies for preventing or ameliorating DRHL, NRHL
or ARHL. Currently there is not a single specific, FDA-approved
otoprotective agent. In addition, the most common therapeutic
approaches, glucocorticoid and antioxidants, produce
inconsistent results. Thus, we feel that an alternative research
paradigm is absolutely needed to break the stalemate.

The typical research approach has been, and still is, to
look for prevention of cell damage induced by the toxic
agents under investigation. Although this approach is reasonable
and absolutely valid, we want to propose an alternative
way: enhance the physiological mechanisms designed for our
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organism for dealing with toxic agents, looking for an accelerated
and improved cell and tissue protection, healing and repair.
Specifically, we propose to select the pro-resolution pathways
associated with the successful termination of inflammatory
responses as a new target for research aimed at preventing or
ameliorating DRHL, NRHL and ARHL. We strongly believe that
improving the resolution of cochlear inflammatory responses
is one way, although most likely not the only one, to
overcome the current impasse in this important area of hearing
research.

Inflammation is a beneficial host reaction aimed at protecting
individuals from infections and tissue injury. Uncontrolled
inflammation, however, is now widely recognized as a common
factor in many diseases and organ dysfunctions, including
DRHL, NRHL and ARHL. Since inflammatory responses are
aimed to eliminate invading organisms and repair injured
tissues, they are naturally self-limited. Resolution, as the last
step in any inflammatory response, is exquisitely regulated, and
it is completed only after any potential for continuous tissue
damage has been conquered. Thus, improving the resolution
phase of inflammatory responses in the inner ear may naturally
result in cell protection, tissue healing and repair, therefore
contributing to the prevention or amelioration of auditory
dysfunctions.

The success of the proposed approach is heavily dependent on
the full understanding of resolution biology and the expression
and function of pro-resolution mediators and receptors in
the mammalian cochlea. Unfortunately, the current number of
studies on this topic in the inner ear is clearly insufficient.
Therefore, we consider imperative to accelerate the identification

of all pro-resolution pathways at work in the cochlea. Next,
their specific functions should be explored to understand how
to enhance, safely and rapidly, the resolution of inflammatory
responses in the inner ear. Of course, we are not proposing
to eliminate any of the current research strategies, since it
is unlikely that any single approach will be the magic bullet
for all non-resolving, chronic inflammatory and autoimmune
diseases. Most likely combinatorial pro-resolving therapies also
including, perhaps, dietary w-3 and w-6 essential fatty acids
and inhibitors of specific pro-inflammatory agents and their
receptors, would be necessary to obtain significant effects.
Regardless, we are convinced that the elucidation of the
mechanisms of pharmacological modulation of the resolution
process would be crucial to finding the most effective therapeutic
agents for preventing or ameliorating DRHL, NRHL and ARHL.
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