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The link between the anti-Parkinsonian drug L-3,4-dihydroxyphenylalanine (L-DOPA)
and the serotonergic (5-HT) system has been long established and has received
increased attention during the last decade. Most studies have focused on the fact that
L-DOPA can be transformed into dopamine (DA) and released from 5-HT terminals,
which is especially important for the management of L-DOPA-induced dyskinesia. In
patients, treatment using L-DOPA also impacts 5-HT neurotransmission; however, few
studies have investigated the mechanisms of this effect. The purpose of this review is
to summarize the electrophysiological and neurochemical data concerning the effects
of L-DOPA on 5-HT cell function. This review will argue that L-DOPA disrupts the link
between the electrical activity of 5-HT neurons and 5-HT release as well as that between
5-HT release and extracellular 5-HT levels. These effects are caused by the actions
of L-DOPA and DA in 5-HT neurons, which affect 5-HT neurotransmission from the
biosynthesis of 5-HT to the impairment of the 5-HT transporter. The interaction between
L-DOPA and 5-HT transmission is especially relevant in those Parkinson’s disease (PD)
patients that suffer dyskinesia, comorbid anxiety or depression, since the efficacy of
antidepressants or 5-HT compounds may be affected.

Keywords: serotonin, dopamine, electrophysiology, intracerebral microdialysis, depression, dyskinesia,
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor symptoms
such as bradykinesia, rigidity, resting tremor, postural abnormalities and gait deficits. However,
most patients also develop additional non-motor symptoms, such as anxiety, depression, fatigue,
apathy, mild cognitive disturbances and dementia (Bastide et al., 2015). The disease is no longer
seen as a specific consequence of dopaminergic (DA) neurodegeneration, since other neuronal
systems, such as the noradrenergic and serotonergic (5-HT) systems, also suffer alterations in
the course of the disease (Jenner et al., 1983; Delaville et al., 2011). The 5-HT system is involved

Abbreviations: 5-HT, serotonin; 5-HTTP, 5-hydroxytryptophan; 5-HIAAL, 5-hydroxyindole acetaldehyde;
AADC, amino acid decarboxylase; DA, dopamine; DRN, dorsal raphe nucleus; HIPP, hippocampus; L-DOPA,
L-3,4-dihydroxyphenylalanine; MAO, monoamine oxidase; PD, Parkinson’s disease; PFC, prefrontal cortex;
SERT, serotonin transporter; SNr, substantia nigra reticulate; SSRI, selective serotonin reuptake inhibitors;
STR, striatum; VMAT2, monoamine vesicular transporter.
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in some PD pathological clinical manifestations as well as in
some side effects induced by long-term treatment using L-3,4-
dihydroxyphenylalanine (L-DOPA), such as L-DOPA-induced
dyskinesia (Scholtissen et al., 2006a,b; Haduch et al., 2016). It has
been suggested that 5-HT neurons are mainly responsible for the
increase in DA release induced by chronic L-DOPA treatment
in the striatum (Carta et al., 2007, 2008). However, the motor
improvements or side effects produced by low doses of L-DOPA
(3–6 mg/kg) cannot be explained only by what happens in the
striatum since those doses fail to produce physiological levels
of DA in that nucleus (Navailles et al., 2010b, 2011; Nevalainen
et al., 2011; Porras et al., 2014; De Deurwaerdère et al., 2017).
Indeed, L-DOPA may act through other mechanisms (Misu
et al., 1996; Porras et al., 2014; De Deurwaerdère et al., 2017)
or modify DA transmission in other brain regions to a greater
extent than in the striatum (Navailles and De Deurwaerdère,
2012b). However, despite the evidence that L-DOPA alters the
5-HT system (Navailles and De Deurwaerdère, 2012a), and
that 5-HT receptor agonists can produce therapeutic benefit
in L-DOPA-induced dyskinesia and psychosis, the impact of
L-DOPA on 5-HT neurotransmission has been poorly studied
(De Deurwaerdère et al., 2017).

The purpose of this mini-review is to assess the experimental
data highlighting the complex effects of L-DOPA on 5-HT
extracellular levels and ultimately on 5-HT transmission.

SEROTONERGIC NEURONS MEDIATE
L-DOPA-DERIVED DA RELEASE

L-DOPA can be taken up by virtually all cells in the brain
and decarboxylated into DA in cells expressing amino acid
decarboxylase (AADC) and other types of decarboxylase such
as histidine decarboxylase (De Deurwaerdère et al., 2017). The
reason why 5-HT neurons differ from other cell types expressing
AADC is that in 5-HT neurons newly synthesized DA can
directly compete with 5-HT for inclusion in exocytotic vesicles
via the vesicular monoamine transporter VMAT2 (Lohoff, 2010;
De Deurwaerdère et al., 2017). L-DOPA-induced DA is thereby
concentrated in 5-HT vesicles, probably at the expense of
endogenous 5-HT (see below), and is released by 5-HT neurons
in well-innervated areas of the whole brain (Navailles et al.,
2010b). However, 5-HT cells lack the mechanisms to control
DA release, as 5-HT1A and 5-HT1B autoreceptors and 5-HT
transporters (SERT) do not detect extracellular DA. Several
microdialysis studies show that L-DOPA, at 12 mg/kg and
higher doses, induces excessive DA release (Abercrombie et al.,
1990; Kannari et al., 2000; Navailles et al., 2010b). However,
the amount of released DA may have been overestimated in
animal models of PD, as there are no clearance mechanisms and
consequently extracellular L-DOPA-derived DA is detected by
probes in significant quantities (Miller and Abercrombie, 1999).
In fact, the real levels of extracellular DA in the striatum are
probably much lower than those measured, given the low density
of 5-HT terminals in the striatum (De Deurwaerdère et al.,
2017).

In general, 5-HT neurons have the required
enzymatic/transporter equipment to transform L-DOPA

into DA and release it. However, 5-HT neurons lack the
proper autoregulatory mechanisms to control DA release and
clearance, which can cause excessive DA levels in several brain
regions.

EFFECT OF L-DOPA ON THE ELECTRICAL
ACTIVITY OF 5-HT NEURONS

Several studies suggest that L-DOPA could modify the activity
of 5-HT neurons. First, DA agonists increase dorsal raphe
nucleus (DRN) activity in control animals (Martín-Ruiz et al.,
2001); second, DA neurons degeneration unevenly alters the
electrophysiological characteristic of DRN neurons (Zhang et al.,
2007; Guiard et al., 2008; Kaya et al., 2008; Wang et al., 2009;
Prinz et al., 2013) and third, DA and 5-HT release from 5-HT
cell bodies and terminals may also impact 5-HT system activity.
A computational study has modeled the latter impact, which
predicts that L-DOPA administration will decrease 5-HT release
in the DRN and subsequently increase DRN neuron firing rate
(Reed et al., 2012).

Patch clamp recordings performed in brain slices from
control animals with intact DA innervation demonstrated
that acute L-DOPA depresses 5-HT1A receptor-mediated
transmission in the DRN (Gantz et al., 2015) and discretely
increases the basal firing activity of 5-HT neurons (Prinz
et al., 2013). On the other hand, in a study performed in
anesthetized rats, systemic administration of therapeutic doses
of L-DOPA did not modify DRN activity (Miguelez et al.,
2013).

In animal models of PD, neither acute nor chronic systemic
administration of L-DOPA altered the neuronal activity of
DRN cells (Miguelez et al., 2016a,b). In vitro, L-DOPA partially
reversed the changes in excitability observed in Parkinsonian
mice (Prinz et al., 2013).

In conclusion, the effect of L-DOPA on DRN neuron activity
seems non-existent or discrete, suggesting that the interaction
between the 5-HT system and L-DOPA may be more relevant
at the terminal rather than the somatic level.

EFFECT OF L-DOPA ON 5-HT
EXTRACELLULAR LEVELS

As discussed above, L-DOPA-derived DA competes with 5-HT
to enter exocytotic vesicles at 5-HT terminals, which likely leads
to an inhibition of 5-HT release. However, this hypothesis has
not been fully supported by in vitro and in vivo data, which
suggests that the effects of L-DOPA on extracellular 5-HT levels
are more complex than previously thought. Indeed, when applied
locally, L-DOPA enhances the 5-HT efflux (Biggs and Starr,
1999) while when administered systemically, it either does not
alter or reduces 5-HT extracellular levels (Lindgren et al., 2010;
Navailles et al., 2010a, 2014; Navailles and De Deurwaerdère,
2012a). Furthermore, L-DOPA’s effects on extracellular 5-HT
levels are not similar in all regions innervated by the DRN
including no effect (striatum), inhibition (substantia nigra
and cortex) and biphasic excitation/inhibition (hippocampus;
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FIGURE 1 | Region-dependent effects of L-3,4-dihydroxyphenylalanine
(L-DOPA) on serotonin (5-HT) extracellular levels in some brain regions.
L-DOPA acts at the level of 5-HT cell bodies in the dorsal raphe nucleus (DRN)
and 5-HT terminals in the brain including the prefrontal cortex, the
hippocampus, the striatum or the substantia nigra pars reticulate. While
L-DOPA triggers an increase in dopamine (DA) release in all regions, it inhibits
5-HT release in the substantia nigra reticulata, the prefrontal cortex and
presumably in the DRN, induces biphasic effects (∆) in the hippocampus and
merely affects 5-HT release in the striatum. The changes in DA and 5-HT
extracellular levels occur without any modification of 5-HT neuron activity.
HIPP, hippocampus; PFC, prefrontal cortex; STR, striatum; SNr, substantia
nigra reticulate.

Navailles et al., 2011; Navailles and De Deurwaerdère, 2012b;
Figure 1).

In accordance with the idea that newly synthesized DA
displaces 5-HT inside exocytotic vesicles, several publications
show that acute administration of L-DOPA reduces 5-HT
tissue content, which mainly represents 5-HT stored in
vesicle compartments, or its metabolite 5-hydroxyindolacetic
acid (Eskow Jaunarajs et al., 2012; Miguelez et al., 2016b).
Nonetheless, some discrepancies exist which could depend
on the doses used of L-DOPA or AADC inhibitor, or
the time of sacrifice after L-DOPA administration. After
chronic administration of L-DOPA (12 mg/kg), L-DOPA
further inhibited extracellular 5-HT levels in the hippocampus
(amplified the inhibitory component of the biphasic effect)
and substantia nigra, while its effect was unchanged in the
cortex and the striatum (Navailles et al., 2011). In control and
Parkinsonian monkeys, the acute administration of L-DOPA
reduces 5-HT tissue levels in the striatum and motor cortex.
In contrast, chronic L-DOPA treatment reduced 5-HT levels
in the striatum, hippocampus or amygdala of Parkinsonian but
not control monkeys (Engeln et al., 2015). In Parkinsonian rats,
chronic treatment using 6 mg/kg of L-DOPA reduces 5-HT
content in a region-dependent manner (Stansley and Yamamoto,
2014, 2015a).

In summary, although local administration of L-DOPA may
increase 5-HT levels, systemic administration reduces it in
several brain regions without modifying DRN neuron activity
and modestly reducing 5-HT extracellular levels.

THE ROLE OF NON-EXOCYTOTIC
MECHANISMS IN THE EFFECT OF L-DOPA

As anticipated as early as 1970 (Ng et al., 1970), apart
from exocytotic release, L-DOPA also triggers non-exocytotic
(non-vesicular) efflux of 5-HT and DA. Indeed, supra-
therapeutic dose [100 mg/kg (De Deurwaerdère et al., 2017)] of
L-DOPA transiently enhances 5-HT release. A Ca2+ free medium
magnified this effect and unmasked excitation of 5-HT release
induced by a therapeutic dose (12 mg/kg) of L-DOPA (Miguelez
et al., 2016b). In addition, blockade of action potential-dependent
presynaptic release or Ca2+ removal in the perfusion solution
does not suppress L-DOPA-induced DA release (Miller and
Abercrombie, 1999; Lindgren et al., 2010; Miguelez et al., 2016b).

The mechanism underlying the non-exocytotic release of
neurotransmitters is still unclear. It may also require 5-HT
neurons (Tanaka et al., 1999; Navailles et al., 2010b) and the
involvement of one or several transporters, but the effect also

FIGURE 2 | Competition between L-DOPA-derived dopamine (DA) and
serotonin (5-HT) inside 5-HT neurons. L-DOPA competes with 5-HTP for
AADC to synthesize DA and 5-HT, respectively. DA competes with 5-HT in
terms of VMAT2-mediated packaging of exocytotic vesicles. In consequence,
intracellular 5-HT levels can transiently rise and 5-HT can exit the neuron via
SERT in a non-exocytotic manner. This 5-HT output can only be observed
under specific conditions, as L-DOPA-derived DA can also alter the function of
SERT. First, extracellular DA can undergo reuptake by SERT, reducing the
5-HT flow through this transporter. Second, intracellular DA can also enter the
neuron through the SERT, impairing the output of 5-HT. In the cytoplasm, MAO
can more efficiently degrade DA than 5-HT, increasing oxidative metabolism
and aldehyde derivates. These biochemical events occur with no modification
of the firing rate of 5-HT neurons. AADC, amino acid decarboxylase, L-DOPA,
3,4-Dihydroxyphenylacetaldehyde; MAO, monoamine oxidase; SERT,
serotonin transporter; VMAT2, monoamine vesicular transporter; 5-HIAAL,
5-hydroxyindole acetaldehyde; 5-HTP, 5-hydroxytryptophan.
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shows region dependency. Indeed, SERT blockade by citalopram
significantly reduced peripheral L-DOPA-induced DA release in
the hippocampus but not in the prefrontal cortex (PFC; Miguelez
et al., 2016b; Figure 2).

The participation of a non-vesicular release of both DA
and 5-HT in different brain regions may contribute to the
heterogeneous effect of L-DOPA on these neurotransmitters.
The whole biochemical picture appears to be particularly
complicated for 5-HT as it is displaced by DA in exocytotic
vesicles, trapped in the neuron by its reduced ability to exit
via the SERT, and is perhaps more available to degradation
by monoamine oxidase (Figure 2; Stansley and Yamamoto,
2014). Moreover, the metabolism of both DA and 5-HT
could have detrimental effects on the survival of groups of
5-HT neurons (Navailles et al., 2011; Stansley and Yamamoto,
2015a). Indeed, L-DOPA can promote oxidative stress and
generate free radicals or toxic compounds. Therefore, L-DOPA-
derived DA can be metabolized into pro-oxidant quinones,
3,4-dihydroxyphenyacetic acid or hydrogen peroxide and
produce cell death in the DRN (Stansley and Yamamoto, 2015b).

To sum up, in vitro experiments and mathematical models
predict L-DOPA function in 5-HT terminals (Reed et al., 2012)
but none of these models fully describe the region dependency
and the complex modalities of release induced by L-DOPA
in vivo.

ALTERED REACTIVITY OF 5-HT NEURONS
IN THE PRESENCE OF L-DOPA

After chronic treatment using L-DOPA and/or DA denervation,
the inhibitory control exerted by 5-HT1A receptors over the
electrical activity of 5-HT neurons is maintained (Miguelez et al.,
2016a). In these conditions, 5-HT1A receptor agonists completely
inhibit DRN neuron activity and diminish L-DOPA-induced DA
release at the terminal sites (Kannari et al., 2001; Iderberg et al.,
2015). However, while the firing rate is completely suppressed,
DA release still occurs. This result is compatible with the evidence
that some mechanisms related to DA release are independent of
the electrical activity of 5-HT neurons. The control exerted by
5-HT1B receptors at the terminals might not be fully functional
by itself because the stimulation of these receptors alone does not
reduce L-DOPA-stimulated striatal DA release (Kannari et al.,
2001) but ameliorates dyskinesia when co-administered together
with 5-HT1A agonists (Muñoz et al., 2009). The activation of
other 5-HT receptors can also modulate L-DOPA-stimulated DA
release. In this regard, 5-HT4 receptor stimulation can indirectly
activate the activity of 5-HT neurons (Ge and Barnes, 1996;
Lucas and Debonnel, 2002; Lucas et al., 2005, 2007) and enhance
L-DOPA-induced DA release in the PFC and the substantia
nigra, but not in the hippocampus or the striatum (Navailles
et al., 2015).

In Parkinsonian conditions, SERT density might not be
altered but L-DOPA-derived DA can directly and indirectly
modify SERT function. As reported above, DA can also bind to
SERT and compete with 5-HT for non-exocytotic efflux through
this transporter (Figure 2). The indirect impairment is related to
a possible decrease in 5-HT cellular levels. Indeed, fluoxetine or

citalopram can reduce L-DOPA-stimulated DA release (Yamato
et al., 2001; Navailles et al., 2010b) through a mechanism partly
involving 5-HT1A receptors (Yamato et al., 2001). However, the
efficacy of fluoxetine to inhibit the electrical activity of 5-HT
neurons in the DRN can be reduced by L-DOPA, in line with
a possible inhibitory effect of L-DOPA on extracellular levels of
5-HT (Miguelez et al., 2016a). Behavioral studies support a lower
efficacy of selective serotonin reuptake inhibitors (SSRIs) in the
presence of L-DOPA (Miguelez et al., 2013; Fidalgo et al., 2015).
Because the SERT plays a critical role in the various outcomes of
L-DOPA-induced changes of DA and 5-HT extracellular levels,
its indirect modulation by 5-HT2B receptor ligands can be tested.
Indeed, 5-HT2B receptors can be considered as autoreceptors
involved in the control of SERT activity and their antagonism has
been shown to block outward release induced by the 5-HT/DA
releaser 3,4-methylenedioxymethamphetamine (Gudelsky and
Yamamoto, 2008).

Extracellular levels of 5-HT in the presence of L-DOPA can
be impacted in different ways by: (1) decreased exocytosis, which
non-exocytotic release can compensate for to a limited extent;
(2) the loss of extracellular clearance by the SERT (competition
with DA); and (3) the loss of other clearance mechanisms such
as the noradrenaline transporter (Navailles et al., 2014). On the
basis of the described data, it seems that extracellular levels of
5-HT are almost impossible to control in a context where all these
factors are region dependent. For instance, the inhibition of levels
of extracellular 5-HT induced by the high frequency stimulation
of the subthalamic nucleus was attenuated by the presence
of L-DOPA (technically an increase compared with what was
expected), while L-DOPA-stimulated DA extracellular levels
were partly decreased (Navailles et al., 2010a). L-DOPA disrupts
the control of extracellular 5-HT levels, and the biological
function of this phenomenon remains completely unknown.

In summary, the release of L-DOPA-derived DA from 5-HT
neurons is a complicated mechanism involving 5-HT receptors
and transporters in a region-dependent manner.

FROM THE NEUROCHEMISTRY TO THE
CLINIC

The side effects induced by L-DOPA are usually interpreted as
a consequence of the modification of L-DOPA-stimulated
DA release from 5-HT neurons involving alteration of
5-HT neurotransmission. Although the published results
are heterogeneous, it is accepted that L-DOPA induces adaptive
and/or toxic changes in the 5-HT system that may have
clinical relevance. One study in postmortem tissue described
a positive correlation between SERT binding densities and the
development of dyskinesia (Rylander et al., 2010); however,
subsequent studies in postmortem samples or patients did not
find any correlation between 5-HT or SERT in the striatum
and dyskinesia (Politis et al., 2014; Cheshire et al., 2015). These
discrepant results may be related to the overestimated role of the
striatum in dyskinesia (De Deurwaerdère et al., 2017). Indeed,
several brain regions other than the striatum have been proposed
to participate in dyskinesia. A recent publication showed that
SERT binding was positively correlated with the manifestation
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of dyskinesia in the internal and external parts of the globus
pallidus (Smith et al., 2015). Regarding 5-HT receptors, PD is
marked by the uneven modification of some 5-HT receptor
subtypes in different brain regions. Therefore, Parkinsonian
patients treated using L-DOPA show higher expression of
5-HT1A and 5-HT2C receptors in the cerebral cortex, but not in
other brain regions (Huot et al., 2010, 2012).

The clinical implications of these 5-HT adaptive changes
could underlie the efficacy of drugs acting on 5-HT
neurotransmission to reduce the severity of dyskinesia.
Although in animal models of the disease several drugs
acting on 5-HT1A/1C or 5-HT1B receptors decrease the
expression of L-DOPA-induced dyskinesia (Miguelez et al.,
2013), translational extrapolation to the clinic has been less
positive. So far, only two drugs have been proven to be clinically
efficient in treating dyskinesia. These are eltoprazine, a 5-HT1A/B
receptor agonist (Bomasang-Layno et al., 2015; Svenningsson
et al., 2015), and buspirone, a partial agonist of the 5-HT1A
receptor, which discretely ameliorates dyskinesia (Politis et al.,
2014). In general, 5-HT compounds have been demonstrated to
be less efficacious than expected, probably because the existing
theories about 5-HT and DA interaction, especially in the
striatum, are too simplistic.

Another important clinical aspect to take into account is the
fact that often antidepressants and L-DOPA are administered
together. Commonly used SSRIs enhance 5-HT transmission
in depressed patients; however, in PD the DRN undergoes
degeneration contributing to worse therapeutic control of
depressive symptoms in these patients (Deurwaerdère and Ding,
2016). Preclinical data show a loss of efficacy of SSRIs and
suggest the use of other strategies such as noradrenaline uptake
inhibitors (Miguelez et al., 2013). Unfortunately, the clinical
data are unclear. Some studies suggest that SSRIs are less
efficacious for treating depression in PD and should be used
only as a last choice (Aarsland et al., 2009; Skapinakis et al.,
2010; Liu et al., 2013; Rocha et al., 2013). However, a recent
meta-analysis reports that treatment using SSRIs significantly
improves depression among PD patients (Bomasang-Layno et al.,
2015). Other antidepressants, such as the mixed noradrenaline
and 5-HT uptake inhibitor, venlafaxine, had similar efficacy
as the SSRI paroxetine (Richard et al., 2012; Broen et al.,
2016). However, more studies should be conducted to verify
which antidepressant has a better therapeutic profile when
specifically co-administered with L-DOPA, which is rarely
evaluated.

L-DOPA can also produce psychosis in the advanced stages
of the PD, although less frequency than dyskinesia. The

manifestation of psychosis could depend on an excess of DA
transmission, presumably in cortical areas (De Deurwaerdère
and Di Giovanni, 2017), and drugs that limit the excess
of DA release from 5-HT neurons could be therapeutically
interesting. Therefore, the atypical antipsychotic drugs clozapine,
risperidone and olanzapine that interact with 5-HT1A, 5-HT2A
and 5-HT2C receptors are efficacious even at doses lower than
those classically used in the treatment of schizophrenia. The
5-HT2A inverse agonist primavanserin, recently approved to treat
PD psychosis, has shown discrete therapeutical improvements in
clinical trials although more postmarketing studies are necessary
(Meltzer et al., 2010; Cummings et al., 2014; Divac et al.,
2016). In terms of mechanism of action, it is unclear whether
primavanserin reduces 5-HT tone at 5-HT2A receptors and/or
stabilizes DA transmission.

CONCLUSION

The effects of L-DOPA on both DA and 5-HT extracellular levels
involve 5-HT neurons. These effects are complex and involve
several mechanisms. One of the most surprising outcomes is the
region-dependent effect for both neurotransmitters. Regarding
5-HT levels, there is a disparity between the results from
electrophysiological, biochemical and neurochemical studies.
L-DOPA affects 5-HT neurotransmission in the brain through
the numerous actions of L-DOPA and DA inside 5-HT neurons,
i.e., effects on 5-HT biosynthesis or on 5-HT transporter level
and neuron survival. Importantly, the impact of L-DOPA on
5-HT transmission concerns the therapeutic effects of 5-HT
drugs on L-DOPA-induced dyskinesia, comorbid anxiety and
depression in PD patients.
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