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Synchronous firing among the elements of forming circuits is critical for stabilization
of synapses. Understanding the nature of these local network interactions during
development can inform models of circuit formation. Within cortex, spontaneous activity
changes throughout development. Unlike the adult, early spontaneous activity occurs in
discontinuous population bursts separated by long silent periods, suggesting a high
degree of local synchrony. However, whether the micro-patterning of activity within
early bursts is unique to this early age and specifically tuned for early development
is poorly understood, particularly within the column. To study this we used single-
shank multi-electrode array recordings of spontaneous activity in the visual cortex
of non-anesthetized neonatal mice to quantify single-unit firing rates, and applied
multiple measures of network interaction and synchrony throughout the period of map
formation and immediately after eye-opening. We find that despite co-modulation of
firing rates on a slow time scale (hundreds of ms), the number of coactive neurons,
as well as pair-wise neural spike-rate correlations, are both lower before eye-opening.
In fact, on post-natal days (P)6–9 correlated activity was lower than expected by
chance, suggesting active decorrelation of activity during early bursts. Neurons in
lateral geniculate nucleus developed in an opposite manner, becoming less correlated
after eye-opening. Population coupling, a measure of integration in the local network,
revealed a population of neurons with particularly strong local coupling present at
P6–11, but also an adult-like diversity of coupling at all ages, suggesting that a neuron’s
identity as locally or distally coupled is determined early. The occurrence probabilities of
unique neuronal “words” were largely similar at all ages suggesting that retinal waves
drive adult-like patterns of co-activation. These findings suggest that the bursts of
spontaneous activity during early visual development do not drive hyper-synchronous
activity within columns. Rather, retinal waves provide windows of potential activation
during which neurons are active but poorly correlated, adult-like patterns of correlation
are achieved soon after eye-opening.

Keywords: visual cortex, development, spontaneous activity, synchronization, retinal wave, oscillation,
spindle-burst

INTRODUCTION

Connectivity during development is achieved by synapse formation under the control of molecular
guidance cues, andmodification of these synapses by neural activity (Katz and Shatz, 1996). Activity
influences circuit formation by coordinating firing between pre and post-synaptic neurons (Zhang
and Poo, 2001; Kirkby et al., 2013). Thus, the degree of synchronization is a critical characteristic
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that determines the mechanisms of activity-dependent
development (Butts and Kanold, 2010), but how synchronization
and local network interactions change between critical epochs
of development, for example between early spontaneously
generated activity and later sensory experience, is poorly
understood, particularly within single columns in isocortex.

Two broad models of circuit formation exist. In the
‘‘refinement’’ model, early hyper-connectivity caused by random
synaptogenesis is replaced during a period of refinement with
mature connections (Purves and Lichtman, 1980). In the
‘‘constructionist’’ model, correct connections emerge gradually
without a period of hyper-connectivity (Quartz and Sejnowski,
1997). Thesemodels are not mutually exclusive and can reference
anatomical connectivity as well as functional connectivity. In
the visual system there is clear anatomical and functional
refinement of visuotopic connectivity (Huberman et al.,
2008). The rules guiding formation of columnar connectivity
in cortex, within a single topographic location, are more
poorly understood. One possibility (refinement model) is that
all neurons respond synchronously to low-frequency maps
such as topography before network fractionation into local
microcircuits, such as for orientation or direction selectivity
(White and Fitzpatrick, 2007; Butts and Kanold, 2010).
Such synchronization would be driven by anatomical hyper-
connectivity, but also by circuit properties such as weak
inhibition, excitatory GABAA currents, long channel decay-time,
abundant electrical connectivity, and high neuron excitability
which increase synchronization and reduce the specificity of
neuronal responses (Blankenship and Feller, 2010; Cossart, 2011;
Dehorter et al., 2012). A constructionist perspective would
predict that synchronization emerges gradually and in parallel
with the specialization of neuronal function by cell class and/or
response properties (Erwin and Miller, 1998; Crowley and Katz,
2002).

A substantial body of evidence suggests early cortical
development is governed by a refinement model. The period
of circuit formation is a time of dramatic shift in the patterns
of activity (Khazipov et al., 2013; Ackman and Crair, 2014)
suggesting that early connectivity and function is substantially
different from later development. In particular, early activity
differs from the adult due to the presence of long periods of
network silence and the presence of strong network oscillations
(Luhmann et al., 2016), giving the early cortex the appearance
of extreme synchronization. Acute slices display waves of
synchronized activity during a limited developmental period
(Ben-Ari et al., 1989; Moody and Bosma, 2005; Allène et al.,
2008) that result from unique circuit configurations (Dupont
et al., 2006; Bonifazi et al., 2009). In vivo, early cortical
activity is characterized by bursts of rapid oscillations that
synchronize multi-unit firing (Yang et al., 2009; Brockmann
et al., 2011; Minlebaev et al., 2011). Calcium imaging in vivo
shows hypersynchrony in superficial layers relative to mature
patterns (Golshani et al., 2009; Rochefort et al., 2009; Siegel et al.,
2012).

While these previous studies give an impression of cortical
hyper-synchrony during map formation, they lack cellular
resolution, do not sample the cortical depth and/or lack temporal

resolution to determine spike correlations within a cortical
column. We therefore used multi-electrode array recordings
combined with spike-sorting of units measured throughout
the depth of individual cortical columns to measure columnar
synchronization in the developing visual cortex, a region for
which the primary drivers of developmental activity and their
role in circuit formation are largely known (Huberman et al.,
2008; Ackman and Crair, 2014). During initial circuit formation
(before eye-opening), activity in visual cortex is driven by
spontaneous waves of activity in the retina (Ackman et al.,
2012; Siegel et al., 2012). These are amplified and shaped
into oscillations by the unique properties of thalamic and
cortical circuits (Weliky and Katz, 1999; Hanganu et al., 2006;
Murata and Colonnese, 2016). These early network properties
are replaced by the mature cortical circuit dynamics when
true vision develops around eye-opening (Rochefort et al.,
2011; Colonnese, 2014; Hoy and Niell, 2015; Smith et al.,
2015). We, therefore, examined statistical properties of local
network interaction during the first three post-natal weeks,
when cortical activity patterns are changing most rapidly. We
asked whether: (1) activity driven by retinal waves is indeed
hyper-synchronous relative to post-eye opening, supporting a
refinement model for cortical columnar connections; or whether
(2) this activity is similar to (or even less synchronous than)
post-eye opening. The latter would support a constructionist
model, suggesting that early spontaneous activity does not
consist of synchronous bursts, but rather windows of local
activation allowing adult-like network dynamics to drive the
formation of neural assemblies.

MATERIALS AND METHODS

Animal Care
Animal care and procedures were in accordance with The Guide
for the Care and Use of Laboratory Animals (NIH) and approved
by the Institutional Animal Care and Use Committee at The
George Washington University. Postnatal day (P)0 is the day
of birth. C57BL/6 were obtained from Hilltop Lab Animals
(Scottsdale, PA, USA) as timed pregnant females, and kept in
a designated, temperature and humidity-controlled room on
12/12 light/dark cycle.

In Vivo Electrophysiology
Recording techniques have been previously reported (Shen and
Colonnese, 2016), and are reproduced here for clarity. Carprofen
(20 mg/kg) saline was injected 1 h prior to surgery to reduce
pain and inflammation. Surgical anesthesia was induced with
3% isoflurane vaporized in 100% O2, verified by tail-pinch,
then reduced to 1.5%–3% as needed by monitoring breathing
rate. A vented warming table (36◦C, VetEquip, Livermore,
CA, USA) provided thermoreplacement. For attachment of
the head-fixation apparatus, the scalp was excised to expose
the skull, neck muscles were detached from the occipital
bone, and the membranes were removed from the surface
of the skull. Topical analgesic was applied to the incision of
animals older than P8 (2.5% lidocaine/prilocaine mix, Hi-Tech
Pharmacy Co., Inc., Amityville, NY, USA). Application to
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younger animals was lethal and discontinued. The head-fixation
apparatus was attached to the skull with grip cement (Dentsply,
Milford, DE, USA) over VetbondTM tissue adhesive (3M).
Fixation bar consisted of a custom manufactured rectangular
aluminum plate with a central hole for access to the skull.
After placement, the animal was maintained with 0.5%–1%
isoflurane until the dental cement cured, after which point
it was allowed to recover from anesthesia on the warmed
table.

For recording, animals were head-fixed and body movements
were restricted by placement in a padded tube. Body temperature
was monitored via thermometer placed under the abdomen and
maintained between 33C and 36C via thermocouple heating
pad (FHC, Bowdoin, ME, USA). Body motion was monitored
with a piezoelectric device placed below the restraint tube.
For electrode access, a craniotomy was performed thinning the
skull if necessary and resecting small bone flaps, to produce
a small opening (∼150–300 µm diameter). Primary visual
cortex was targeted by regression of adult brain lambda-bregma
distances: 1.5–2.5 mm lateral and 0.0–0.5 mm rostral to lambda.
All recordings were made using a single shank, 32 channel
array arranged in two parallel lines of contacts (A1x32-Poly2-
5mm-50s-177, NeuroNexus Technologies, Ann Arbor, MI,
USA). The electrode penetrated the brain orthogonally to the
surface and advanced to a depth of 750–1000 µm using a
micro-manipulator (Narishige, Japan) until the top channels
touched the dura. Isoflurane was withdrawn and the animal
was allowed to acclimate inside the setup for at least 80 min
prior to recording. Following 20 min of visual stimulation
the spontaneous recording reported here lasted 30 min. All
recording was performed in the dark (<0.01 Lumens). In
animals older than P8, recording localization in monocular
V1 was confirmed by the presence of a contralateral visual
response to whole-field light flash that had the earliest
response in layer 4. Ipsilateral visual local field potential
(LFP) responses less than 10% of the contralateral response
were also required. All animals were sacrificed by anesthetic
overdose followed by decapitation. Brains were immersion-
fixed in 4% paraformaldehyde for confirmation of electrode
location.

Data Acquisition and Analysis
Data was acquired at 32 kHz using the Digital Lynx SX
acquisition system and Cheetah version 5.6.0 (Neuralynx, Inc.,
Bozeman, MT, USA). Signals were band-passed 0.1 Hz 9 kHz
and referenced to a sub-cortical contact in at the bottom of
the array. Analysis utilized custom MATLAB (MathWorks,
Natick, MA, USA) routines and the open-source Klustasuite
for spike isolation, clustering and manual curation (Rossant
et al., 2016). A spike isolation strong threshold of 6 SD
and weak threshold of 3 SD were needed to minimize low
amplitude unclusterable spikes. Initial clustering was evaluated
for merging or splitting of clusters based on visual waveform
analysis and similarity. After eliminating clusters composed
of noise, clusters with no modulation of autocorrelation near
0 ms and/or clear superposition of two or more distinct
waveforms that could not be separated weremarked asmulti-unit

clusters. The remaining, potentially single-unit, clusters were
evaluated for inclusion as good single-units if the interspike
interval (ISI) refractory violations (<2 ms) accounted for
less than 1% of spikes. All clusters were assigned a primary
contact localization by determining the minima of the mean
waveform. Spike-time was assigned by rounding the peak time
to the nearest ms. The layer identity of each channel was
made relative to L4 which was identified in an age-specific
manner: After the emergence of visual responses on P8,
L4 was identified as the channel with the shortest latency
300–500 µm below the surface; for P4–P7, which lack visual
response, L4 was identified from spontaneous spindle-bursts
as the lowest channel with visible rapid oscillations in the
LFP (Colonnese and Khazipov, 2010). For thalamic recordings,
only clusters originating from contacts with multi-unit visual
responses to 100 ms light flashes presented to the contralateral
eye were used. Otherwise, procedures were identical to the visual
cortex.

Inactive periods (down-states) were identified by the method
of Renart et al. (2010). A total multi-unit activity (tMUA) raster
was created by summing spike occurrences of all multi and
single-unit clusters. To identify down-states, the tMUA signal
was smoothed (Gaussian kernel SD 50 ms); periods where this
convolved signal was less than 10% of peak OR where the ISI was
greater than 50 ms were marked as down-states. ‘‘Active’’ periods
of duration less than 50 ms were reclassified as down-states.

For the calculation of ‘‘Event size’’ (Figure 3), only Active
periods were considered, and the number of single-units with
at least one spike in sliding windows of 20 or 100 ms was
determined. Only windows with more than one spike were
considered. Probability for events of a given size was calculated
by dividing the number of windows with events of a given
size, by the total number of windows. To calculate event
size probability in animals with more than 12 good single
units, event size was determined for a random selection of
12 units. This process was repeated 20 times, and the mean
probability of these repetitions was used for that animal. To
calculate the change in probability, spike-times were jittered
within active periods by a random number drawn from the
uniform distribution between −1000 ms and 1000 ms and the
probabilities recalculated. Binary firing vectors (Figure 4) were
calculated using the shared Matlab function as described (Okun
et al., 2012). For calculation of the Raster-Marginal, spikes were
swapped between good neurons as well as MUA but only for
spikes in the same layer group (L2–4 or L5–6). Calculation
of spike-rate correlation (Figure 5) followed the method of
Renart et al. (2010). Each single-unit raster was convolved by
a normalized kernel that was the sum of a rapid time-window
(J, 20 ms SD Gaussian) and a negative longer window (T, 4xJ).
This approximates the effect of jittering the spikes over the same
window to remove distorting effects of slow co-modulations in
spike-rate. For comparison with truly random firing with locally
appropriate spike-rates, jittered spike-trains (±1 s within active
periods) were calculated, spike-rate comodulation calculated,
and this process was repeated 100 times to generate mean
and 95% confidence interval. Population coupling (Figure 6)
was computed by the method of Okun et al. (2015). A summed
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FIGURE 1 | Spike-clustering in neonatal mice. (A) Five representative clusters from the same 7 day old animal (P7). Each trace is 1 ms, scale bar (100 µV) applies to
all traces. On left (Cluster 1) show 50 traces from 30 channels in the poly-2 array (50 µm separation). Six surrounding channels are shown for four additional
representative clusters in the middle, and the associated inter-spike interval (ISI) histogram (as measure of refractory period) for the same cluster is displayed at right.
Low spike rates mean that ISIs can be used to eliminate obvious multi-unit clusters but are less reliable as positive evidence that clusters are single-unit. (B)
Representative clusters for P24 animal. (C) Cumulative distribution of peak amplitude for all clusters (good and bad) in each age group used in the study. Insert
shows spike amplitude distribution (all spikes including those not included in good clusters) as function of threshold for than recording. All ages show clustering near
threshold, though a greater proportion of young animal spikes are <5 µV from threshold. (D) Cumulative distribution of the percent of refractory violations (ISI <2 ms)
for all clusters. Note fewer violations in young animals. (E) Number of “good” clusters isolated for each animal by age. (F) Percentage of total recorded spikes that
were placed in good clusters.

multi-unit raster was created from the MUA and single-units
for L2–4 and L5–6 separately, convolved with a Gaussian
kernel (10 ms SD) which was used for the spike-triggered
average for each single-unit in the corresponding layer group.
A normalized spike-triggered rate was made after calculating
the Raster Marginal as described above, the peak amplitude
of which is used to normalize each animal’s population
coupling.

Statistics
All statistical tests are described in the results along with p-values.
P-values below 0.001 are rounded to the nearest power of 10.

RESULTS

We examined spontaneous activity in monocular visual cortex
of unanesthetized, head-fixed mice. Multi-unit and LFP analysis
of this same data-set has been previously reported (Shen and
Colonnese, 2016). Recordings targeted five key developmental

age groups: P6–7 and P8–9 during the period of cholinergic
retinal waves, when topography and eye specificity is established;
P10–11 during the period of glutamatergic retinal waves;
P15–17 after eye-opening, during the pre-critical period (Smith
and Trachtenberg, 2007) when cortical state modulation of
spontaneous activity has emerged; and P24 during the critical
period for ocular dominance plasticity when mature cortical
dynamics are largely in place (Hoy and Niell, 2015). Recordings
from animals at P4 and 5 yielded fewer than 10 clusters per
animal (mean 7 ± 3 SD), which was considered insufficient for
network analysis.

Network analysis was made by isolation of presumptive
single-units from a single shank, dual column multi-electrode
array placed perpendicular to the cortical layers, allowing for
simultaneous recording from layer one though the top of layer
six. Sorting using the masked EM algorithm (Rossant et al.,
2016) was of similar quality between age groups (Figure 1).
Spike amplitudes in the youngest age group were lower and
clustered near threshold, but overall the similarity of spike
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FIGURE 2 | Cortical activity in neonatal rats is dominated by down-states.
(A–C) Representative spontaneous activity (300 s) for a P7 and P24 rat.
(A) Local-field potential from layer 2/3. Scale bar is 500 µV, and is for both
traces. (B) Raster plot of all good single-units arranged by depth. Red line
shows top border of layer 5. (C) Spike histograms showing the percentage of
single-units active in a 10 ms (top) or 100 ms (middle) window. At bottom, the
multi-unit activity (including spikes not sorted into good single-units) in 1 ms
bins is displayed. (D) Proportion of recording occupied by active periods (see
“Materials and Methods” Section) for each animal, by age (analysis of variance
(ANOVA) for effect of age (groups P6–7, 8–9, 10–11, 15–17, 24), df = 4,
F = 94.99, p = 10−12). (E) Cumulative distribution histogram of spike-rate of all
single-units in each age group. Total activity is shown on the left, firing rate
during active periods (down-states removed) is on right. Developmental
changes in single-unit firing rate are due to increased prevalence of
down-states at these ages. (F) Firing rates for single-units (above) and total
multi-unit activity (tMUA) by age. Total activity (left) effect of age (L2–4
F = 53.85, p = 10−10; L5–6 F = 39.72, p = 10−9); MUA effect of age
(F = 39.15, p = 10−9). Active periods only (right; L2–4 F = 1.40 p = 0.29; L5–6
F = 2.39, p = 0.08); Active period only MUA (F = 14.36, p = 10−5).

waveforms placed in the same cluster was comparable between
age groups (Figures 1A,B). Refractory violations (ISIs < 2 ms)
were rarer in young animals, likely as a result of lower spike-rates

(Figure 2), making this a less reliable index of cluster quality in
neonates. The number of well isolated (‘‘good’’) clusters extracted
from each animal increased rapidly with age (Figure 1E).
This was not a result of more clusters or spikes rejected
in young animals. In fact, the proportion of total recorded
spikes that were placed in good clusters was highest during
the first 2 weeks (Figure 1F). In general, while the lower size
and reduced ability to use refractory violations to separate
clusters increases the chances of multi-unit clusters, the reduced
spike detection counteracts this effect. We are confident that
clustering effectively enriches for single neurons in all age groups.
Because analysis of fewer neurons could bias results between
age groups, when appropriate, analyses were performed on a
random selection of 12 units (the minimum number of good
clusters isolated), calculating the relevant metrics, and repeating
this process to generate a mean for the animal. Consistent with
MUA (Shen and Colonnese, 2016) fewer deep layer single-units
were isolated in P6–7 animals (ratio 1.5 superficial/deep) than
in older animals (P8–9 0.40; P10–11 0.48; P15–17 0.46; P24
0.56).

We first asked whether age is associated with differences in
the firing rates of individual neurons (Figure 2). As previously
shown for unanesthetizedmice (Adelsberger et al., 2005; Ackman
et al., 2012; Shen and Colonnese, 2016) and rats (Hanganu
et al., 2006; Colonnese, 2014), activity during the first 2 weeks
post-natal is dominated by lengthy periods of network silence
(‘‘down-states’’). The down-states are interrupted by periods
of activation driven by spontaneous retinal waves (P2–9) and
then by retinal waves plus activity generated spontaneously
within the cortex (Colonnese and Khazipov, 2010). Down-states
lasting more than 200 ms disappear around eye-opening in rats
(Colonnese, 2014) and mice (Shen and Colonnese, 2016). Single
unit activity showed a similar pattern, being almost completely
restricted to 2–10 s active periods occurring every 30–60 s at
P6–11. Extended periods of network silence were rare in the
P15–17 or P24 groups (Figure 2D).

Total single-unit spike-rates at P6–7 and P8–9 were at least
an order of magnitude lower than juvenile rates (Figures 2E,F,
left), with P10–11 rates intermediate. However, if the down-states
are removed and only periods of activation considered, then
single-unit spike-rates were not significantly different between
ages (Figures 2E,F, right), suggesting that active periods for
spontaneous activity in young and old mice are similar, and that
age differences in firing result from the prevalence of down-states
during the first two post-natal weeks. For comparison with
previous non-clustered recordings (Colonnese et al., 2010; Shen
and Colonnese, 2016), we present tMUA spike rates (which
additionally includes spikes not placed in good clusters). MUA
spike rates show significant increases both for total activity
and during active periods, particularly between P11 and P14
(Figure 2F, bottom).

Development of Network Synchronization
and Composition
Functional hyper-connectivity of inputs and/or local connections
due to either increased connectivity or lack of desynchronizing
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FIGURE 3 | Synchronization of firing increases with age. (A) Distribution of neuronal event size for 20 ms windows. Points show mean and SEM of distributions for
animals in each group. For each animal the probability of observing events of the indicated size in a 20 ms window from a random assignment of 12 neurons is
shown. Only event sizes observed in all animals (<6 neurons) are analyzed. Only active periods are considered. ANOVA for effect of synchronization (F = 546.44,
p = 10−66), Age group (F = 48.80, p = 10−22) and interaction (F = 8.00, p = 10−12). (B) Change in event size probability relative to jittered spike trains
(Prob − Probjitt)/(Prob + Probjitt). Young animals (P6–11) have lower probabilities of synchronized events than expected by chance (ANOVA for synchronization
F = 6.56, p = 0.0001; Age F = 10.79, p = 10−7; interaction F = 1.34, p = 0.19). (C) Proportion of 20 ms bins with more than 25% of single-units active for each
animal by age. ANOVA for age group (F = 16.81, p = 10−6). (D) Change in probability (vs. jittered) for >25% synchronization by age (F = 2.18, p = 0.11). (E) As
(A) but 100 ms window. Only event sizes observed in all animals (<9 neurons) are analyzed. Synchronization at P8–9 and P10–11, but not P6–7, is lower than
juvenile ages. ANOVA for effect of synchronization (F = 152.67, p = 10−66), Age (F = 30.96, p = 10−19) and interaction (F = 8.51, p = 10−19). (F) As (B) but 100 ms
window (Synchronization F = 4.84, p = 0.0001; Age F = 9.84, p = 10−7; interaction F = 1.59, p = 0.041). (G) As (C) but probability of events with >= 50%
synchronization (F = 7.11, p = 0.001) of units are shown. (H) As for (D) but events >= 50% synchronization (F = 3.33, p = 0.03).
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FIGURE 4 | Developmental conservation of neuronal assembly properties. (A) Measurement of neuronal assemblies as unique “words” consisting of binary firing
vectors for 20 ms windows. Only assemblies of 3+ units are considered. (B) Probabilities of observed word occurrence vs. occurrence predicted by random jittering
of spikes. Graphs show all words in each age group. Black dots are 3 neuron words, blue 4, green 5, red >= 6. (C) Probability distribution for observed—predicted
occurrence of all words in each age group. One means that word occurred only in observed data; −1 means it occurred only in jittered data. Distribution is right
shifted at all ages, indicating greater occurrence of words than expected by chance throughout development. Red dot shows mean of distribution. (D) As (B) but
predicted probability is calculated by Raster Marginal method (Okun et al., 2012) which controls for changes in network properties controlling the timing of spikes.
(E) As (C) but for Raster Marginals control. (F) Mean difference of word distributions from random (top) or raster marginal (bottom) model for each animal by age.
ANOVA for effect of age group (Random F = 8.35, p = 0.0004; Marginal F = 1.32, p = 0.297).

inhibition is expected to result in activity events with high
participation rates, as has been observed by calcium imaging
of layer 2/3 in vivo (Rochefort et al., 2009; Siegel et al.,
2012). Because firing during early ages is largely restricted
to the troughs of spindle-burst oscillations we first measured
event participation in 20 ms windows, approximately the
window of firing during these early oscillations (Hanganu et al.,
2006; Colonnese and Khazipov, 2010). To measure columnar
event participation, we calculated the percentage of single-
units active (at least 1 spike) in sliding 20 ms windows.
Event participation rates show clearly that early activity is
not hyper-synchronous (Figure 3A). In fact, participation
rates in the youngest group (P6–7) is similar to juvenile
(P15–17 and P24), and activity is less synchronous at P8–9 and
P10–11 before achieving stable values by P15 (Figure 3C). Event
participation is affected by spike-rate as well as spike timing.
To control for the former, we calculated the change in event
probability after jittering spike times by a random amount
between ± 1 s within active periods and calculating a deviation
index (Prob − Probjitt)/(Prob + Probjitt). This analysis showed
that event participation during the periods of retinal waves
(P6–11) were actually lower than expected from random firing,
while the juvenile synchrony is slightly higher than expected
(Figures 3B,D).

Currents in young neurons have longer decay times,
potentially increasing the integration time and tolerance for
synchrony. We therefore examined a longer time window for
neural events (100 ms) which encompasses a complete cycle

of the early oscillations. Event size was larger for 100 ms
windows, as expected, but the relative synchronization of firing
between ages was similar to 20 ms windows (Figures 3E–H).
Thus, regardless of window size, event participation rates
of neonates are lower than those of juveniles and lower
even than expected by chance given neuronal firing rates.
This suggests that activity in the neonatal cortex is actively
decoupled.

Our event participation data reject the hypothesis that
mature neuronal ensembles are formed by fractioning larger
ensembles but obscure the specifics of which neurons fire
together. To understand the development of neural ensembles
we used an analysis of the occurrence of unique binary spike
vectors, or ‘‘neural words’’ (Fiser et al., 2004; Figure 4A). The
occurrence of specific words is tested against the distribution
expected by random firing, modeled here by random jittering
the occurrence of spikes ± 1 s. We examined word distributions
for words three neurons or longer in 20 ms windows. As
expected given the larger number of good clusters in older
animals, the total number of observed words increased with
development, however word occurrence was greater than
expected for random activity at all ages (Figures 4B,C). The
mean of the observed probability-predicted probability (by
chance) was larger in in P6–11 animals than P15–17 and P24
(Figure 4F). This relationship could indicate that connectivity
in the young network is more strongly non-random than
juvenile, or that the network property which synchronizes
spike-timing regardless of ensemble participation is stronger
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FIGURE 5 | Developmental increase in pair-wise spiking correlations. (A) Distribution of pair-wise firing rate correlations for all neuron pairs in each age group. Blue
line shows correlations for total activity including down-states; red line shows correlations when analysis is limited to active periods. Shading shows 95% confidence
interval of jittered correlations. Top row shows all pairs, middle row shows superficial vs. superficial neurons only (L2–4), bottom row shows deep vs. deep neurons
only (L5–6). Total activity shows more units with positive correlations than expected by chance after P15, but fewer correlated units P6–9. When inactive periods are
removed, distributions shift left particularly at P6–7 and P8–9. (B) Mean correlations for each animal by age for the Total (left) and limited to Active periods (right) for
each of the neuron populations. Listed p-values are for ANOVA effect of age group. (C) Effect of integration window (SD of Gaussian filter) on spiking correlations.
Red arrow shows integration window used in (A) (20 ms). Developmental increase in mean correlations for total activity reverses at large integration windows
suggesting that early activity is co-modulated by slow oscillations (likely retinal waves) but within such activations, it is poorly correlated. (D) Distribution of pair-wise
firing rate correlations for neurons in lateral geniculate nucleus (visual thalamus) for select ages. During the period of retinal waves, thalamic neurons are positively
correlated for both all activity and when analysis is limited to active periods. (E) Mean and standard deviation of mean correlation for each pup (n = 4). ∗p = 0.02 by
rank sum test.

in young animals (Okun et al., 2012), consistent with the
presence of spindle-burst oscillations during this time period.
To distinguish between these possibilities we predicted word
occurrence distributions using the Raster Marginal method
(Okun et al., 2012), which swaps spikes between clusters,

thereby keeping intact temporal restraints on spike-timing
but randomizing occurrences within clusters. Mean observed-
predicted occurrence using the marginal control was near or
below zero for all ages, and not different between age groups
(Figures 4D–F), suggesting that at all ages there exist fewer
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FIGURE 6 | Conservation of local network integration during development. Population coupling (normalized spike-triggered multi-unit firing rate) is correlated with
local connectivity in adults (Okun et al., 2015). (A) Representative population couplings for five neurons from a single animal in each age group. Each animal has
neurons with diverse coupling, though the temporal specificity of the coupling increases with age. (B) Coupling for the same neurons after randomization
(Raster-Marginals). (C) Distribution of population coupling for all single-units in the age group. (D) Spike-rate plotted against population coupling for all neurons in
each age group. Spike-rate changes between ages do not strongly affect results, though the presence of very low spike rate appears required for high population
coupling. Correlation (r) between spike-rate and population coupling, and the p-value of this correlation (p) are shown for each age group. (E) Mean population
coupling for each animal by age. ANOVA for effect of age group (F = 11.24, p = 0.00008). (F) Mean correlation of coupling vs. spike-rate for each animal by age.
ANOVA for effect of age group (F = 3.99, p = 0.016).

functional interconnections between neurons than would be
expected by chance.

Neural Firing Rate Correlations Increase
During Development
Spike-rate correlations reflect neural connectivity filtered
through cellular, synaptic and circuit properties influencing
synchronization, particularly inhibition (Renart et al.,
2010; Helias et al., 2014). Ineffective inhibition, neuronal
hyperexcitability and hyperconnectivity would be expected to
increase spike-rate correlations in infant cortex, as has been
observed for calcium signal in somatosensory cortex (Golshani
et al., 2009). To test this we calculated the distributions of
pair-wise spike-rate correlations for all good units in an animal.
Spike-rate correlations were evaluated by quantifying spike-rate
comodulation within a rapid time window (T = 20 ms full width

at half amplitude Gaussian) corrected for slow modulation of
firing rates (J = 80 ms; Renart et al., 2010). Pairs were also
subdivided into superficial (L2–4) and deep (L5–6) to assay
the development of local vs. total synchronization. Because
the presence of down-states, which increase correlations by
enforcing silence in almost all neurons, changes dramatically
during development, we examined correlation distributions for
total activity as well as when restricted to active periods.

The spike correlation distributions for total activity were
grossly similar at all ages (Figure 5). The large majority of
pairs had correlations near zero, but the distribution evidenced
a right-ward shift toward a larger proportion of correlated
neuron pairs than expected by chance (jittered spikes) that grew
stronger with age. As a result, the mean spike correlation of
each animal increased when measured between all neurons, as
well when restricted to deep or superficial neurons (Figure 5B).
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Limiting the analysis to active periods caused a leftward shift
in the correlation distribution at all ages. This shift was
much larger for neonatal animals, even resulting in mean
correlations below zero for the P6–7 and P8–9 groups. Thus
at these youngest ages, firing rates are less correlated on a
short time-scale (20 ms) than expected by chance, suggesting
inhibitory or other another desynchronizing element is powerful
even during early development. As a result of the negative
mean correlations in neonates, developmental increases in
mean correlation were significant for total, superficial and deep
neurons (Figure 5B).

Calcium imaging studies have described developmental
desynchronization of layer 2/3 activity (Golshani et al.,
2009; Rochefort et al., 2009), opposite from the increasing
synchronization we observed here. While multiple factors
could contribute to this difference, the effective integration
window for firing is a prominent difference between our
spike-rate correlations and calcium imaging. To examine the
role of integration window on mean spike-rate correlations,
we systematically varied T (with J also increasing at 4∗T).
This showed a strong, age dependence of correlation on
integration window (Figure 5C). For total activity, as integration
windows approach 400 ms the developmental relationships
between neonatal and juvenile animals reverse, with activity
at P6–11 becoming more synchronous than P15–17 and
P24. Thus during the period of retinal waves, neurons show
co-modulation of firing rates on the time scale of these waves,
but synchronization within waves is lower than or similar
to juvenile levels. When correlations were limited to active
periods, integration window does not have as dramatic an effect.
However, negative mean correlations present in neonates were
only present when T was less than 300 ms. To determine if this
dependence of integration window was the result of changing
T or J, we varied J while keeping T constant. Correlations were
largely unchanged out to a J of 3 s (data not shown), beyond the
duration of a single retinal wave (Blankenship and Feller, 2010;
Ackman et al., 2012). Finally, because maximal negative mean
correlation is inversely proportional to the number of neurons,
we recalculated pair-wise correlations for N = 12 neurons
in all groups (data not shown). Mean correlations were not
significantly different in this N limited case, showing that the
growth of correlation with age is a true effect of development,
not of the number of neurons isolated by spike-sorting.

Such low correlation between cortical neurons is surprising
given that the contacts sit within a single topographic locale
and neuron firing in all layers is temporally limited to the
troughs of spindle-burst oscillations (Colonnese and Khazipov,
2010). To determine the effect of retinal waves and synaptic
refinement on correlation in a structure with known refinement
of input connectivity (Chen and Regehr, 2000; Ziburkus and
Guido, 2006), we analyzed spike-rate correlation in the region
of the lateral geniculate nucleus of the thalamus responsive to
the contralateral eye. In contrast to the cortex, LGN neurons
at P9–10 when poly-innervation by retinal ganglion cells is
high, were largely positively correlated both with total activity
as well as when analysis was limited to active periods only
(Figures 5D,E). By P14–16, when poly-innervation is reduced,

correlations become centered around zero, similar to cortex at
the same age. Thus in a structure with demonstrated refinement
of connectivity, pair-wise spike correlations show heightened
synchronization.

In total, while the pair-wise firing rate correlations in the
cortex are sensitive to integration window, within physiologically
relevant time intervals for spike integration (10–300 ms),
they are robust and consistent with increasing connectivity
driving synchronization of the neural activity during cortical
development. Combined with event participation, firing rate
correlations suggest that early networks contain decorrelating
influences that keep synchronization below that expected by
chance given firing rates and patterns.

Characteristics of Local Network
Integration Are Established Early in
Development
Neurons vary in their local vs. distal connectivity, a feature
that is correlated with the degree to which their firing is
coupled to mean firing rates in the local network, called
‘‘population coupling’’ (Okun et al., 2015). We hypothesized that
hyper-connectivity during early development would result in
increased population coupling and fewer neurons with activity
that is independent of local firing (so called ‘‘soloists’’). To
test this we calculated the spike-triggered multi-unit activity
for each good unit. Triggered spike rates are converted to
standardized ‘‘population coupling’’ by normalization to the
same measure for spikes shifted using the Raster Marginal
method, thereby constructing a mean coupling for the animal
that can be used to normalize between groups. The temporal
characteristics and signal-to-noise of population coupling
changed dramatically between P6–7 and P15–17, but all ages
showed dramatic variance in the absolute degree of coupling.
Every animal had neurons with strong coupling as well as
neurons with little or even negative coupling (Figure 6A).
The total distribution of normalized spike-rates showed a
similar pattern of diverse coupling in each age group, with
a peak between 0.5 and 1 (Figure 6C). The three youngest
age groups (P6–11) had an additional population of highly
coupled neurons that was not apparent in the older ages.
As a result at these ages population coupling was negatively
correlated with spike rate (Figure 6D) and mean coupling was
reduced with age (Figure 6E). By P15, population coupling is
not correlated with spike-rates similar to adults (Okun et al.,
2015).

In total our results show that while population coupling is
elevated for a sub-population of low-firing neurons during early
development, neurons with weak and strong population coupling
exist even in the youngest networks. These results suggest that
a neuron’s relative local integration is established early and
maintained throughout development.

DISCUSSION

Here we used multi-electrode array based spike-sorting in
very young, head-fixed mice to quantify features of local
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network interaction within a visual cortical column during
the period of spontaneous retinal waves and compared these
to spontaneous activity in the week after eye-opening, when
many aspects of ongoing cortical activity emerge (Rochefort
et al., 2009, 2011; Hoy and Niell, 2015). Our primary finding
is that—despite the macro-patterning of activity present in
cortex during the period of retinal waves, in which long silent
periods are interrupted by large oscillations that control firing
times (Hanganu et al., 2006; Colonnese and Khazipov, 2010),
suggesting hypersynchrony of the developing network—the
firing of cortical neurons is remarkably uncorrelated and
adult-like patterns of network interaction are achieved
remarkably early, either during the period of glutamatergic
retinal waves or immediately after eye-opening. Our results
support a constructionist model of vertical circuit formation
in cortex, rather than one of exuberant connectivity followed
by refinement, and suggest that retinal waves provide activity
remarkably more similar to adult activation than might be
expected.

Calcium vs. Action Potentials in Network
Analysis and Function
Our results differ from in vivo calcium imaging studies, which
indicate a decrease in correlation between layer 2/3 neurons
(Golshani et al., 2009; Rochefort et al., 2009; Siegel et al., 2012),
likely because of the time course over which synchronization is
measured. Integrating spike-rates on the timescale of calcium
indicators selectively increased the pair-wise correlations of
young neurons (Figure 5C). Current-clamp recordings suggest
that early hyper-synchronization observed in imaging is due
to increased firing probability during the ‘‘up’’-states of the
slow-wave (Golshani et al., 2009; Colonnese, 2014), and not
co-participation of neurons in local ensembles, which appears to
grow (Berkes et al., 2011) or remain similar (Figure 3) during
development.

One important caveat to the current results is that
the increased temporal and single-spike resolution of
electrophysiology comes with the inherent ambiguity of
spike-sorting. The smaller transmembrane currents of young
neurons make action-potentials less likely to be detected
on multiple electrodes and reduce waveform variability,
potentially compromising sorting. Current spike-sorting quality
metrics emphasize separation and reduction of over-splitting
(Hill et al., 2011) and the application of these metrics to
the high-dimensional space of large arrays is not standard
(Harris et al., 2016; Rossant et al., 2016). Confirmation that
the spikes in a single cluster originate from a single neuron
relies on visual confirmation of waveform and elimination
of clusters with high rates of refractory period violation. The
low spike-rate of young animals should cause an increase in
false negatives (failure to reject poly-neuronal clusters). Thus
while spike waveform consistency was similar between ages
(Figure 1), it remains possible that more ‘‘good’’ clusters in
young animals contain multiple neurons, which may explain
some of the increase in number of neurons isolated with age.
The developmental growth in correlations is unlikely to result

solely from poor sorting, however, as it is also evident in
multi-unit activity measured at similar ages (Berzhanskaya et al.,
2017).

Another potential issue is the necessary sparse sampling of
neurons by our arrays and the under-sampling of neurons in
young tissue as a result of their smaller action potentials. This
under-sampling appears to result in our detection of fewer
neurons in P6–11 animals. Imaging studies indicate that close
to all L2–3 neurons make calcium events at these ages (Siegel
et al., 2012), so it is unlikely that there is large population of silent
neurons that comes ‘‘online’’ only after eye-opening. Current-
clamp recordings find action potentials in a large majority of
neurons recorded (Colonnese, 2014), supporting the possibility
that the low number of neurons observed is simple failure to
pick up small action potentials from distant neurons. We have
tried to correct as best as possible for the computational biases
of this under-sampling by limiting the network analyses in older
animals to subgroups of the same number of neurons as in
young. Using the same methods in thalamus, we were able
to detect clear reductions in synchronization, suggesting that
similar changes would have been apparent in cortex if they were
present.

Finally, it is not clear whether action potentials or
calcium fluxes are the relevant components for plasticity.
Retinal waves induce plateau potentials in cortical neurons
(Colonnese, 2014) which both suppress action potentials
and may cause neurotransmitter release. Thus the poor
synchronization of action potentials may be compensated
by synchrony of calcium transients and sub-threshold
depolarization.

Constructionism vs. Refinement
Our results support a ‘‘constructivist’’ model of intra-columnar
cortical development in which correct connections, informed by
guidance molecules and confirmed by activity, are largely made
early, without large-scale elimination of incorrect connections
(Quartz and Sejnowski, 1997; Katz and Crowley, 2002). We
observed no reduction in event participation, word distributions,
or pair-wise correlations, which would be expected if the
network experienced a period of widespread functional hyper-
connectivity followed by synapse elimination. This does not
mean that inappropriate synapses are not formed and eliminated
within cortical columns. Rather, it means inappropriate synapses
are a minority of total synapses, and play little functional
role. Map formation in the cortex may be different from
sub-cortical regions such as thalamus and superior colliculus
that are the initial recipients of topographic connections. These
regions do incur periods of exuberant synaptic connectivity
(Chen and Regehr, 2000; Lu and Constantine-Paton, 2004;
Ziburkus and Guido, 2006), and we actually observed a
reduction in firing rate correlations in LGN while they were
increasing in cortex. Our results are consistent with multiple
findings that thalamocortical and cortico-cortical connectivity
is refined very early (Chiu and Weliky, 2002; Katz and
Crowley, 2002; Ko et al., 2013; Yang et al., 2013). Our results
expand upon these by showing that within topographically
aligned columns functional connectivity is sparse even during
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initial map formation. Early and consistent refinement may
be specific to intra-columnar circuits, which reflect a single
topographic location, while horizontal connectivity may be
subject to different rules. Studies have observed both increases
and decreases in horizontal synchronization during development
(Callaway and Katz, 1990; Fiser et al., 2004; Minlebaev et al.,
2011).

One of our more unexpected findings is that variance in
population coupling is present from as early as intra-cortical
synapses are present and can drive activity locally (Blue and
Parnavelas, 1983; Valiullina et al., 2016). While we cannot prove
that early ‘‘soloists’’, neurons with low population coupling
(Okun et al., 2015), are the same neurons that become adult
soloists, our data suggest that this identity is set early, even
before many of the long-range connections that will drive
soloists are formed. The existence of a population of low-firing
neurons with high-population coupling at P5–9 is at first glance
contradictory to the pair-wise spike-rate correlations, which
show lower local correlation at these ages. We suspect this
early high-coupling, which occurs on a much slower time
course than coupling in adults, exists because of the massive
modulation of all activity in visual cortex by the slow retinal
waves. This is reflected in the net positive jittered pair-wise
correlations (Figure 5A gray lines). Thus, in total, our results
are consistent with a model of early activity in which retinal
waves increase firing rates globally, but the microstructure of
correlations within this activation window is actually lower than
for post-wave ‘‘spontaneous’’ activity. It is possible that the
low-firing highly-coupled neurons are the youngest neurons
which have not integrated into the local network, but still receive
shared input from thalamus or widely distributed but weak local
connectivity.

Mechanisms of Activity-Dependent
Development
While much is still poorly understood about the process
leading to the formation of refined cortical ensembles, our
data clearly indicate they do not emerge from larger, less
refined functionally connected groups of neurons. In fact, in the
youngest animals (P6–7 and P8–9) neuronal firing is actually
less synchronous than would be expected by chance. This
was true for both the participation rates as well as pair-wise
correlations. Reduced spike-fidelity in young animals (Valeeva
et al., 2010), combined with corticocortical connectivity, both
electrical and chemical, that is very low (Yu et al., 2012), predict
correlations near chance. However, the negative correlations
require a desynchronizing element to decorrelate activity driven
by the massively synchronous spindle-burst oscillations coming
from thalamus (Helias et al., 2014). During this limited early
period, thalamic axons synapse on inhibitory subplate neurons
(Kanold and Luhmann, 2010) as well as somatostatin neurons
in layer 5 (Marques-Smith et al., 2016; Tuncdemir et al., 2016)
before shifting to their adult targets, providing one possible
mechanism of inhibitory desynchronization. An implication of
this anti-correlation is that the net effect of correlation based
plasticity should be toward the elimination of new synapses,
a phenotype observed in superior colliculus for the same ages

(Colonnese and Constantine-Paton, 2006). In fact the only
demonstrated synaptic plasticity in vivo during this time period
is the elimination of poorly coordinated and ineffective synapses
(Winnubst et al., 2015).

Circuits, Synapses and Synchronization:
The More they Change the More they Stay
the Same
Developing cortical networks undergo remarkable changes in
the amount and pattern of neural activity (Khazipov et al.,
2013). In visual cortex, a large majority of the changes
occur in rapid succession around eye-opening, though they
are not strongly dependent on patterned vision. At this time
immature spindle-burst synchronization of neural firing ends,
cortical waking and sleep states emerge, thalamic amplification
of retinal input is down-regulated, and the capacity of the
circuit to follow relevant high frequencies emerges (Colonnese
et al., 2010; Rochefort et al., 2011; Colonnese, 2014; Hoy and
Niell, 2015; Shen and Colonnese, 2016). Somatosensory cortex
makes a similar shift, though 4 days earlier, perhaps because
whisking starts earlier than eye-opening (Colonnese et al., 2010;
Minlebaev et al., 2011). Human infants undergo a similar
shift 2–4 weeks before term (Tolonen et al., 2007; Colonnese
et al., 2010; Fabrizi et al., 2011; Chipaux et al., 2013). The
synaptic and network mechanisms of this shift are unknown,
though they likely involve increased action potential threshold,
development of ascending neuromodulators and functional
integration of GABAergic interneuron subtypes, particularly
those mediating fast-feedforward inhibition (Luhmann and
Prince, 1991; Daw et al., 2007; Golshani et al., 2009;
Colonnese, 2014). Inhibition is a controlling factor in many
developmental transitions, particularly the onset of ocular
dominance plasticity, leading to the suggestion they are
‘‘master’’ regulators of development, transforming activity in
order to switch function (Le Magueresse and Monyer, 2013).
We observed remarkable stability of the network properties
between P10–11 and P15–16, ages between which feedforward
inhibition develops in visual cortex (Colonnese, 2014). Thus,
our results suggest an alternate framework, which is that
inhibitory (among other) development occurs to maintain
firing-rate and synchrony homeostasis in the face of increasing
synaptic density and its inherent excitability (Hengen et al.,
2013). By this model, interneuron integration occurs not as
a developmental program to transform activity, but as a
bulwark against increasing activity resulting from excitatory
synaptogenesis. Changes in the pattern of neuronal oscillations
occurring at the same time may, in fact, be side-effects of the
circuit changes obscuring the deeper similarity between early and
late ages.

One conclusion of this homeostasis theory of network
synchronization is that retinal-wave activity (which dominates
P6–11 firing) does not drive unique early ensembles of
hypersynchronous firing in order to induce wiring of a single
column, a conclusion also observed by L2/3 calcium imaging
(Siegel et al., 2012), but rather to model adult cortical activity. It
should be noted that the maintenance of correlational structure
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does not imply that individual neurons maintain connections
across development. In fact, mature local ensembles form by
rearranging specific connections while maintaining the same
total connectivity after eye-opening (Ko et al., 2013). Our result
shows that despite large-scale changes in the factors that regulate
synchronization in adults, network properties in young networks
are maintained so that the firing correlations caused by early
connectivity can be read out and modified to drive circuit
formation and ‘‘refinement’’.
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