
REVIEW
published: 22 December 2017

doi: 10.3389/fncel.2017.00419

Peripheral Mechanisms of Ischemic
Myalgia
Luis F. Queme 1, Jessica L. Ross1 and Michael P. Jankowski1,2*

1Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,
United States, 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States

Edited by:
Greg Dussor,

University of Texas at Dallas,
United States

Reviewed by:
Liang-Wu Fu,

University of California, Irvine,
United States

Stefania Ceruti,
Università degli Studi di Milano, Italy

*Correspondence:
Michael P. Jankowski

michael.jankowski@cchmc.org

Received: 20 October 2017
Accepted: 13 December 2017
Published: 22 December 2017

Citation:
Queme LF, Ross JL and

Jankowski MP (2017) Peripheral
Mechanisms of Ischemic Myalgia.

Front. Cell. Neurosci. 11:419.
doi: 10.3389/fncel.2017.00419

Musculoskeletal pain due to ischemia is present in a variety of clinical conditions
including peripheral vascular disease (PVD), sickle cell disease (SCD), complex regional
pain syndrome (CRPS), and even fibromyalgia (FM). The clinical features associated
with deep tissue ischemia are unique because although the subjective description
of pain is common to other forms of myalgia, patients with ischemic muscle pain
often respond poorly to conventional analgesic therapies. Moreover, these patients
also display increased cardiovascular responses to muscle contraction, which often
leads to exercise intolerance or exacerbation of underlying cardiovascular conditions.
This suggests that the mechanisms of myalgia development and the role of altered
cardiovascular function under conditions of ischemia may be distinct compared to other
injuries/diseases of the muscles. It is widely accepted that group III and IV muscle
afferents play an important role in the development of pain due to ischemia. These
same muscle afferents also form the sensory component of the exercise pressor reflex
(EPR), which is the increase in heart rate and blood pressure (BP) experienced after
muscle contraction. Studies suggest that afferent sensitization after ischemia depends
on interactions between purinergic (P2X and P2Y) receptors, transient receptor potential
(TRP) channels, and acid sensing ion channels (ASICs) in individual populations of
peripheral sensory neurons. Specific alterations in primary afferent function through
these receptor mechanisms correlate with increased pain related behaviors and altered
EPRs. Recent evidence suggests that factors within the muscles during ischemic
conditions including upregulation of growth factors and cytokines, and microvascular
changes may be linked to the overexpression of these different receptor molecules in
the dorsal root ganglia (DRG) that in turn modulate pain and sympathetic reflexes. In this
review article, we will discuss the peripheral mechanisms involved in the development
of ischemic myalgia and the role that primary sensory neurons play in EPR modulation.
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INTRODUCTION

Pain is a common clinical complaint resulting in a significant financial burden to both patients
and society. In the U.S. alone, studies have estimated the mean cost of pain per patient at
about $9K in adults and $12K in adolescents. The annual cost to society is over $635 billion
(Gaskin and Richard, 2012; Groenewald et al., 2014). Because chronic muscle pain is a
major cause of disability and lost productivity within the workforce (Bergman et al., 2001;
Mansfield et al., 2016), the societal burden of myalgia significantly exceeds the basic expenses
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of pain treatment (Gaskin and Richard, 2012). Furthermore, due
to the frequent underreporting and often nebulous etiology of
muscle pain conditions, precise epidemiological analyses of the
chronic myalgia burden are rare (Mansfield et al., 2016).

Assessment of musculoskeletal pain is also complicated by
its characteristics. Unlike the typically localized pain that arises
from insults to the skin, myalgia is often diffuse and more likely
to evoke referred pain (Bonica, 1954; Mense and Simons, 2001;
Graven-Nielsen et al., 2004). Terms used to describe sensations
of deep tissue pain, such as ‘‘cramping’’, ‘‘aching’’ and ‘‘tearing’’,
vary widely between patients and over time, whereas cutaneous
pain tends to have a more consistent presentation often
described as having a ‘‘burning’’ or ‘‘cutting’’ quality (Mense,
2008). Additionally, physicians have a particular challenge in
determining appropriate pain management strategies for myalgia
in that a treatment’s therapeutic efficacy is often etiology-
dependent (Mense, 2008; Clauw, 2015). In the management
of persistent muscle pain, first-line therapies often consist
of opioids, non-steroidal anti-inflammatory drugs (NSAIDs),
and physical activity regimens (Light et al., 2009; Ambrose
and Golightly, 2015; Clauw, 2015; Bacurau et al., 2016);
however, these types of interventions may be ineffective or even
detrimental in some patient populations (Kindler et al., 2011;
Murphy et al., 2011; Clauw, 2015). Thus, understanding how
muscle pain arises across various diseases and injury types is
paramount for increasing the availability and efficacy of specific
pain management strategies.

People of all ages and demographics can be affected by
muscle pain. The prevalence of the various underlying causes
is known to differ between patient groups (Bergman et al.,
2001; De Inocencio, 2004; Clauw, 2015; Mansfield et al., 2016).
While the most frequent source of myalgia across ages is either
overuse or traumatic injury (De Inocencio, 2004), there is a
diversity of etiologies that include strenuous work and muscle
overloading (Andersen and Gaardboe, 1993; Buckwalter, 2003),
quick deceleration injuries like whiplash (Banic et al., 2004;
Curatolo et al., 2004), joint diseases with peripheral inflammation
(Graven-Nielsen and Mense, 2001; Kidd, 2006; Bliddal and
Danneskiold-Samsoe, 2007) and ischemic injury (McDermott
et al., 2004; Coderre and Bennett, 2010; Davies, 2012). This latter
condition is of particular relevance because not only does it
affect over 10 million people in the US alone (Norgren et al.,
2007), patients often do not respond to many standard analgesic
regimens for muscle pain relief (Loram et al., 2005; Clauw,
2015).

Numerous basic and clinical reports have shown that ischemic
conditions are able to generate muscle pain (Alam and Smirk,
1937; Sinoway et al., 1989; Coderre et al., 2004; Laferrière et al.,
2008; Ross et al., 2014). Decreased blood flow to the skeletal
muscle that impairs oxygen supply sufficient to inadequately
meet the metabolic demands of the tissue is a feature of multiple
clinical conditions in which patients often report deep tissue
pain (Dennis and Keating, 1991; Norris et al., 1993; Kasikcioglu
et al., 2006; Katz et al., 2007; Nishida et al., 2009; Coderre
and Bennett, 2010; McDermott, 2015). In this context, age is
an important epidemiological variable. In pediatric patients,
ischemic pain is often the result of pathologies like sickle cell

disease (SCD), juvenile fibromyalgia (JFM) and complex regional
pain syndrome (CRPS; Groeneweg et al., 2009; Zemel and Blier,
2016; Bou-Maroun et al., 2018). In adults, peripheral vascular
disease (PVD) is a more prevalent cause of ischemic myalgia
(McDermott et al., 2004; Norgren et al., 2007; Muir, 2009).

The origin of the muscle pain is evident in cases like PVD,
where there is a mechanical obstruction of the vasculature
due to atherosclerosis for example, or in SCD, in which
the sickling crises induce both mechanical obstructions and
hemolytic anemia (Hands et al., 1990; Beard, 2000; Meru et al.,
2006; Davies, 2012; Garrison et al., 2012; Brandow et al., 2013).
In other cases, anomalies in peripheral perfusion have also
been hypothesized to be major contributors to the painful
symptoms of conditions like CRPS and fibromyalgia (FM;
Elvin et al., 2006; Coderre and Bennett, 2010; Chalaye et al.,
2014). In the case of type 1 CRPS, it has been proposed that
the perfusion anomalies are the consequence of a hyperactive
sympathetic outflow (Bonica, 1990; Iolascon et al., 2015), usually
in response to a deep tissue injury in which inflammation
causes a compartment-like syndrome that impairs perfusion to
the affected tissues (Coderre and Bennett, 2010). In FM, the
driving factors that lead to the development of deep tissue pain
are less clear, yet, studies in patients have shown impaired
perfusion within the painful areas of the body (Jeschonneck
et al., 2000; Morf et al., 2005; Elvin et al., 2006; McIver
et al., 2006). Evidence of this deficit has been detected using
enhanced ultrasound imaging of muscular blood flow during
static and dynamic contractions. These studies have reported
lower muscle vascularity that was accompanied by a shorter flow
response to muscle activity in FM patients (Elvin et al., 2006).
Furthermore, the microcirculation, measured by laser Doppler
flowmetry, above sensitive points in FM patients is reported to
be decreased compared to healthy controls (Jeschonneck et al.,
2000).

Severe muscle ischemia is most often not permanent. Blood
flow is at least partially reestablished and this causes a complex
ischemia-reperfusion (I/R) injury that is characterized by the
generation of free radicals (Debold, 2015) and reactive oxygen
species like hydrogen peroxide (Paradis et al., 2016) that impair
mitochondrial function, damage muscle fibers and promote
apoptosis (Pipinos et al., 2008a,b; McDermott, 2015; Ryan et al.,
2015). In addition, during the reperfusion phase, the muscle
microvasculature experiences increased permeability and injury
that facilitates the sequestration of activated lymphocytes in the
injured tissue. These cells, mostly macrophages and neutrophils,
release pro-algesic cytokines like interleukin-1 (IL-1), tumor
necrosis factor and many others (Figure 1). Intracellular granules
containing radical forming enzymes can further increase cell
damage and in turn enhance the immune response to injury
(Blaisdell, 2002; Eisenhardt et al., 2012; Gillani et al., 2012).
The duration of the insult is also relevant, as the underlying
mechanisms of muscle pain generation in disorders of peripheral
perfusion seem to depend on the length of ischemia and/or
reperfusion; partially due to enhanced muscle atrophy and
microvascular changes observed following a prolonged occlusion
over those detected following a transient I/R injury (Blaisdell,
2002; Eisenhardt et al., 2012; Ross et al., 2014).
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FIGURE 1 | Mechanisms for muscle afferent modulation of nociception and cardiovascular reflexes after peripheral ischemia. Upon ischemic injury to the muscles,
metabolites including ATP, lactic acid and protons, accumulate within the muscle interstitium. The loss of blood flow and oxygenation additionally provokes the
release of growth factors and inflammatory cytokines within the injured tissue. Exposure to these endogenous substances results in the upregulation of various
receptors and channels involved in sensory transduction. This leads to alterations in group III and IV muscle afferent responsiveness, particularly to metabolite
stimulation. The information from the sensitized afferents is then relayed to laminae I, II, V and X of the spinal cord dorsal horn, where nociceptive signals ascend
through the spinothalamic and spinobrachial tracts to the thalamus, and then further project to the cortex where they may be interpreted as painful. Group III and IV
muscle afferents connecting in the spinal dorsal horn also synapse on projection neurons that ascend near the dorsolateral sulcus and activate multiple nuclei in the
brainstem cardiovascular control center. In turn, these nuclei within the brainstem send descending projections to the pre-ganglionic neurons within the
intermediolateral cell column of the spinal cord, and then to the paravertebral sympathetic chain ganglia, which innervate the heart and vasculature, to modulate
cardiovascular responses to muscle contraction (exercise pressor reflexes; EPRs).

To study the basic mechanisms of post-ischemic pain, a
variety of animal models have been developed. One of these,
uses circumferential compression of the limb to induce an
I/R-like injury (Coderre et al., 2004). Additional types of I/R,
as well as prolonged ischemia, have also been modeled via
surgical occlusion of a peripheral artery (Lee et al., 2005; Xing
et al., 2008; Liu et al., 2010; Tsuchimochi et al., 2010; Li
et al., 2014; Ross et al., 2014; Copp et al., 2015; Stone et al.,
2015). Furthermore, injury-specific effects on muscle afferent
sensitization and responsiveness have been investigated in both
ex vivo (Jankowski et al., 2013) and in vitro conditions (Wenk and
McCleskey, 2007; Light et al., 2008). These models and methods
have provided a wealth of data indicating that the primary
sensory afferents are likely key components in the development

of ischemic myalgia (Kehl et al., 2000; Taguchi et al., 2005; Sluka
et al., 2007; Gautam et al., 2010; Xu and Brennan, 2010; Ross et al.,
2014).

Group III and IV primary muscle afferents are not solely
involved in nociception; they also provide the peripheral sensory
input for the exercise pressor reflex (EPR), a well-studied
cardiovascular reflex arc that causes an increase in heart rate
and blood pressure (BP) during exercise (Alam and Smirk, 1937;
McCloskey and Mitchell, 1972a,b; Randich and Maixner, 1984;
Zamir and Maixner, 1986; Adreani and Kaufman, 1998; Kaufman
and Hayes, 2002; Hayes et al., 2008; Ives et al., 2013). Ablating
these muscle sensory neurons specifically abolishes the EPR in
response to muscle contraction (McCloskey and Mitchell, 1972b;
Kaufman and Hayes, 2002). Animal models of ischemic injury
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display enhanced muscle pain responses (Issberner et al., 1996;
Coderre et al., 2004; Liu et al., 2010; Seo et al., 2010; Xing et al.,
2012; Ross et al., 2014), as well as altered EPR (Alam and Smirk,
1937; McCloskey and Mitchell, 1972a,b; Randich and Maixner,
1984; Zamir and Maixner, 1986; Adreani and Kaufman, 1998;
Kaufman and Hayes, 2002; Hayes et al., 2008; Ives et al., 2013).
This is not surprising as there is a well-documented anatomical
pathway of afferent projections both directly engaging the
central nociceptive networks in the ipsilateral dorsal horn and
indirectly modulating the cardiovascular control centers within
the medullary brainstem that influence sympathetic tone and
increase systemic BP and heart rate during muscle contractions
(Figure 1; Randich and Maixner, 1984; Zamir and Maixner, 1986;
Kaufman and Hayes, 2002; Murphy et al., 2011). In addition,
patients experiencing ischemic conditions like PVD or CRPS
also have exaggerated EPRs (Adreani and Kaufman, 1998; Jänig
and Baron, 2003; Li and Xing, 2012; Bartur et al., 2014; Li
et al., 2014; Muller et al., 2015; Stone and Kaufman, 2015).
This increased cardiovascular response to exercise can promote
exercise intolerance and complicate physical therapy as well as
increase the susceptibility to further cardiac events (Murphy
et al., 2011; Wang et al., 2012; Gibbons et al., 2015; Bacurau et al.,
2016), making this a clinically relevant complication of ischemic
injury.

In this review article, we will discuss the role of peripheral
afferents in sensing ischemic conditions in the periphery and
the changes that injuries can induce in the response properties
of these neurons. We will also examine how dynamic changes
in gene expression modulate afferent responses as a direct
consequence of changing external signals that include muscle
metabolites, cytokines and growth factors. Finally, we will
examine how the same peripheral nociceptors modulate the
cardiovascular responses to exercise and how this is a potential
mechanism for the development of chronic ischemic myalgia
(Figure 1).

ROLE OF PRIMARY MUSCLE AFFERENTS
IN DUALLY MODULATING ISCHEMIC
MYALGIA AND THE EXERCISE PRESSOR
REFLEX

Painful sensations in the muscle are detected by group III and
group IV primary afferents, which are the muscular analog
of cutaneous Aδ and C fibers. These thinly myelinated (Aδ)
and unmyelinated (C) neurons, whose cell bodies rest in the
dorsal root ganglia (DRG), consist primarily of a long axon that
gives rise to free nerve endings in the muscle tissue (Stacey,
1969; Messlinger, 1996). Some studies have also associated
these free nerve endings with the muscle microvasculature and
related their function with detecting specific changes in blood
vessel distention (Haouzi et al., 1995, 1999; Reinert et al.,
1998). While some of these muscle afferents are anatomically
close to the blood vessels in muscle tissue and even express
vasodilatory peptides (Molliver et al., 2005), it is known that these
afferents innervate different structures in the muscle, including
the perimysium, the peritendineum and even the muscle fascia

(Andres et al., 1985; Messlinger, 1996; Mense, 2010; Taguchi
et al., 2013). These sensory neurons also respond to a variety
of stimuli including mechanical deformation of the muscles, a
wide range of temperatures and changes in the intramuscular
chemical environment that includes protons, various metabolites
(e.g.: lactate, ATP, ADP) or in some cases noxious free radicals
like hydrogen peroxide (Mense and Schmidt, 1974; Kumazawa
and Mizumura, 1976; Kaufman et al., 1984; Iwamoto et al., 1985;
Delliaux et al., 2009; Xu and Brennan, 2009; McCord et al., 2010;
Jankowski et al., 2013; Sugiyama et al., 2017a,b).

Initially, group III and IV muscle afferents were studied to
determine their roles in the generation of the EPR (McCloskey
and Mitchell, 1972a; Iwamoto et al., 1985). Under normal
perfusion, muscle contractions may preferentially stimulate
group III afferents, but under ischemic conditions, group IV
muscle afferents may be preferentially activated (Kaufman
et al., 1984). Furthermore, ischemia increases the response to
contractions of about 50% of group IV muscle afferents but
only about 12% of group III afferents. Increased primary afferent
responses under ischemia lead to increased EPRs characterized
by a specific increase in the mean arterial pressure (MAP;
Tsuchimochi et al., 2010). This observation is supported by
similar findings in patients suffering from PVD (Baccelli et al.,
1999; Li and Xing, 2012; Stone and Kaufman, 2015). The results
thus suggest that there are specific subpopulations of group
III and IV afferents that are sensitized by ischemia (Kaufman
et al., 1984; Stone et al., 2015), and that these neurons can
respond to the specific metabolites produced by muscle activity
during impaired perfusion. Specifically, ATP (Kindig et al.,
2007; McCord et al., 2010; Stone et al., 2014), and low pH, as
consequence of increased lactic acid production (Immke and
McCleskey, 2001; Molliver et al., 2005; McCord et al., 2009;
Tsuchimochi et al., 2011; Pollak et al., 2014), can effectively
trigger responses from muscle sensory neurons.

In vitro studies from Light et al. (2008) using calcium
imaging on DRG neurons exposed to different concentrations
of metabolites solidify this concept. Different concentrations of
metabolites: pH between 7.6 and 6.2, lactate between 1 mM
and 50 mM, and ATP from 300 nM to 5 µM, all replicating
values observed in the muscle interstitium during mild to
extreme exercise, were used to stimulate cultured DRG neurons.
One of the most interesting findings is that if the metabolites
were applied alone, very few neurons would be activated.
However, lactate and ATP enhanced the responses induced by
low pH. ATP at very high concentrations could activate neurons
independently, but not at physiological concentrations. This
point is supported by behavioral experiments where stimulating
the muscles with ATP, lactate or low pH by themselves are unable
to induce painful responses (Gregory et al., 2015). Interestingly
the enhanced responses obtained by combining the metabolites
in a way that it resembled physiological conditions provided
effective neuronal activation that was more than additive in up
to 30% of the observed neurons. Only this combination of ATP,
lactate and protons was able to induce mechanical hyperalgesia
(Gregory et al., 2015).

Finally, two discrete populations of chemosensitive neurons
have been reported by Light et al. (2008). One population of
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neurons can be described as ‘‘low metabolite responders’’ which
increases their responses from pH 7.4 (1 mM lactate and 300 nM
ATP) up to pH 7.0 (15 mM lactate and 1 µM ATP). A second
population of ‘‘high metabolite responders’’ starts responding
around pH 7.0 (15 mM lactate 1 µM ATP) and increases in
responses up to pH 6.6 (50 mM lactate and 5 µM ATP).
These observations suggest that there is one group of primary
afferents that senses the chemical environment of the muscles
during normal work-related activity (metaboreceptors/‘‘low’’
metabolite responders), and a separate population that detects
concentrations of metabolites that are produced during noxious,
ischemic contractions (metabonociceptors/‘‘high’’ metabolite
responders). These sensory neurons may be an important
component of the sensory machinery involved in detecting
ischemia and ischemic injury in muscle tissue. Studies in
human volunteers support this notion. Subjects who received
an intramuscular injection of the ‘‘low metabolite’’ mixture,
reported a sensation of muscle fatigue. In contrast, when
volunteers were injected with the higher concentration mixture
of these metabolites, they reported a painful sensation (Pollak
et al., 2014).

The different subpopulations of primary muscle
afferents which include mechanoreceptors, thermoreceptors,
chemoreceptors and their nociceptive variants (metaboreceptors
and metabonociceptors), as well as polymodal nociceptors
have been extensively characterized electrophysiologically both
in vitro and ex vivo (Kaufman et al., 1984; Light et al., 2008;
Jankowski et al., 2013; Ross et al., 2014, 2016; Stone et al., 2015;
Queme et al., 2016). Single unit recordings using an ex vivo
muscle/nerve/DRG/spinal cord preparation, found that about
70% of group III neurons are mechanically sensitive compared
to only about 30% of group IV afferents. Most of the group IV
sensory fibers (∼60%) were chemosensitive. In line with the
work of Light et al. (2008), two discrete populations of neurons
were also observed in these studies: one responded to a ‘‘low
metabolite’’ mixture (15 mM lactate, 1 µM ATP, pH 7.0) and
one to a ‘‘high metabolite’’ mixture (50 mM lactate, 5 µM ATP,
pH 6.6). These metabolite responsive subtypes correspond to
the metaboreceptor (‘‘low’’ responders) and metabonociceptor
(‘‘high’’ responders) populations. Moreover, the response
characteristics of these neurons seem to be mutually exclusive, as
very few neurons responded to both combinations of metabolites
under naïve/uninjured conditions (Jankowski et al., 2013; Ross
et al., 2014, 2016; Queme et al., 2016).

The two previously mentioned sub-populations of
metaboreceptors (‘‘low metabolite’’ responders) and metabo-
nociceptors (‘‘high metabolite’’ responders) along with their
response properties are extensively altered following ischemic
injury. Transient or prolonged ischemic insult to the muscles
decreased mechanical thresholds and increased firing to
mechanical stimulation in group III and IV muscle afferents
(Ross et al., 2014, 2016; Queme et al., 2016). The responsiveness
to ‘‘low metabolites’’ was also increased after I/R (Ross et al.,
2014, 2016). A striking finding of these studies was that after
ischemic injury, the number of metaboreceptors in the DRG was
decreased compared to un-injured controls. This was concurrent
with an increase in afferents responsive to both noxious and

non-noxious metabolite stimulation; a population that is not
readily detectable under naïve conditions (Ross et al., 2014, 2016;
Queme et al., 2016). The appearance of this novel population of
chemosensitive muscle afferents suggests a phenotypic switch in
the composition of afferents in the DRG after injury.

The increased mechanical sensitivity in primary afferents as
well as the enhanced response to ‘‘low metabolites’’, combined
with the greater number of afferents responding to both noxious
and non-noxious metabolite stimuli, correlate with increased
behavioral responses after ischemic injury. In rats, models that
cause ischemia-reperfusion via a hind limb tourniquet induced
mechanical hyperalgesia and allodynia in the treated animals,
accompanied by cold hyperalgesia (Coderre et al., 2004). The
animals in this study also showed spontaneous pain-related
behaviors and contralateral pain. Moreover, this type of ischemia
did not seem to induce significant nerve damage (Coderre et al.,
2004), suggesting that the observed changes in behavior are
not due to ischemia-induced neuropathy. Experiments using
a surgical occlusion of the arterial blood flow to the upper
extremities had similar findings. A model of prolonged ischemic
injury using an 18–24 h occlusion of the brachial artery (BAO)
induced paw guarding behaviors (a surrogate for spontaneous
pain), increased mechanical hypersensitivity and decreased grip
strength (Ross et al., 2014; Queme et al., 2016). I/R injury
presented similar changes to the prolonged ischemic injury
model, although injured animals recovered slightly faster than
in the BAO model (Ross et al., 2014). In line with other animal
models of pain (e.g., inflammation; Cobos et al., 2012; Grace
et al., 2014), I/R also induced decreased voluntary activity (Ross
et al., 2014, 2016). Altogether, these reports show the importance
of primary muscle afferents in dually regulating pain and EPRs
after ischemic insults to the periphery.

RECEPTOR MECHANISMS OF MUSCLE
SENSORY NEURON SENSITIZATION
AFTER ISCHEMIC INJURY

After ischemic injury to the periphery, a diversity of channels
and membrane receptors are upregulated in the DRGs (Figure 2).
Many of these receptors have been linked with the sensitization
of afferents, leading to the development of pain or modulation
of the EPR. For example, the transient receptor potential (TRP)
cation channel vanilloid receptor 1 (TRPV1), appears to mediate
increased neuronal responses (Xing et al., 2008) and acid evoked
thermal hyperalgesia (Kwon et al., 2014) in animals with a
femoral artery occlusion (Seo et al., 2008). Other models show
significant increases in the expression of P2X3/4/5, ASIC3 and
P2Y1, which have also been linked to muscle afferent function,
pain manifestation and EPR modulation post ischemia (McCord
et al., 2009, 2010; Liu et al., 2010; Seo et al., 2010; Queme et al.,
2016; Ross et al., 2016).

TRPV1 has been associated with the development of ischemic
pain in different models. Studies in humanized hemoglobin
transgenic SCD mice have shown that TRPV1 plays a role
in cutaneous afferent sensitization (Hillery et al., 2011). Since
SCD-induced vaso-occlusive crises primarily affect deep tissues,
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FIGURE 2 | Reported changes in dorsal root ganglia (DRG) receptor
expression after peripheral ischemic injury. (A) In uninjured/naive DRGs,
receptors like ASIC3 are expressed in less than 50% of the sensory neurons
and often co-expressed with different purinergic receptors like P2X3 or P2X5.
Both of these receptors are reported to be expressed in more than half of the
primary afferents. (B) After ischemic injury, there is an increase in the total
number of DRG cells that are positive for ASIC3 and P2X3 (single and dual
expression within neurons). Other receptors like TRPV1, P2Y1, P2X4 and
ASIC1 also show increased expression after ischemic injury but the details of
their distribution or co-expression after this specific injury are still unknown.
Immune cells often infiltrate the tissue of the DRG in other painful conditions.
Their role (along with satellite glia) in pain modulation in the context of
peripheral ischemia however, has yet to be described.

it’s reasonable to suggest that TRPV1 also plays a role in the
development of chronic pain in SCD. A model of thrombus
induced ischemic pain (TIIP) also showed that there is increased
expression of TRPV1 24 h after injury (Xing et al., 2008,
2009), and DRG neurons recorded in vitro from these animals
showed increased responses to capsaicin, a TRPV1 agonist,
compared to neurons from sham animals. Also in this model,
there was an increase in the sympathetic response to arterial
injection of capsaicin in the animals exposed to femoral artery
occlusion compared to controls. In another femoral occlusion
model, the pressor response evoked by intra-arterial injection
of capsaicin into the injured hind limb more than doubled
the response elicited by the same injection in the contralateral,
uninjured limb (Tsuchimochi et al., 2010). Collectively, this
suggests a role for TRPV1 in both pain and EPR modulation post
ischemia.

However, these findings are in contrast with other reports
in which gene expression analysis in male mouse DRGs that
innervate muscle tissue exposed to I/R or prolonged BAO
injury did not show changes in TRPV1 mRNA expression 24 h
after injury (Ross et al., 2014). Increased phosphorylation of
TRPV1 has been suggested as a mechanism for acid evoked
thermal hyperalgesia in the previously described model of TIIP
(Kwon et al., 2014) and these alternative modifications may
be a reason for this discrepancy. Nevertheless, the response of
cultured DRG neurons to different combinations of metabolites

simulating an ischemic environment is not altered by the
presence of the TRPV1 antagonist JYL-1433 and are only
partially blocked by the TRPV1 antagonist LJO-328 at doses that
completely blocked the response to capsaicin in these neurons
(Light et al., 2008). Future research on TRPV1 function in
ischemic myalgia development and EPR modulation is therefore
warranted.

There is ample evidence for the role of P2 receptors and
how they affect afferent response to ischemia. As an example,
the non-selective P2 receptor inhibitor PPADS, attenuates the
EPR elicited by static contraction of the muscle (Kindig et al.,
2007; McCord et al., 2010). Furthermore, usage of more specific
P2X antagonists A-317491 and RO-3, had similar effects in
the increased cardiovascular response induced either by static
muscle contractions or by post-contraction ischemia (McCord
et al., 2010). A similar effect of P2X channel antagonists
on the EPR was also observed in a rat model of peripheral
arterial insufficiency where blockade of the purinergic receptors
prevented the enhanced EPR after ischemic injury (Stone
et al., 2014). These channels also likely play an important
role in modulating specific functional response properties of
each afferent population. Immunocytochemical analysis of the
functionally characterized DRG cells revealed that neurons
responding to ‘‘low metabolites’’, do not express ASIC3 while
the subpopulation of neurons that is activated by noxious,
pain inducing ‘‘high metabolites’’ usually expresses ASIC3 or
TRPV1 ion channels. P2X3 appeared to be expressed in both
populations (Ross et al., 2014, 2016; Queme et al., 2016).

ASIC and P2X receptors may also be key players in the
afferent sensitization that is observed after ischemic injury (Dunn
et al., 2001; Immke and McCleskey, 2001; North, 2002, 2004; Yagi
et al., 2006; Birdsong et al., 2010; Liu et al., 2011). These channels
may mediate the perception of fatigue and ischemic pain under
normal conditions (Light et al., 2008; Birdsong et al., 2010).
The importance of their interactions sensing the intramuscular
chemical environment is highlighted by the fact that neuronal
responses to low concentrations of combined ATP, lactate and
low pH are blocked by low concentrations of the P2X antagonist
trinitrophenyl-adenosine triphosphate (TNP-ATP). Low doses
of this antagonist target only P2X5, suggesting it may play a role
in sensing fatigue. At higher concentrations, TNP-ATP blocks
responses to various concentrations of metabolites in the same
way as the nonspecific P2 receptor antagonist PPADS (Light
et al., 2008). This suggests that sensing of the more noxious ‘‘high
metabolites’’ is dependent upon the combined action of different
P2X receptors.

The role of other P2X receptors in the development of
ischemic myalgia is less clear. P2X3 is upregulated after
I/R injuries and the total number of positive neurons in
the DRG innervating ischemia-affected muscle tissue are also
increased (Cairns et al., 2003; Ross et al., 2014, 2016; Queme
et al., 2016). The role of P2X3 in muscle pain development
however, has been linked to inflammation. P2X3 is highly
expressed in both inflammatory and post-contraction models
of masseter muscle pain (Noma et al., 2013; Tariba Kneževíc
et al., 2016). The connection to inflammatory responses is
strengthened by the fact that increased expression of P2X3 and
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the subsequent decrease in head withdrawal thresholds observed
in the post-contraction muscle pain model can be prevented
by injection of interleukin 1β (IL1β) antagonists into the
affected muscle. Furthermore, injection of a P2X3 selective
antagonist prevents the decreased head withdrawal threshold,
suggesting that the mechanical hypersensitivity is due to
P2X3 activity (Noma et al., 2013). P2X3 has further been
proposed to modulate the EPR enhancement resulting from
ischemic injury (McCord et al., 2010). Specific P2X3 subunit
knock-down using antisense oligonucleotides decreases acute
inflammation-induced mechanical and thermal hyperalgesia, as
well as the mechanical allodynia observed after spinal nerve
ligation (Barclay et al., 2002; Honore et al., 2002; North, 2004),
suggesting a role for P2X3 upregulation in the development of
pain. However, these studies only assessed cutaneous pain-like
behaviors. In the case of P2X4, there is an upregulation of
mRNA extracted from whole DRG lysates, after I/R injury
(Ross et al., 2014). Nonetheless, the expression profile of this
receptor does not seem to be confined to the populations of small
sensory neurons that are typically associated with nociception
(Chen et al., 2016). Therefore, more research is needed to fully
decipher the involvement, if any, of P2X4 on ischemic myalgia
development and EPR regulation.

P2X receptors also modulate the function of ASIC3, another
key mediator of pain generation. Targeting this acid-sensing
ion channel can effectively reduce muscle pain in different
animal models (Sluka et al., 2007; Fujii et al., 2008; Walder
et al., 2011; Ross et al., 2016). Multiple mechanisms have been
proposed on how changes in the function of ASIC3 can lead to
increased afferent sensitization; including increased expression
(Dworkin et al., 1994; Liu et al., 2010; Ross et al., 2016), enhanced
membrane translocation (Queme et al., 2016) and increased
synergy with other receptors (Birdsong et al., 2010), specifically
purinergic receptors. The selective ASIC3 antagonist A-317567
has also been found to be effective at preventing the neuronal
responses to different concentration of metabolites suggesting
that sensing ischemia requires both P2X and ASIC3 activity. This
interaction was later confirmed by an in vitro study showing that
ATP enhances the response of ASIC3 to low pH. In this report,
only the interaction between P2X5 and ASIC3 activation mimics
the enhanced response to low pH and ATP that is observed
in sensory neurons. Furthermore, about 25% of DRG neurons
express P2X5 and of these neurons, about half co-express ASIC3
(Birdsong et al., 2010). While these findings are suggestive of
possible modulation of ASIC3 sensitivity by P2X5, definitive
confirmation in DRG neurons in vivo or ex vivo is still required.

In the specific context of ischemia, total DRG ASIC3 mRNA
expression is increased in different injury models, and the
total number of ASIC3 positive cells in the DRG increases
(Queme et al., 2016; Ross et al., 2016). Moreover, the observed
mechanical sensitization and the phenotypic switch in the
metabolite response properties of DRG neurons that is observed
after I/R is completely prevented (Ross et al., 2016). Both
P2X receptors and ASICs are key players in the sensory
component of the EPR (McCord et al., 2009, 2010). The
increased cardiovascular response to exercise observed during
ischemic conditions (Tsuchimochi et al., 2010) is attenuated

by the individual blockade of either ASICs or P2X receptors
(Tsuchimochi et al., 2011; Stone et al., 2014) suggesting a role
for these channels in dually regulating both pain and sympathetic
reflexes after ischemia.

P2X receptors are not the only purinergic receptors that are
relevant after ischemic injuries. In a prolonged ischemia model,
expression of the ADP sensitive, P2Y1 receptor, was found to be
upregulated in the DRGs (Ross et al., 2014; Queme et al., 2016).
Often associated with thermal hyperalgesia (Molliver et al., 2011;
Jankowski et al., 2012; Queme et al., 2016), P2Y1 upregulation
in the DRG was reported to modulate the increased pain related
behaviors observed after ischemic insult (Queme et al., 2016).
Similar results were found in the TIIP model, where blockade
of P2Y1 with the selective antagonist MRS2179 prevented the
induction of thermal hyperalgesia by low pH saline injections
(Kwon et al., 2014). Altogether, these data suggest a diverse
array of receptors and channels within group III and IV muscle
afferents contribute to the development of pain and modulate the
EPRs after peripheral ischemia.

ROLE OF CYTOKINES AND GROWTH
FACTORS IN ISCHEMIC MYALGIA
DEVELOPMENT AND EPR MODULATION

Ischemic injury alone does not likely drive all of the
aforementioned changes in primary muscle afferents. Increased
gene expression and concomitant afferent sensitization can also
be linked to increased signaling from the damaged muscle tissue.
Current evidence points at two important sources: cytokines
and growth factors. These molecules are released into the
intramuscular environment in response to the tissue damage
caused by ischemia (Ascer et al., 1992a,b; Seekamp et al., 1993;
Sternbergh et al., 1994; Emanueli et al., 2002; Turrini et al., 2002;
Ross et al., 2014, 2016). These substances can trigger painful
responses and induce peripheral afferent sensitization (Oprée
and Kress, 2000; Airaksinen and Saarma, 2002; Obreja et al.,
2002; Amaya et al., 2004; Makowska et al., 2005; Anand et al.,
2006; Binshtok et al., 2008; Svensson et al., 2008; Yang et al.,
2013; Ross et al., 2016). Some of the most common factors in
this context are: nerve growth factor (NGF), glial cell line derived
neurotrophic factor (GDNF) and inflammatory cytokines.

NGF has been frequently linked with the development of
pain and hyperalgesia in various animal models and clinical
conditions (Amaya et al., 2004; Price et al., 2005; Hoheisel et al.,
2007; Hayashi et al., 2011). In the context of muscle ischemia,
NGF plays an important role in the repair of both vasculature
and muscle tissue (Emanueli et al., 2002; Turrini et al., 2002;
Karatzas et al., 2013; Diao et al., 2016). At the same time, NGF
has pro-nociceptive effects through modulation of the response
properties of group III and IV afferents (Hoheisel et al., 2005;
Ellrich and Makowska, 2007; Svensson et al., 2008; Murase et al.,
2010). NGF also seems to play a role in the development of
exacerbated EPRs during ischemia. Administration of anti-NGF
antibodies can prevent the increase in arterial pressure and heart
rate observed during exercise in the femoral artery ligation model
(Lu et al., 2012).
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GDNF, another growth factor frequently tied to pain
perception, is highly expressed in the muscles after ischemic
injuries (Ross et al., 2014). It has been shown to induce muscle
mechanical hyperalgesia after intense muscle contractions, and
to potentiate afferent responses downstream of cyclo-oxygenase
2 signaling (Murase et al., 2013). Evidence of this comes from
studies in male rats showing that mechanical hyperalgesia can
be directly induced by intramuscular injection of GDNF. This
increased response to mechanical stimulation can be reverted
by administering the non-specific ASIC antagonist amiloride
but not by capsazepine (Murase et al., 2014), suggesting
that its sensitization effects are ASIC dependent with no
involvement of TRPV1. So far, the relationship between GDNF
and the EPR has not been studied. Nevertheless, previous
research strongly suggests that NGF and GDNF signaling is an
important component in the development of pain and increased
cardiovascular responses after ischemic injuries.

One of the better characterized pro-nociceptive signals that
is increased in injured muscles after ischemic injury is IL1β.
This cytokine has been associated with pain development in
multiple models ranging from muscle overuse (Noma et al.,
2013; Borghi et al., 2014), to inflammation (Wang et al., 2015)
and nerve injury (Gui et al., 2016). IL1β levels are increased
in muscle tissue after acute intense swimming (Borghi et al.,
2014), and administration of an IL1β antagonist before and
12 h after exercise prevents the development of mechanical
hyperalgesia (Borghi et al., 2014). These findings point to IL1β

as an important molecule in the development of muscle pain
after injury. In the context of ischemia, the IL1β receptor
IL1r1, is also upregulated in the DRG (Ross et al., 2014).
Preventing this upregulation through nerve targeted siRNA
injections can prevent the development of pain-related behaviors
in I/R-affected mice. This strategy is also effective in preventing
I/R-induced group III and IV muscle afferent sensitization,
as well as the phenotypic switch in the metabolite response
properties of these neurons (Ross et al., 2016). While the
pronociceptive qualities of IL1β are very well established, the
role of cytokines in the modulation of the EPR during ischemia
is still under investigation. One of the cytokines frequently
associated with increased primary afferent responsiveness and
pain, interleukin-6 (IL-6), has been linked with increased EPR
in response to muscle contractions in a femoral ligation model
(Copp et al., 2015). The contribution of cytokine signaling
to changes in the EPR after ischemic injury is therefore
an important question for future research that needs to be
addressed.

Another possible site of action for these various cytokines and
growth factors is the DRG itself. Reports have highlighted the
contributions of glial cells through cytokine release in models
of neuropathic pain (Mika et al., 2013). The modulation of pain
transmission through regulation of purinergic receptors in glia
has also been described (Villa et al., 2010). Increased macrophage
infiltration in DRG can be linked to the development of pain after
peripheral nerve injury due to their ability to release cytokines
and growth factors (Scholz and Woolf, 2007; Zhang et al., 2016).
These data suggest that immune cells and resident glia in the
DRG could also play a significant role in the modulation of

ischemic pain. Yet, the specific function, if any, of glia or other
immune cells in the context of peripheral ischemic injuries is still
unknown and should be the subject of future research.

SEX DIFFERENCES IN PRIMARY MUSCLE
AFFERENT SENSITIZATION AFTER
ISCHEMIC INJURY

Chronic pain conditions are more prevalent in women
(Wijnhoven et al., 2006a,b; Greenspan et al., 2007; Bartley and
Fillingim, 2013). Multiple clinical and basic studies have shown
that females are more sensitive to noxious stimulation, and
more likely to require greater amounts of opioids relative to
body weight following trauma or surgery (Mogil et al., 1993;
Bell et al., 1994; Riley et al., 1998; Kalkman et al., 2003; Craft
et al., 2004; Fillingim and Gear, 2004; Greenspan et al., 2007;
Mogil and Bailey, 2010; Bartley and Fillingim, 2013; Sadhasivam
et al., 2015). Furthermore, men and women have differing
genetic predispositions to pain sensitivity (Kindler et al., 2011;
Belfer et al., 2013; Wieskopf et al., 2015), which have also been
documented in animal models (Mogil and Belknap, 1997; Mogil
et al., 1997, 2000, 2011; LaCroix-Fralish et al., 2005; Juni et al.,
2010; Belfer et al., 2013).

Recent studies have provided evidence for sex-dependent
immune reactions that lead to differential brain and spinal cord
sensitization mechanisms in a variety of rodent injury models
(Sorge et al., 2011, 2015; Posillico et al., 2015; Doyle et al., 2017),
but little is known about how these processes may affect primary
muscle afferent function. One study, analyzing male and female
gastrocnemius afferents, found that contrary to in vivo behavioral
results suggesting lower mechanical thresholds in females,
mechanical thresholds were found to be significantly higher in
females during patch clamp recordings of retrogradely labeled
afferents (Hendrich et al., 2012). Additionally, sex differences
in glutamate response within the primary muscle afferents have
been described in both humans and rodents (Cairns et al., 2001);
however, basic studies of sex effects on group III and IV muscle
afferent plasticity, particularly following ischemic insult, have
been limited. Because of known sexual dimorphisms in disease
severity and long-term outcomes in multiple conditions linked to
ischemic myalgia (Wijnhoven et al., 2006b; Bartley and Fillingim,
2013; Gommans et al., 2015), including the increased occurance
of CRPS (de Mos et al., 2007) and FM in women (Gran, 2003),
female subjects should be considered for inclusion in future
studies of ischemic muscle pain.

In our own investigation of female muscle afferents, we have
found distinct changes in gene expression within the affected
DRGs following I/R. Whereas males show a robust upregulation
of ASIC3 after I/R, which corresponded with alterations in
behavior and afferent sensitivity (Ross et al., 2014, 2016),
ASIC3 levels in females are not affected with this type of injury
(Ross, 2017), suggesting that ASIC3 may not serve a similar
role in I/R-induced plasticity in females as it does in males.
Additionally, TRPV1 and TRPM8 were found to be substantially
increased in females, but not males, 1 day after I/R, which
may relate to sex- and injury-dependent changes in thermal
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responsiveness in individual group III and IV muscle afferents
(Ross, 2017).

Interestingly, human and animal studies have shown that
females also have decreased EPRs compared to males (Ettinger
et al., 1996; Schmitt and Kaufman, 2003; Ives et al., 2013). As
ASIC3 and TRPV1 have both been shown to be integral to
this reflex (Kaufman and Hayes, 2002; Li et al., 2008; Xing
et al., 2008, 2009, 2012; Mizuno et al., 2011; Kaufman, 2012),
further investigation of the sex- and injury-dependent expression
of these channels is crucial to understanding the contributions
of group III and IV muscle afferents to both pain sensitivity
and EPRs.

CLINICAL SIGNIFICANCE

Adequate management of the multiple complications in patients
with ischemic injuries presents a variety of challenges. While
patients with conditions like PVD and FM experience great
benefits from an active lifestyle and physical therapy (Busch et al.,
2011; Castro-Sánchez et al., 2013, 2014), in many cases the first
barrier to therapy adherence is the underlying pain, sometimes
so limiting that can lead to an excessively sedentary lifestyle. The
decreased activity level that follows has also been linked with
increased cardiovascular risk in FM patients (Su et al., 2015;
Acosta-Manzano et al., 2017).

SCD presents different challenges. Many patients with this
condition are children and teenagers (Wilson and Nelson,
2015). Advances in therapies have significantly improved the
life expectancy of these patients but with longer life spans
new complications have arisen. The repeated ischemic injuries
derived from repeated vaso-occlusive crises during the lifespan
do not only result in acute painful events but can develop
into intractable chronic pain (Peters et al., 2005). Current
therapeutic strategies focus mainly in the treatment of the acute
ischemic events (Yawn et al., 2014). Classically, pain in this
type of conditions has been managed using different regimes
of opioid analgesic therapies (Chou et al., 2009). A case can
be made for the use of opioids in the acute setting during a
vaso-occlusive crisis in SCD. However, long-term use of this
therapeutic approach not only incurs the risk of developing

dependence but may also be ineffective as a treatment of
chronic pain (Peters et al., 2005; Painter and Crofford, 2013;
Wilson and Nelson, 2015). Another clinically relevant issue is
that sensitization of primary muscle afferents may occur in
a sex-dependent manner and this may underlie the differing
prevalence of chronic pain and cardiovascular dysfunction in
men and women, which could have implications for preventative
care and therapeutics.

CONCLUDING REMARKS

Skeletal muscle ischemia is a strong driver of peripheral afferent
sensitization, exerting robust effects through complex signaling
cascades, resulting in the development of deep tissue pain and
altered EPRs (Figure 1). Multiple studies in animal models have
shown a strong link in the role of group III and IV muscle
afferents as nociceptors and chemoreceptors. These physiological
responses to ischemic injury allow tissue repair by causing
changes in tissue perfusion and prevent further damage by
triggering painful responses to normal stimuli. How these basic
mechanisms are tied to the development of chronic pain and
altered EPRs is still under investigation. Research aimed at the
basic mechanisms involved in the chronification of pain or EPR
function in conditions that feature skeletal muscle ischemia need
to be prioritized in order to guide the development of new
therapies for these patients.
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