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Neurogenesis, especially neurite outgrowth is an essential element of neuroplasticity
after cerebral ischemic injury. Mitochondria may supply ATP to power fundamental
developmental processes including neuroplasticity. Although rosuvastatin (RSV) displays
a potential protective effect against cerebral ischemia, it remains unknown whether
it modulates mitochondrial biogenesis and function during neurite outgrowth. Here,
the oxygen-glucose deprivation (OGD) model was used to induce ischemic injury. We
demonstrate that RSV treatment significantly increases neurite outgrowth in cortical
neurons after OGD-induced damage. Moreover, we show that RSV reduces the
generation of reactive oxygen species (ROS), protects mitochondrial function, and
elevates the ATP levels in cortical neurons injured by OGD. In addition, we found
that, under these conditions, RSV treatment increases the mitochondrial DNA (mtDNA)
content and the mRNA levels of mitochondrial transcription factor A (TFAM) and
nuclear respiratory factor 1 (NRF-1). Furthermore, blocking Notch1, which is expressed
in primary cortical neurons, reverses the RSV-dependent induction of mitochondrial
biogenesis and function under OGD conditions. Collectively, these results suggest that
RSV could restore neurite outgrowth in cortical neurons damaged by OGD in vitro,
by preserving mitochondrial function and improving mitochondrial biogenesis, possibly
through the Notch1 pathway.
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INTRODUCTION

Stroke is one of the leading causes of long-term disability and death worldwide and affects the
patients’ emotional, mental and physical health (Thampy and Pais, 2016). Neurogenesis including
the regulation of neurite outgrowth is believed to be vital as a mechanism of neuroplasticity after
cerebral ischemic injury (Kitamura et al., 2009; Lin and Sheng, 2015). Therefore, targeting neurite
outgrowth represents a prospective therapeutic strategy for stroke patients.

Neurite outgrowth is a developmental process that requires a heavy energy supply,
provided by the mitochondria (Mattson and Partin, 1999). However, the disruption of oxygen
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and glucose supply, which is caused by stroke and mimicked
by the in vitro oxygen-glucose deprivation (OGD) model, can
produce a large number of reactive oxygen species (ROS) and
lead to the depletion of cellular ATP (Rousset et al., 2015).
Mitochondria are highly dynamic organelles and continually
undergo biogenesis, fission and fusion (Anne Stetler et al.,
2013). Maintaining a proper mitochondrial function depends
on correct mitochondrial biogenesis (Sbert-Roig et al., 2016).
Numerous studies have shown that mitochondrial dysfunction,
especially regarding biogenesis, plays a crucial role in ischemic
injury (McLeod et al., 2005; Gutsaeva et al., 2008). Therefore,
identifying pharmacological agents that preserve mitochondrial
functions and promote neurite outgrowth against cerebral
ischemic injury might be an ideal therapeutic strategy.

Statins are structural analogs of the 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA), the substrate of
HMG-CoA reductase, and have been used as potent cholesterol-
lowering drugs for the treatment of hypercholesterolaemia and
coronary heart disease (Stein, 2002; Rader, 2003). Many studies
have shown that statins reduce stroke incidence and improve
its outcome (Bösel et al., 2005). The role of statins in neurite
outgrowth has been proposed by previous studies (Jin et al.,
2012; Métais et al., 2015). Rosuvastatin (RSV) is considered as
one of the most effective statins and is able to ability to form
multiple polar covalent bonds with the HMG-CoA reductase. In
mice, RSV was shown to have a neuroprotective effect following
cerebral ischemia. Accumulating evidence suggests that statins
decrease the oxidative phosphorylation capacity and membrane
potential of mitochondria, thus impairing their function
(Broniarek and Jarmuszkiewicz, 2016), However, a recent
study reported that, in the kidneys of wild type C57BL/6 male
mice, RSV increases the protein levels of Sirt1 and PGC-1a,
two key players in mitochondrial biogenesis (Corsetti et al.,
2014). Nevertheless, it is not completely clear whether RSV
modulates mitochondrial function and biogenesis during neurite
outgrowth.

The Notch pathway constitutes one of the most
well-conserved developmental pathways throughout evolution.
It controls both cell proliferation and apoptosis and is crucial
for intercellular interactions in human development as well as in
disease (Artavanis-Tsakonas et al., 1999; Bi and Kuang, 2015).
A lot of attention has been paid to understanding how this
pathway regulates cellular metabolism. Notch1, a well-studied
protein, plays a significant role in this pathway (Kageyama et al.,
2007). Recent studies have shown that the Notch1 pathway
regulates mitochondrial fusion (Kasahara et al., 2013), but
also affects their function (Basak et al., 2014), indicating that
Notch1 is crucial in mitochondrial metabolism. Furthermore,
the activation of Notch1 modulates the expression of important
mitochondria-localized metabolic pathway proteins (Basak et al.,
2014). Additionally, a previous study reported that Notch1 may
exert a negative effect on neurite outgrowth (Berezovska et al.,
1999). However, whether Notch1 mediates the protective effect
of RSV on neurite outgrowth following ischemic injury is still
not clear.

Based on this evidence, this study was designed to
investigate the role of mitochondrial function and biogenesis

in RSV-induced neurite outgrowth. We also attempted to
determine the role of Notch1 in promoting the effects of RSV, in
order to further elucidate the potential mechanism of its action.

MATERIALS AND METHODS

The experimental protocols were conducted in accordance with
guidelines approved by the Animal Experimentation Ethics
Committee of Hebei Medical University.

Primary Cortical Neuron Culture and OGD
Cortical neurons were obtained from the brains of embryonic day
15–18 (E15–18) C57BL/6 mice (Vital River Laboratory Animal
Technology Co. Ltd., Beijing, China). The cerebral cortex was
dissected and incubated at 37◦C, for 15 min, in Hibernate-E
solution (Sigma, Ronkonkoma, NY, USA), supplemented with
papain (2.0 mg/ml, Sigma, Ronkonkoma, NY, USA). Then,
the cortical tissues were neutralized and dissociated into single
cells in Neurobasal medium containing 2% B-27 supplement
(Invitrogen, Carlsbad, CA, USA) and 0.5 mM glutamine (Life
Technologies, Carlsbad, CA, USA). Cells were plated at a density
of 2 × 105 cells/cm2 onto culture dishes, which had been
coated with poly-L-lysine (Biocoat, BD Biosciences, San Jose, CA,
USA), and grown in the same medium in a humidified 5% CO2
incubator at 37◦C. In the present study, OGD was used to induce
ischemia. To initiate ischemia, we used the same incubator in
combination with a Hypoxic Workstation (gas mixture of 0.1%
O2, 94.9% N2 and 5% CO2, 37◦C).

Drug Application
Neurons were pre-exposed to OGD conditions for 1 h and
subsequently treated with different concertrations of RSV
(0.5, 5, or 50 µM) for 48 h. Cells not treated with RSV or
OGD served as a negative control. To evaluate the effect of
Notch1 on mitochondrial function and biogenesis, a potent and
specific inhibitor of the Notch1 pathway, DAPT, N-[N-(3,5-
difluorophenacetyl)-L-alanyl]-S-phenylglycinet-butyl ester, was
added to the medium at 10 µM (in 0.1% dimethyl sulfoxide;
Sigma, USA), 30 min before the RSV treatment.

Neurite Outgrowth Assay
After 48 h of drug application, primary cortical neurons were
fixed with 4% paraformaldehyde for 20 min and then processed
for immunocytochemistry. Briefly, neurons were incubated
with the mouse monoclonal anti-β-III-tubulin antibody (Tuj-1,
1:500, Sigma, USA) overnight at 4◦C, followed by the donkey
anti-mouse IgG, FITC-conjugated secondary antibody (1:200,
CWBIO, China) for 1 h at 37◦C. Stained cells were imaged
with an upright fluorescence microscope (Olympus, Japan).
The length of the longest neurite of a Tuj-1-positive cell and
the total neurite length per cell were measured using ImageJ
software. Approximately 60 Tuj-1-positive cells per condition
were measured.

Measurement of Mitochondrial Membrane
Potential (MMP)
The Mitochondrial Membrane Potential (MMP) of cortical
neurons in different conditions was measured by using the JC-1
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assay kit (Beyotime, China), according to the manufacturer’s
instructions. In brief, after the described treatments, neurons
were collected and incubated with JC-1 staining solution
(5 µg/mL) for 20 min at 37◦C. Cells were then rinsed twice
with JC-1 staining buffer and centrifuged at 600× g at 4◦C for
15 min. The cells were resuspended with JC-1 staining buffer and
the fluorescence intensity was detected using a monochromator
microplate reader (Tecan, Switzerland). Fluorescence images
were also obtained in green or red channels using an upright
fluorescence microscope (Olympus, Japan). The fluorescence
at 529 (green) and 590 (red) nm was measured using the
monochromator microplate reader. The ratio of red to green
fluorescence in different conditions was normalized to the
respective one in the control condition, which was considered to
have 100% MMP, and plotted graphically. Data were presented
as percent of control.

Measurement of ROS
Intracellular ROS levels were quantified with the ROS assay
kit (Beyotime, China) as previously reported (He et al.,
2017). In brief, cortical neurons were incubated with 10 µM
2,7-dichlorofluorescein diacetate (DCF-DA) for 1 h at 37◦C
in the dark and then resuspended in PBS. Intracellular ROS
production indicated by the fluorescence intensity of the
probe 2,7-dichlorodihydro-fluorescein diacetate (H2DCF-DA)
was detected using a luminescence spectrometer with the
excitation source set at 488 nm and the emission one at 525 nm.
The values obtained at various conditions were expressed as the
percentage change compared to the control condition.

Detection of Cellular ATP Levels
The cellular ATP levels were determined using an ATP assay kit
according to the manufacturer’s instructions (Beyotime, China).
Luminesence was measured with a monochromatic microplate
reader (Tecan, Switzerland). Data were presented as percentages
compared to the control condition.

Mitochondrial DNA (mtDNA) Quantification
Total DNA from cortical neurons was extracted using the
DNeasy Blood and Tissue kit (Qiagen, Germantown, MD, USA)
according to previous reports (Tian et al., 2017). Mitochondrial
DNA (mtDNA) copy number was measured by real-time PCR
using an ABI 7500 real-time PCR system (Applied Biosystems,
Foster, CA, USA) with the SYBR Green detection method. The
relative mtDNA copy number was determined by comparison
to nuclear DNA (rRNA 18S). The primers for mtDNA were as
follows: forward: 5′-AACACGA TCAGGCAACCAAA-3′, and
reverse: 5′-GGTAGCGGGTGAGTTGTCAG-3′. The primers for
rRNA 18S were: forward: 5′-GGACAGCGGGTGAGTTGTCA-
3′, and reverse: 5′-ACCTTCGTTATCGGAATACC-3′.

Quantitative Real-Time PCR
Quantitative real-time PCR (qRT-PCR) was performed
according to previous reports (Dai et al., 2014; He et al.,
2016). Briefly, total RNA was isolated from cortical neurons
using Trizol reagent (Invitrogen, Carlsbad, CA, USA). Reverse
transcription was carried out using the First-strand cDNA

synthesis kit (Fermentas International Inc., Burlington, Canada)
and the cDNA was amplified by a real-time PCR system
(Applied Biosystems, Carlsbad, CA, USA) in the presence of a
fluorescent dye (SYBRGreen I, CWBIO). The relative abundance
of specific mRNAs was calculated after normalization with the
glyceraldehyde 3-phosphate dehydrogenase mRNA. The samples
were tested in triplicates. Primers for all qRT-PCR experiments
were listed as follows:

NRF-1: forward: 5′-GAGTGACCCAAACCGAACA-3′,
reverse: 5′-GGAGTTGA GTATGTCCGAGT-3′;

TFAM: forward: 5′-GGTGTATGAAGCGGATTT-3′,
reverse: 5′-CTTTCTTCTTTAGGCGTTT-3′;

GAPDH: forward: 5′-AAGGTGAAGGTCGGAGTCAA-3′,
reverse: 5′-AATGAAGGGGTCATTGATGG-3′.

Statistical Analysis
Statistical analysis was performed using SPSS version 16.0. All
data were presented as mean ± SEM. One-way analysis of
variance (ANOVA) was performed for comparisons among
groups, and SNK-q test was used for post hoc multiple
comparisons. ∗p < 0.05 was considered to be statistically
significant.

RESULTS

RSV Restores Neuritogenesis in Cortical
Neurons Damaged by OGD
First, we examined the effect of RSV on the neurite outgrowth
of cortical neurons under OGD. As shown in Figures 1A,B,
neurons under OGD showed a remarkable decrease in neurite
outgrowth (27.86 ± 5.11 µm, n = 60), compared to control
cells (43.84 ± 7.15 µm, n = 60, p < 0.005). On the other hand,
the treatment with different concentrations of RSV (0.5, 5, or
50 µM), for a period of 48 h after OGD injury, resulted in a
significant recovery of neurite outgrowth. Compared with the
OGD-treated cells (27.86 ± 5.11 µm), the length of the longest
neurite was 30.25 ± 5.60 µm (n = 60, p = 0.016), for neurons
treated with 0.5 µM RSV, 37.36 ± 6.55 µm, for those treated
with 5 µM RSV (n = 60, p < 0.005), and 34.24 ± 7.02 µm,
for those treated with 50 µM RSV (n = 60, p < 0.005). The
fold change in the total neurite length between the untreated
OGD-exposed cells and the treated ones with 0.5, 5 and 50 µM
of RSV was 1.15, 1.65 and 1.44, respectively (n = 60, p < 0.005,
Figure 1C). These results indicated that RSV could effectively
improve neuritogenesis in cortical cells, previously injured by
OGD.We chose 5µMRSV to carry out subsequent experiments,
considering that this concentration demonstrated the highest
potential in inducing neurite outgrowth compared with the one
of 0.5 (n = 60, p < 0.005) or 50 µM (n = 60, p < 0.005).

RSV Preserves Mitochondrial Function in
Cortical Neurons under OGD
We next investigated the involvement of mitochondrial function
in RSV-induced neurite outgrowth. Indicators of mitochondrial
function were assessed in primary cortical neurons exposed to
RSV under OGD conditions. Exposure of neurons to OGD for
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FIGURE 1 | Effect of rosuvastatin (RSV) on neurite outgrowth in cultured cortical neurons. Neurons were pre-exposed to oxygen-glucose deprivation (OGD) for 1 h
and subsequently treated with or without RSV for 48 h. Cells were stained with anti-β-III-Tubulin (Tuj-1) antibody. (A) Representative images of Tuj-1-positive neurons
(green) in different conditions. Scale bar represents 10 µm. (B) Quantitative analysis of the length of the longest neurite. Results are presented as the mean ± SEM.
∗p < 0.05, ∗∗∗p < 0.005, n = 60 per condition. (C) Quantitative analysis of the total neurite length per cell. Results are presented as the mean ± SEM. ∗p < 0.05,
∗∗∗p < 0.005, n = 60 per condition.

1 h resulted in dissipation of the MMP (n = 6, p < 0.005) and
an increase in ROS production (n = 6, p < 0.005). On the other
hand, the treatment of cells with RSV, counteracted these effects.
The MMP recovered (n = 6, p < 0.005; Figures 2A,B) and
ROS accumulation was significantly reduced (n = 6, p < 0.005;
Figure 2C), in comparison to untreated OGD-exposed cells.
The above-mentioned results suggest that RSV can reverse the
mitochondrial dysfunction, induced by OGD.

RSV Elevates the Energy Metabolism of
Primary Cultured Neurons Suppressed by
OGD
As mitochondria are the main source of energy generation, we
detected ATP levels, to assess the energy metabolism of primary
cultured neurons. RSV significantly reversed the decrease in
cellular ATP levels, which was observed following exposure to
OGD (n = 6, p < 0.005; Figure 2D). These results indicate that
RSV can increase the energy metabolism, impaired by OGD.

RSV Promotes Mitochondrial Biogenesis
after OGD Exposure
To determine whether the altered mitochondrial function and
energy metabolism are related to mitochondrial biogenesis,
we also estimated the mtDNA content in different conditions
(Figure 3A). The results showed that OGD exposure significantly

decreased mtDNA content, whereas RSV treatment abrogated
this effect (n = 6, p < 0.005; Figure 3A).

Mitochondrial transcription factor A (TFAM) and
nuclear respiratory factor 1 (NRF-1) are major regulators
of mitochondrial biogenesis. Therefore, we measured the
expression of these factors, using qRT-PCR (Figures 3B,C).
The results showed that RSV treatment after OGD exposure
significantly increased the mRNA expression of TFAM and
NRF-1 (n = 6, p < 0.05; Figures 3B,C).

Notch1 Mediates the Protective Effect of
RSV on Mitochondrial Function and
Biogenesis in Cortical Neurons Exposed to
OGD
Based on our finding that RSV preserved the mitochondrial
function in primary cultured neurons exposed to OGD, we
explored whether Notch1 was involved in this process. The
release of the Notch intracellular domain (NICD) is widely used
as a marker for Notch1 pathway activation. In our study, we
examined NICD expression via immunocytochemical analysis.
We found that NICD was expressed in cortical neurons, exposed
to OGD, which suggested that endogenous Notch1 might be
activated upon neuronal injury and mediate OGD remodeling.
In these conditions, we found that RSV treatment increased the
expression of NICD (Figure 4A; data not shown). Next, we used
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FIGURE 2 | Effects of RSV on mitochondrial function and ATP levels in cortical neurons exposed to OGD. Cells were exposed to OGD and incubated with the
indicated concentrations of RSV. (A) Mitochondrial membrane potential (MMP) as determined using the JC-1 assay. Scale bar represents 20 µm. (B) MMP as
determined using the JC-1 assay kit in different conditions (control, OGD-exposed and OGD-exposed plus RSV). The results are expressed as the mean ± SEM.
∗∗∗p < 0.005, n = 6 per group. (C) Measurement of reactive oxygen species (ROS) generation in different conditions (control, OGD-exposed, and OGD-exposed plus
RSV). Results are expressed as the mean ± SEM. ∗∗∗p < 0.005, n = 6 per group. (D) ATP production measured in different conditions (control, OGD-exposed and
OGD-exposed plus RSV). Results are expressed as the mean ± SEM. ∗∗∗p < 0.005, n = 6 per condition.

FIGURE 3 | Effect of RSV on mitochondrial biogenesis in cortical neuron cultures. Cells were pre-exposed to OGD for 1 h and subsequently treated with or without
RSV for 48 h. (A) Mitochondrial DNA (mtDNA) content measurements. Results are expressed as the mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005, n = 6 per
condition. (B,C) mRNA expression of mitochondrial transcription factor A (TFAM) (B) and nuclear respiratory factor 1 (NRF-1; C) as measured using quantitative
real-time PCR. Data are shown as the mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005, n = 6 per condition.

the Notch1 pathway inhibitor DAPT to assess mitochondrial
function. Compared to the RSV-treated OGD-exposed cells,
DAPT partially reduced MMP (n = 6, p < 0.005; Figure 4B),
boosted ROS production (n = 6, p < 0.05; Figure 4C), and

decreased ATP levels (n = 6, p < 0.05; Figure 4D). Therefore,
inhibition of the Notch1 pathway reverts the effects of RSV, at
least to a certain extent. We also explored whether DAPT could
affect mitochondrial biogenesis in primary cultured neurons
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FIGURE 4 | Notch1 pathway is involved in the beneficial effects of RSV on neuronal function and mitochondrial biogenesis under OGD conditions. (A) Double
immunofluorescence staining for anti-Notch intracellular domain (NICD) and anti-β-III-Tubulin (Tuj-1) antibodies. NICD (red), a marker for activation of
Notch1 pathway, is expressed in Tuj-1-positive neurons (green) and its expression is increased in OGD-exposed cells treated with RSV compared to non-treated
cells. (B–D) Effect of DAPT, a specific inhibitor of the Notch1 pathway, on the RSV-induced improvement of mitochondrial function as assessed by measuring MMP
(B), ROS levels (C), and ATP levels (D). Data are presented as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005, n = 6 per condition. (E–G) Effect of DAPT on
RSV-induced mitochondrial biogenesis as assessed by measuring mtDNA (E) and the mRNA levels of TFAM (F) and NRF-1 (G). Data are presented as
mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005, n = 6 per condition.

exposed to OGD. Compared to the RSV-treated cells, DAPT
partialy decreased the mtDNA content (n = 6, p < 0.01;
Figure 4E) and reduced the mRNA levels of TFAM (n = 6,
p < 0.05; Figure 4F) and NRF-1 (n = 6, p < 0.01; Figure 4G).

Additional, we did the following experiments whether DAPT
itself had detrimental effects. The length of the longest neurite,
total neurite outgrowth per cell, MMP, ROS, ATP, mtDNA,
TFAM and NRF-1 were detected. The data were shown in
the supplementary data. The results showed that there were
no signifcant diferences in the length of the longest neurite,
total neurite outgrowth per cell, MMP, ROS, ATP, mtDNA,
TFAM and NRF-1 between OGD+DAPT and OGD group
(see Supplementary Figures S1–S3 in Supplementary Data),
suggesting that DAPT itself has no detrimental effects.

DISCUSSION

In this present study, we demonstrated that RSV restores
neuritogenesis in primary cortical cells damaged by OGD. This
action is possiblymediated by the improvement inmitochondrial
function and biogenesis. Furthermore, we also elucidated that
Notch1 is crucial for these RSV-dependent effects. To the best
of our knowledge, this is the first report to provide evidence
for the effect of RSV on cortical neuritogenesis following OGD
and the involvement of Notch1 in RSV-induced mitochondrial
biogenesis and functional improvement.

Statins act as inhibitors of the HMG-CoA reductase and have
been extensively used for the treatment of hypercholesterolemia
(Kahveci et al., 2014). Numerous studies have reported that
statins may have neuroprotective properties, as demonstrated
by the reduction of the affected region following focal
cerebral ischemia and the protection of cortical neurons from
excitotoxicity (Asahi et al., 2005; Bösel et al., 2005). Recent
studies have shown that treatment of cortical neurons, cultured
under OGD/reoxygenation conditions, with RSV, a novel
HMG-CoA reductase inhibitor, was neuroprotective for the
cells (Savoia et al., 2011). RSV exerts considerable protective
effects on neural tissue against oxidative damage after spinal
cord ischemia/reperfusion injury, improves cognitive functions
in rats with diazepam-induced amnesia, and preserves long-term
memory (Yavuz et al., 2013). Our results demonstrated that RSV,
at a concentration of 5 µM, shows the maximum effects on
enhancing neuritogenesis in cortical neurons exposed to OGD.

Neurite outgrowth is an energy-consuming process that
primarily depends on mitochondria. Mitochondria may play
a crucial role in controlling neuroplasticity, including neurite
extension (Mattson, 2007; Cheng et al., 2010). It has been
reported that modulating mitochondrial function may impact
neurite outgrowth (Habash et al., 2015). Furthermore, impaired
mitochondrial function may disturb neuroplasticity following
stroke (Cheng et al., 2010). Additionally, mitochondria may
influnce the generation of ROS (Onyango et al., 2011), whose
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accumulation, caused by ischemia, could disrupt MMP and
funcion. Damaged mitochondria can, in turn, generate more
ROS (Bai et al., 2017). In this study, we found that the
effects of RSV on neurite outgrowth correlated with improved
mitochondrial function, as indicated by elevated MMP and ATP
levels, as well as decreased ROS generation. These results suggest
that mitochondrial function may be, at least in part, involved in
RSV-induced neurite outgrowth.

Mitochondrial biogenesis is a highly regulated process, which
occurs continuously in healthy cells and is crucial for cellular
adaptation (Nikoletopoulou and Tavernarakis, 2014). Recent
evidence has suggested a subtle link between mitochondrial
biogenesis and neurological disorders (Mandemakers et al.,
2007). Mitochondrial biogenesis has been found to counteract
the detrimental effects of oxidative stress and has been
suggested as a novel target of the repair mechanism (Cheng
et al., 2010; Habash et al., 2015). In vitro studies have also
suggested that impaired biogenesis contributes to the reduction
of mitochondrial function after cerebral ischemia (Wang et al.,
2014); however, its enhancement may reduce ischemic brain
injury (Valerio et al., 2011). Although previous studies have
indicated that RSV might impair mitochondrial function and
biogenesis (Broniarek and Jarmuszkiewicz, 2016), our results
show that RSV treatment restores the OGD-inducedmtDNA loss
in cortical neurons. TFAM and NRF-1 play an important role
in the initiation of mtDNA replication and the transcription of
mitochondrial encoded genes (Campbell et al., 2012). Therefore,
we measured the mRNA levels of TFAM and NRF-1 in neurons
exposed to OGD and treated with or without RSV. Our results
revealed that RSV treatment significantly increased the mRNA
levels of these factors. Collectively, our findings indicate that
the RSV-induced neurite outgrowth against OGD exposure
can be partially explained by the improved mitochondrial
function and their enhanced biogenesis. Recent studies have
provided convincing evidence that RSV exerts its protective
effect by decreasing ROS levels, inhibiting the opening of
the mitochondrial permeability transition pore, and promoting
mitochondrial biogenesis (Corsetti et al., 2014; Liu et al., 2017).
Nonetheless, further studies will be required to determine the
exact mechanism of RSV effects on mitochondria.

The Notch pathway plays a vital role in the regulation
of cell proliferation, self-renewal and differentiation, and is
involved in several disorders of the central nervous system
(Lundqvist et al., 2013). A previous study suggested that
this pathway could regulate neurite outgrowth (Sestan et al.,
1999; Levy et al., 2002). It also has been reported that
Notch1 influences neurite morphology, and can activate its
native signal transduction pathway in postmitotic neurons.
Beyond neurogenesis, Notch1 plays a physiologically vital role
in the central nervous system (Berezovska et al., 1999). In two
recent studies, using M1 macrophages or cell lines in vitro, the
Notch1 pathway was shown to enhance mtDNA transcription,
ATP levels, and mitochondrial function (Basak et al., 2014; Xu
et al., 2015). In addition, two statins, namely atorvastatin and
simvastatin, have been shown to exert their effects, following
stroke, through Notch signaling; the first, by increasing cell
proliferation in the subventricular zone (Chen et al., 2008) and

the second, by promoting arteriogenesis (Zacharek et al., 2009).
Thus, we hypothesized that the Notch1 pathway was implicated
in the regulation of RSV-induced mitochondrial biogenesis and
function in cortical neurons. Our results show that, under
OGD conditions, Notch1 signaling is active in primary cortical
neurons and that its inhibition reverses the positive effects of
RSV treatment on mitochondrial biogenesis and function. These
results suggest that this pathwaymay, at least partially, contribute
to the RSV-induced mitochondrial function and biogenesis
in cortical neurons in vitro, which may represent a potent
therapeutic strategy to promote brain plasticity after ischemic
injury.

CONCLUSION

The present study has demonstrated that RSV promotes neurite
outgrowth in primary cortical neurons, thus shielding them
against OGD. RSV seems to be vital in preserving mitochondrial
function and improving mitochondrial biogenesis and these
effects are, at least in part, mediated by the Notch1 pathway.
These findings highlight Notch1 signaling and mitochondria as
important players and novel therapeutic targets in promoting
brain plasticity.

AUTHOR CONTRIBUTIONS

WH and XT: study concept design and drafting of the
manuscript. WH: collection of data. YL and XT: analysis and
interpretation of data. All authors approved the final version of
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fncel.2018.0000
6/full#supplementary-material

FIGURE S1 | Effect of DAPT-only treatment on neurite outgrowth in primary
cultured cortical neurons under oxygen-glucose deprivation (OGD).
(A) Quantitative data of the longest neurite length of cultured cortical neurons.
Results were presented as mean ± SEM. ns, non-significant, n = 60 per
condition. (B) Quantitative data of total neurite length per cell. Results were
presented as mean ± SEM. ns, non-significant, n = 60 per condition.

FIGURE S2 | Effect of DAPT-only treatment on mitochondrial function and
ATP levels in cortical neurons exposed to OGD. (A) Mitochondrial membrane
potential (MMP) was determined using JC-1 assay kit in different groups (OGD
group, and DAPT group). Results were expressed as the mean ± SEM. ns,
non-significant, n = 6 per condition. (B) The generation of ROS in different
groups (OGD group and DAPT group). Results were expressed as the
mean ± SEM. ns, non-significant, n = 6 per condition. (C) The ATP levels were
measured in different groups (OGD group, and DAPT group). Results were
expressed as the mean ± SEM. ns, non-significant, n = 6 per condition.

FIGURE S3 | Effect of DAPT-only treatment on mitochondrial biogenesis in
cortical neurons exposed to OGD. (A) The mitochondrial DNA (mtDNA)
content was measured. Results were expressed as the mean ± SEM. ns,
non-significant, n = 6 per group. The expression of mitochondrial transcription
factor A (TFAM; B), and nuclear respiratory factor 1 (NRF-1; C) at mRNA levels
was measured by Quantitative Real-Time PCR. Data are shown as
mean ± SEM. ns, non-significant, n = 6 per condition.
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