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It has long been proven that neurogenesis continues in the adult brains of mammals
in the dentatus gyrus of the hippocampus due to the presence of neural stem
cells. Although a large number of studies have been carried out to highlight the
localization of vitamin D receptor in hippocampus, the expression of vitamin D receptor
in neurogenic dentatus gyrus of hippocampus in Parkinson’s disease (PD) and the
molecular mechanisms triggered by vitamin D underlying the production of differentiated
neurons from embryonic cells remain unknown. Thus, we performed a preclinical in vivo
study by inducing PD in mice with MPTP and showed a reduction of glial fibrillary acidic
protein (GFAP) and vitamin D receptor in the dentatus gyrus of hippocampus. Then,
we performed an in vitro study by inducing embryonic hippocampal cell differentiation
with vitamin D. Interestingly, vitamin D stimulates the expression of its receptor. Vitamin
D receptor is a transcription factor that probably is responsible for the upregulation of
microtubule associated protein 2 and neurofilament heavy polypeptide genes. The latter
increases heavy neurofilament protein expression, essential for neurofilament growth.
Notably N-cadherin, implicated in activity for dendritic outgrowth, is upregulated by
vitamin D.

Keywords: Parkinson disease, N-cadherin, embryonic hippocampal cells, neurofilaments, vitamin D

INTRODUCTION

During the last 25 years epidemiological and basic research studies have demonstrated the
involvement of Vitamin D3 (VD3) in the brain physiopathology (Millet et al., 2014). VD3 has
neurotrophic and neuroprotective actions and influences neurotransmission and synaptic plasticity
(Groves et al., 2014), playing a role in various neurological diseases, i.e., multiple sclerosis
(Sundstrom and Salzer, 2015). Recently, accumulating evidence showed that VD3 plays a protective
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role in neurocognitive disorders (Schlégl and Holick, 2014; Wood
and Gupta, 2015), by acting in areas where memory resides, as
hippocampus of animals affected with Alzheimer’s disease (AD)
(Anastasiou et al., 2014; Durk et al., 2014). Many observations
showing that cognitive impairment is present not only in AD
but also in later stages of Parkinson’s disease (PD) were reported
(Riedel et al., 2008; Samat et al., 2017). Hippocampus includes
Cornu Ammonis (CA) differentiated in CA1, CA2, CA3, and
CA4 areas filled with densely packed pyramidal cells. CA4 is often
called the hilus or hilar region and it is considered as a part
of the dentate gyrus (DG) (Amaral, 1978). Unlike the CA1 and
CA3, the neurons of C4 receive inputs from the granule cells
in the DG that therefore contains hilus and the fascia dentata
(Amaral, 1978). The DG of hippocampus is a region of the adult
brain where neurogenesis takes place and plays a role in the
formation of new memories (Nakashiba et al., 2012). It has long
been proven that neurogenesis continues in the adult brains of
mammals in the subgranular zone (SGZ) of the DG (Cameron
etal., 1993; Eriksson et al., 1998) due to the presence of stem cell-
like granule progenitor cells with radial morphology (Seki et al.,
2007; Kriegstein and Alvarez-Buylla, 2009; Liu et al., 2010). These
granule progenitor cells express the glial fibrillary acidic protein
(GFAP) astrocyte marker (Fukuda et al., 2003; Garcia et al., 2004;
Seki et al.,, 2007; Kriegstein and Alvarez-Buylla, 2009; Liu et al,,
2010; Morrens et al., 2012), as well as general neural stem cell
markers, such as brain lipid-binding protein (BLBP), Nestin,
Sox1, and Sox2 (Suh et al., 2007; Hodge and Hevner, 2011; Hsieh,
2012; Venere et al., 2012). Experimental ablation of GFAP™ cells
prevents the production of new neurons, indicating that the
removal of GFAP™ cells reduces the ability of the germinal niche
to regenerate (Garcia et al,, 2004). These studies suggest that
hippocampal granule cells are generated from GFAP-expressing
progenitor cells. NSCs in the SGZ give rise to mature neurons
of the granular layer involved in learning and memory (Tashiro
et al., 2006).

An increasing number of studies demonstrated that VD3
receptor (VDR) and enzymes involved in VD3 metabolism are
expressed in the central nervous system, particularly in the areas
of hippocampus (Langub et al., 2001; Gezen-Ak et al., 2013).
VDR expression is altered in some neurodegenerative disorders.
In fact, reduction of VDR mRNA levels in AD as compared
to Huntington hippocampus has been reported (Sutherland
et al, 1992). Stress (Ji et al., 2014) and AD (Sutherland
et al.,, 1992) change hippocampal VDR expression. In addition,
hypovitaminosis D results in neurological dysfunction that might
explain part of the cognitive disorders both in the general
population and in AD patients (Annweiler, 2014) by acting not
only in the progression of neurodegenerative diseases, but also
as an aggravating co-factor (Millet et al., 2014). Regarding the
role of VD3 in PD, most researchers have focused their attention
on the effect of VD3 in calcium metabolism and consequently
on bone disorders and fractures (Sato et al., 2001, 2005, 2011;
Invernizzi et al., 2009; Jones et al., 2010; Iwamoto et al., 2012;
van den Bos et al, 2013; Wang et al., 2016; Tassorelli et al.,
2017). An association between low blood level of VD3 and
PD (reviewed by Lv et al., 2014; Rimmelzwaan et al., 2016) as
well as VDR polymorphism and PD (Niu et al., 2015) have

been described. The role of VD3 has been studied in cellular
and animal models of PD, specifically in the substantia nigra
and striatum. VD3 inhibits microglial activation, protecting
dopaminergic neurons (Kim et al., 2006) and increases the
expression of glial cell line-derived neurotrophic factor (Sanchez
et al., 2009), thus facilitating neuroprotection (Orme et al,
2016). In vitro studies, performed in embryonic hippocampal
cells (HN9.10e cell line) have shown that VD3 supplementation
up to 100 nM stimulates VDR expression, reduces mitosis and
cell division with accelerated neurite outgrowth and increased
NGF production in the hippocampus (Brown et al, 2003;
Marini et al, 2010). To do it VD3 translocates from the
cytoplasm to the nucleus where it localizes in nuclear lipid
microdomains that act as platform for transcription process
(Bartoccini et al,, 2011). After serum withdrawal, the dose of
VD3 had to be increased to obtain embryonic hippocampal cell
differentiation (Bartoccini et al., 2011). Whether there VDR
expression is altered in the hippocampus and in particular in the
neurogenic zones of hippocampus of PD patients with or without
cognitive impairment is presently unknown. The aim of the
study was to investigate the perturbation of VDR in neurogenic
DG of hippocampus. In the present work we performed a
preclinical study by inducing PD in mice with 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Cataldi et al., 2016,
2017). To highlight the molecular events occurring during
VD3-induced differentiation, we draw on immunohistochemical,
immunofluorescent, and molecular biology data to show how
VD3 induces the formation of neurites in HN9.10e cells.

MATERIALS AND METHODS

Reagents

Dulbecco’s modified Eagle’s medium (DMEM), bovine serum
albumin (BSA), dithiothreitol, phenylmethylsulfonylfluoride
(PMSF) were obtained from Sigma Chemical, Co. (St. Louis,
MO, United States); VD3 was obtained from DBA Italia (Segrate,
Milan, Italy); anti-GFAP antibody was obtained from Dako,
Agilent (Santa Clara, CA, United States), anti-N-cadherin, anti-
peroxisome proliferator-activated receptor gamma (PPARy),
anti-VDR from Elabscience (Houston, TX, United States) and
anti-beta actin antibodies were obtained from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA, United States); anti-
neuron specific enolase (NSE) and anti-NF200 antibodies
were from NOVOCASTRA Laboratories, Ltd. (Newcastle,
United Kingdom). For research involving biohazards, biological
select agents and reagents, standard biosecurity safety procedures
were carried out.

Animals and Treatments

Ten- to twelve-week-old male C57BL/6 ] mice, weighing 25-30 g
(CER]J, France), were used. Mice were kept in a temperature-
controlled room (23 &+ 1°C) under a 12-h light/dark cycle and
had ad libitum access to food and water, as previously reported
(Cataldi et al., 2016). Animals were maintained and treated
according to ethical regulations and guidelines (Guide for the
Care and Use of Laboratory Animals; NIH publication number
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FIGURE 1 | Hippocampus in normal (CTR) and MPTP-induced Parkinson’s disease (PD) mice (Exp). CA, Cornu Ammonis; differentiated into CA1, CA2, CA3, and
CA4 areas filled. DG, dentatus gyrus. The images represent the merged signals with DAPI signals (blue) in the nuclei and immunolabeling with anti-GFAP (red).
(A) 10x magnification; (B,C) 20x magnification; (D) 100x magnification oil immersion.

85-23; revised 1985) and the European Communities Council
Directive 86/609/EEC. Experimental protocols were performed
according to the French national chart for ethics of animal
experiments (articles R 214-87 to 126 of the “Code rural”)
and received approval from the ethical committee number 5
“Charles Darwin” and from the ICM animal care and use
committee. Groups of mice (n = 5) received MPTP under an
acute protocol and control mice (n = 5) received an equivalent
volume of 0.9% NaCl solution, as previously reported (Cataldi
et al., 2016). After removal brains were post-fixed overnight
in fresh 4% paraformaldehyde (PFA)/phosphate-buffered saline
(PBS) solution, cryoprotected with 30% sucrose in 0.1 M PB,
and frozen in isopentane (—30°C). Free-floating brain sections
(20 pm thick) encompassing the hippocampus were prepared
using a freezing microtome (Microm, Germany). Samples of
three different sections (8 wm thick) were collected and used for
immunofluorescence analysis.

Cell Culture and Treatments

Immortalized hippocampal neurons HN9.10e (kind gift of Dr.
Kieran Breen, Ninewells Hospital, Dundee, United Kingdom)
were cultured as previously reported (Marini et al., 2010).
VD3, dissolved in absolute ethanol as vehicle at the 100 nM
physiological concentration (Vieth, 2006), was added to the
cultures for 48 h; in control samples only absolute ethanol was
added (Marini et al., 2010). The cells were used in part for
immunofluorescence and immunocytochemical analysis, and in
part for RT-PCR, and immunoblotting analysis.

Immunofluorescence
The cryostat sections were incubated over night with 3% (w/v)
BSA, 1% (w/v) glycine in PBS to block non-specific sites, as

previously reported (Arcuri et al, 2002). The morphometric
analysis of hippocampus was performed by using Image
Focus software. Then sections were incubated with anti-
GFAP or anti-VDR primary antibodies diluted 1:100 in 3%
(w/v) BSA in PBS for 1 h, washed three times in 0.1%
(v/v) Tween-20 in PBS and twice in PBS, incubated with
tetramethylrhodamineisothiocyanate (TRITC)-conjugated anti-
rabbit IgG for 1 h, diluted 1:50 in 3% (w/v) BSA in PBS
and washed as above. The diamidino-2-phenylindole (DAPI)
nuclear counterstain was used. The samples were mounted
in 80% (w/v) glycerol, containing 0.02% (w/v) NaN3 and
p-phenylenediamine (1 mg/ml) in PBS to prevent fluorescence
fading. The antibody incubations were done in a humid chamber
at room temperature. HN9.10e were cultured for 48 h to evaluate
N-cadherin and PPARy and for 4 days to evaluate GFAP,
VDR, with specific antibodies. After treatment with primary
antibodies performed as reported above, TRITC-conjugated
anti-rabbit IgG was used for GFAP and VDR and fluorescein
isothiocyanate (FITC)-conjugated anti-rabbit IgG was used for
N-cadherin and PPARy were used as above reported. Nuclei were
counterstained with DAPI. Fluorescent analysis was performed
on a DMRB Leika epi-fluorescent microscope equipped with
a digital camera. In the tissue, the positive granules of VRD
were counted. The intensity of immunofluorescence of VDR,
N-cadherin and PPARy in HN9.10e cells was evaluated with
Scion Image.

Reverse Transcription Quantitative

PCR (RTqPCR)

HNO9.10e were cultured for 48 h for RTqPCR analysis.
Total RNA was extracted from control and VD3-treated
cells by using RNAqueous®-4PCR kit (Ambion, Inc., Austin,
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FIGURE 2 | Hippocampus in normal (CTR) and MPTP-induced PD mice
(Exp). CA2, and CA4, Cornu Ammonis areas; DG, dentatus gyrus. (A) The
images represent the merged signals with DAPI signals (blue) in the nuclei and
immunolabeling with anti-VDR (red), 20x magnification. (B) The positive
granules of VDR were counted in CA4 and DG. Data represent the percentage
of positive granules in experimental samples respect to control samples and
they are expressed as mean + SD of three independent experiments.

*P < 0.05.

TX, United States). Samples were treated and RTqPCR was
performed according to Codini et al. (2015) to study the
gene expression of microtubule-associated protein 2 (MAP2,
Hs1103243_g1) and neurofilament heavy polypeptide (NEFH,
Hs00912472), genes, insulin gene enhancer protein (ISL1,
Hs01099686_m1). Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, Hs99999905-m1) was used as housekeeping gene.

Immunocytochemistry

HN9.10e were cultured for 48 h for immunocytochemical
analysis. Bond Dewax solution was used toremove paraffin
from sections before rehydration and immunostaining on the
Bond automated system (Leica Biosystems Newcastle, Ltd.,
United Kingdom) as previously reported (Albi et al, 2012).
Immunostaining for NSE and neurofilament heavy protein
(NF200) detection was performed by using specific antibodies
and Bond Polymer Refine Detection - Leica Biosystems
(Newcastle, Ltd., United Kingdom). The observations were
performed by using inverted microscopy EUROMEX FE 2935
(ED Amhem, Netherlands) equipped with a CMEX 5000 camera
system (100x magnification). The intensity of immunostaining

was evaluated. The findings were classified as no reactive cells,
low positive cells, medium positive cells, and strong positive cells.
Only the strong positive cells were considered for quantification,
as previously reported (Marini et al., 2010).

Electrophoresis and Western

Immunoblotting

HN9.10e were cultured in the presence of VD3 for 48 h
for immunoblotting analysis. Total protein concentration was
determined spectrophotometrically at 750 nm and about 40 pg
proteins were submitted to SDS-PAGE electrophoresis in 10%
polyacrylamide slab gel. Immunoblotting was performed as
previously reported (Cataldi et al., 2014) by using anti-
N-cadherin, anti-PPARG, andanti-beta-actin primary specific
antibodies. The apparent molecular weight of the proteins was
calculated according to the migration of molecular size standards.
The area density of the bands was evaluated by densitometry
scanning and analyzed with Scion Image (Cataldi et al., 2014).

Statistical Analysis

Three experiments were performed in duplicate for each analysis.
Data were expressed as mean + SD and f-test was used for
statistical analysis.

RESULTS

In Vivo Study of Vitamin D3 Receptor in

Hippocampus in Parkinson’s Disease
We used the MPTP-induced PD mouse model. VDR was
localized in neurogenic zones of DG in hippocampus of adult
mice (Amaral, 1978). Downregulation of hippocampus VDR
was reported in AD (Sutherland et al., 1992; Gezen-Ak et al,
2013). Instead, VDR has never been analyzed in PD although
some patients have memory deficiency as AD patients (Foster
et al., 2017). Therefore we sought to study the specific cell
type expressing VDR in DG of hippocampus in MPTP-induced
PD mouse model. To assess the expression and distribution of
VDR, we first stained sections of brain containing hippocampus
with marker for radial astrocytes (GFAP) counterstained with
DAPI. As shown in Figures 1A,B, hippocampal total volume
is decreased in PD mice, reflecting a loss of volume in all
hippocampal subfields. The morphometric analysis shows that
the length of hippocampus is 7.2 = 1.0 wm in control and
5.3 = 1.2 in PD mice and its thickness is 2.05 &= 0.04 in control
and 0.52 £ 0.01 in PD mice. CA1, CA2, and CA3 appeared clearly
thinner. The DG has a different form. The upper and lower parts
of DG, as well as the corner delimited by them appear thinner,
with the upper terminal part truncated. The distance between
upper and lower parts of DG is increased, making the CA4 area
larger. These morphological differences were not accompanied by
an increase in the number of cells, indicating an absent or very
moderate inflammatory response in PD mice.

GFAP™ -astrocytes show a different distribution and appear
less stellate in both CA2 (Figure 1B) and DG (Figure 1C). GFAP
appears less expressed in hippocampus DG of MPTP-treated
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FIGURE 3 | Embryonic hippocampal HN910.e cells (CTR, control cells) and
cultured with VD3. (A) The images represent the merged signals with DAPI
signals (blue) in the nuclei and immunolabeling with anti-GFAP (red) or VDR
(red), 100x magnification oil immersion. (B) VDR immunofluorescence signal
intensity in the cytoplasm and nuclei was analyzed before merging. Data are
expressed as mean + SD of three independent experiments. *P < 0.05.
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FIGURE 4 | Effect of vitamin D3 on insulin gene enhancer protein (/SL1),
microtubule-associated protein 2 (MAP2) and neurofilament heavy
polypeptide (NEFH) expression. RTqPCR analysis was performed in control
and VD3-treated HN9.10e cells, by using GAPDH as housekeeping gene. In
ordinate, mMRNA relative expression = mRNA of VD3-treated cells/mRNA of
control cells. Data are expressed as the mean + SD of three independent
experiments performed in three PCR replicates. *P < 0.05.

mice compared to the healthy control, probably underlining a
reduced presence of stem cells. In fact, GFAPT cells in the healthy
hippocampus DG have been evidenced and represent quiescent
or activated stem cells. However, these preliminary results need
further studies.

In addition, externally to the DG, GFAP expression in PD
hippocampus is increased, compared to the control, reflecting
the presence of moderate astrogliosis without cell proliferation
(Figures 1B-D). These changes were correlated with reduced
levels of VDR previously associated to cognitive disorders
(Gezen-Ak et al, 2013). In hippocampal tissue of PD mice,
VDR protein (red staining) appears strongly decreased in both
CA2 and DG; it is particularly evident in the corner of DG
(Figures 2A,B).

In Vitro Study of the Vitamin D3 Effect on
Embryonic Hippocampal Cells: Neurite

Elongation

The data obtained in in vivo experiments, indicated a
simultaneous reduction in expression and location changes
of VDR" and GFAP' hippocampal neurogenic cells. Our
previous results had demonstrated, by immunoblotting analysis,
that the treatment with VD3 of HN9.10e cells was able to
upregulate nuclear VDR (Marini et al., 2010). Thus, we chose
to highlight the effect of VD3 on VDR by immunofluorescence
counterstained with DAPI because this result might be very
important for the correlation with in vivo study. Figures 3A,B
shows that VDR is overexpressed by VD3 in both cytoplasm and
nuclei Then, since adult hippocampal neural stem/progenitor
cells express GFAP both when they originate neurons and
astrocytes (Venere et al., 2012), we wondered whether HN9.10e
embryonic hippocampal cells in culture might express GFAP
and in case of positive response whether the expression
of the protein could change after VD3 treatment. To this
end we cultured the cells with VD3 and we performed
the immunostaining with GFAP counterstained with DAPI
In embryonal HN9.10e control cells, the GFAP positivity
was detected in cytoplasm, whereas HN9.10e VD3 treated
cells also showed GFAP positivity in neurites (Figure 3).
In this case, VD3 could induce differentiation. Moreover,
the formation of neurites during VD3-induced HN9.10e cell
differentiation was previously demonstrated (Marini et al., 2010)
but molecules involved in this process remained unknown.
Thus, to determine the contribution of VD3 to this process,
we treated HN9.10e cells for 48 h to study the gene
expression of MAP2 and NEFH, genes for putative neurite
elongation proteins. ISL1, a protein involved in neuronal
development in the retina and in the striatonigral via (Lu
et al, 2014), was used for comparison. We found an
upregulation of MAP2 and NEFH genes without change of ISL1
(Figure 4), suggesting a correlation between VD3 treatment and
MAP2-NEFH expression. Since NEFH encodes 200-220 kDa
neurofilament heavy proteins, the result prompted us to carry
out an immunocytochemical study of NF200 protein. Anti-NSE
antibody, a generic marker of mature neurons (Marangos et al.,
1979) was used for comparison. The results showed that VD3
increases 2.5-fold the NF200 specific staining (Figures 5B,E)
in comparison with control sample (Figure 5A). No NSE
staining is present in control orVD3-treated cells (Figures 5C,D).
Given the central role of N-cadherin in mediating interaction
between neuron precursor cells and in regulating further
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FIGURE 5 | Immunocytochemical analysis of Neurofilament 200 kDa (NF200) and neuron specific enolase (NSE). (A) NF200 in control HN9.10e cells; (B) NF200 in
VD3-treated HN9.10e cells; (C) NSE in control HN9.10e cells; (D) NSE in VD3-treated HN9.10e cells; (A-D) 40x magnification. (E) Data are expressed as percentage
of total cells that resulted highly stained (positive cells) and represent the mean + SD of three independent experiments performed in duplicate. *P < 0.05.
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differentiation (Yagita et al, 2009), it became important to
define its content and localization in HN9.10e cells without
or with VD3 treatment. Moreover PPARy as neuroprotective
molecule (Thouennon et al., 2015) was considered. For these
studies, immunoblotting and immunofluorescence techniques
were utilized. We found that control and VD3-treated cells
present immunoreactivity in correspondence to the bands with
apparent molecular weight of 97 kDa for N-cadherin, and
57 kDa for PPARy (Figure 6A). VD3 treatment increases 57%
N-cadherin band intensity without important change of PPARy
(Figure 6B). Accordingly, the immunofluorescence signal of
N-cadherin increases after VD3 treatment, in particular among

nearby cells; no difference of signal is evident for PPARy
(Figures 7A,B).

DISCUSSION

Glial cells undergo a rapid and transient expansion from
progenitor cells within the first several weeks of postnatal
life, which coincides with increasing neuronal activity in the
hippocampus (Catalani et al., 2002; Traina, 2017). In the present
work, an in vitro and in vivo preclinical study was designed to
highlight: (1) the behavior of VDR in the DG of hippocampus in
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FIGURE 6 | Immunoblotting analysis of N-cadherin, peroxisome
proliferator-activated receptor gamma (PPARYy) and beta-actin in control and
VD3-treated HN9.10e cells. (A) The position of the 97 kDa for N-cadherin,
57 kDa for PPARG and 43 kDa for beta-actin was evaluated in relation to the
position of molecular size standards. (B) The area density was quantified by
densitometry scanning and analysis with Scion Image. Data are expressed as
percentage variation of VD3-treated HN9.10e cells compared with control
HN9.10e cells and represent the mean =+ SD of three independent
experiments. *P < 0.05.

MPTP-treated mice and (2) the molecular mechanisms involved
in the neurite development during VD3-induced embryonic
hippocampal cell differentiation. To our knowledge, this is the
first study to describe reduction of VDR in the DG in a mice
model of PD. In DG, GFAP™ cells represent NSCs, i.e., radial
glial or progenitors cells that continuously gives rise to mature
neurons and astrocytes (Venere et al, 2012; Gebara et al,
2016). These cells have been involved in memory formation
and in other functional roles (Tashiro et al., 2006; Hsu, 2007;
Traina, 2017). Our preliminary results show in DG of mice
with MPTP-induced PD a lower number of GFAPT cells in
comparison with control mice. We could speculate a minor
neurogenesis in PD-induced mice. Although we used only GFAP
staining as marker to detect NSCs, the result is interesting
and should be confirmed by using other specific markers. This
result correlates with a simultaneous reduction of VDR cells
in DG. Outside of the DG, the GFAP expression in both
control and PD hippocampus is quite evident with differentiated
positive astrocytes that appear slightly more numerous in PD
mice probably reflecting a moderate astrogliosis, without cell
proliferation. In this context, a previous study has evidenced

increased GFAP levels, detected by ELISA, in frontal cortex and
striatum but not in hippocampus of mice with MPTP-induced
PD compared to control (Domenger et al, 2012). A recent
work has shown that in MPTP mice, hippocampal astrogliosis
detected by GFAP immune-labeling is evident (Manocha et al,,
2017). This study does not investigate the GFAP localization
in the various regions of the hippocampus. Our study is in
agreement with this work, since a GFAP increase has been
highlighted. We have also tried to study this increase in
GFAP immunoreactivity in the hippocampal regions. We have
evidenced a greater number of GFAP™ cells externally to the
DG. This datum has been interpreted as modest astrogliosis.
While the decreased number of GFAP* cells in the DG of
MPTP mice compared to control has been hypothesized to be
due to a lower presence of stem cells fout court. We have
used GFAP labeling for its double capacity to detect reactive
astrocytes (astrogliosis) and stem/progenitor cells. However,
this is only an interesting preliminary study that will need
to be supported by quantitative data and the use of other
markers.

More importantly, this is the first report describing molecules
involved in VD3-induced HN9.10e cell differentiation. In fact
we show that VD3 upregulates MAP2 that encodes for the
homonym protein localized along microtubules (Takemura
et al., 1992) and NEFH that encodes for NF200 protein, both
proteins being associated to the axon and dendritic shape
maintenance (Giust et al., 2014). Furthermore, VD3 increases
NF200 protein as a consequence of NEFH up-regulation. It is
known that microtubules, microfilaments and neurofilaments
play a crucial role in maintaining structure and function of
neurites in mature neurons (Gentil et al., 2015; Traina, 2016).
On the other hand we show that VDR is upregulated by
VD3, confirming previous data (Marini et al, 2010). VDR
is a ligand-activated transcription factor (Zenata and Vrzal,
2017) and VD3 links VDR in nuclear lipid microdomains
that act as platform for RNA transcription (Albi and Villani,
2009). Another new finding of our study is that HN9.10e cells
express GFAP and it is evident along processes during VD3-
induced differentiation in agreement with the notion that in
the adult hippocampus, GFAP-expressing neural progenitors give
rise to immature neurons via early intermediate progenitors
expressing both GFAP and neuronal markers (Liu et al,
2010). Moreover, in control cells cytoplasmic GFAP staining
demonstrates that they represent stem or progenitor cells
(Zhang and Jiao, 2015) since GFAP expression in embryonic
hippocampal granule progenitor cells has been detected, similarly
to adult hippocampal neural progenitor cells (Seki et al,
2014). It is in agreement with previous studies demonstrating
that during the embryonic stages, both hippocampal and
neocortical progenitor cells arise from a similar neurogenic
zone of the cortex, the ventricular zone (Tabata et al., 2012;
Taverna et al., 2014; Ostrem et al., 2017). Previous studies have
demonstrated that spontaneous differentiation of human and
mouse embryonic stem cells in culture may occur (Heo et al,
2005; Sathananthan and Trounson, 2005). Likewise, GFAPT
HN9.10e cells may undertake spontaneous differentiation after
7-10 days of culture (data not shown), reflecting their nature
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FIGURE 7 | Immunofluorescence analysis of N-cadherin and peroxisome
proliferator-activated receptor gamma (PPARY) in control and vitamin
D3-treated HN9.10e cells after 48 h of culture; (A) N-cadherin and PPARy
immunofluorescence, CTR and VD3 treated cells, 40x magnification.

(B) N-cadherin and PPARy immunofluorescence signal was analyzed as
reported in materials and methods. Data are expressed as percentage
increase of signal in VD3-treated HN9.10e cells compared with control
HN9.10e cells and represent mean + SD of three independent experiments.
*P < 0.05.

of stem cells and the ability to give rise to a more differentiated
progeny. However, in HNO9.10e cells this phenomenon is
uncommon. Finally, GFAP expression in HN9.10e cells is
predictive of their neural stem cell characteristics. It is worth
to note that in adult hippocampal neurogenesis, GFAP is not
a stationary marker of neural stem cells, but it detects a
range of immature cells, from active radial glia to type-2a,
but not 2ab, intermediate progenitor cells (Zhang and Jiao,
2015).

Adult neurogenesis has many common characteristics with
embryonal neurogenesis and parallelisms are possible (Kriegstein
and Alvarez-Buylla, 2009; Fuentealba et al., 2015). In agreement
with the developmental neurogenesis, the primary progenitors

for the continual generation of neurons in postnatal animals
correspond to cells with glial characteristics: radial glial cells
(RGCs) or astrocytes.

The structure of the adult DG is characterized by a typical
lamination composed by a variety of neuronal cells. The DG
formation is a complex process that requires RGCs for normal
development (Barry et al.,, 2008). In the mouse hippocampus
GFAP+ radial processes are first detected on E16 (Woodhams
et al., 1981).

These cells subsequently undergo embryonic and postnatal
cytoarchitectonic reorganization and give rise to adult
hippocampus. In the adult hippocampus, RG-like cells are
preserved, i.e., stem cells, and are responsible to produce
both new neurons and astrocytes during life (Kempermann
et al, 2004). GFAPT HN9.10.e cells thus represent RGCs
or intermediate progenitors cells with stemness property.
During VD3-induced differentiation these cells undergo
morphological and biochemical changes, evidenced by GFAP
re-organization, as in vivo DG maturation. These results
suggest that VD3-VDR may be involved not only in regulating
adult hippocampal neurogenesis, but also in embryonic and
postnatal maturation of DG. In addition, our data show
that VD3 increases N-cadherin that belongs to the type
I subfamily of cadherins and plays a role in maintaining
synaptic contact (Seong et al, 2015). Given the findings
of this study and published work on relationship VD3-
neurological disorders, the results suggest the involvement
of VD3-VDR in PD. In summary, this study demonstrates
reduction in VDR and loss of differentiation ability of DG
stem cells in PD and at the same time the capability of VD3 to
stimulate VDR and consequently allow growth of neurites by
inducing hippocampus embryonic cells to a mature state. This
implies that the VD3-VDR is an important regulator of cell
differentiation.
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