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The cellular and molecular mechanisms underlying the reciprocal relationship between
adult neurogenesis, cognitive and motor functions have been an important focus
of investigation in the establishment of effective neural replacement therapies for
neurodegenerative disorders. While neuronal loss, reactive gliosis and defects in the
self-repair capacity have extensively been characterized in neurodegenerative disorders,
the transient excess production of neuroblasts detected in the adult striatum of animal
models of Huntington’s disease (HD) and in post-mortem brain of HD patients, has only
marginally been addressed. This abnormal cellular response in the striatum appears to
originate from the selective proliferation and ectopic migration of neuroblasts derived
from the subventricular zone (SVZ). Based on and in line with the term “reactive
astrogliosis”, we propose to name the observed cellular event “reactive neuroblastosis”.
Although, the functional relevance of reactive neuroblastosis is unknown, we speculate
that this process may provide support for the tissue regeneration in compensating
the structural and physiological functions of the striatum in lieu of aging or of the
neurodegenerative process. Thus, in this review article, we comprehend different
possibilities for the regulation of striatal neurogenesis, neuroblastosis and their functional
relevance in the context of HD.
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INTRODUCTION

Huntington’s disease (HD) is an adult onset, progressive neurodegenerative syndrome that
has clinically been characterized by chorea, dementia and psychiatric illness (Walker, 2007).
Historically, symptoms of chorea had been observed by many physicians (Lanska, 2010), while
George Huntington portrayed the clinical symptoms and provided the evidence for the hereditary
nature of HD in 1872 (Huntington, 1872; Lanska, 2000). Since then, an enormous scientific progress
has been made in understanding the biochemical, molecular genetics and pathological basis of
HD worldwide (Wexler et al., 2004; Bates, 2005; Moily et al., 2014). In 1983, the HD Collaborative
Research Group, under the direction of Nancy Wexler, successfully mapped the defective gene
responsible for HD to chromosome 4p16.3 (Gusella et al., 1983). In 1993, the disease pathogenic
mutation has been recognized as a polymorphic CAG-repeat expansion in the exon 1 of the HD
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gene (The Huntington’s Disease Collaborative Research Group,
1993). The physiological role of the wild-type (WT) HD gene
remains unclear. However, several lines of experimental evidence
of gene knockout paradigms suggested that the expression of
WT HD gene is indispensable for embryogenesis, vesicular
trafficking, synaptic plasticity and neuroprotection (Duyao
et al., 1995; Dragatsis et al., 2000; Reiner et al., 2003). The
unstable CAG repeat expansion of more than 35–39 in the
HD gene is translated into polyglutamine (polyQ) stretches
in the huntingtin protein (Bates, 2003; Cornett et al., 2005;
Moily et al., 2014). The abnormal polyQ repeat sequence is
known to cause misfolding and aggregation of the huntingtin
protein (DiFiglia et al., 1997; Bates, 2005; Poirier et al.,
2005) leading to the selective degeneration of medium spiny
neurons (MSNs) in the striatum and onset of the disease
(Graveland et al., 1985). Consequently, neurotransmitter
dysfunction, oxidative stress, microglial activation, reactive
astrogliosis have been characterized as second degree of
pathological consequences in the striatum of HD subjects
(Walker, 2007; Velusamy et al., 2017; McColgan and Tabrizi,
2018). It has been predicted that recent advancements in
CRISPR/Cas9 genome-editing tools and patient-specific
generation of induced pluripotent stem cells (iPSCs) might
significantly contribute to the development of future gene
therapies for HD (Xu et al., 2017). Nevertheless, refining
mechanisms of the existing self-regenerative process of the
adult brain, namely adult neurogenesis, holds great promise
for the establishment of non-invasive clinical procedures to
treat HD.

MIGRATION OF NEUROBLASTS IN THE
HEALTHY ADULT FOREBRAIN

The subventricular zone (SVZ) is a prime neuropoietic niche
of the brain responsible for the postnatal neurogenesis in the
telencephalon (Doetsch et al., 1997, 1999). In the adulthood,
the SVZ continues to harbor a heterogeneous population of
neural stem cells (NSCs) that generates polarized neuroblast
progenies, migrating through the rostral migratory stream
(RMS) into the olfactory bulb (OB), where they terminally
mature into functional interneurons (Doetsch et al., 1997,
1999; Gritti et al., 2002; Ming and Song, 2011). While
neurogenesis in the human hippocampus has generally been
recognized and accepted (Eriksson et al., 1998), the incidence
of olfactory neurogenesis in the human brain has been an
ongoing subject of debate (Kirschenbaum et al., 1999; Pagano
et al., 2000; Curtis et al., 2007; Sanai et al., 2011; Ernst
et al., 2014). A recent report by the Mechawar group provided
evidence for the occurrence of doublecortin (DCX) positive
neuroblasts in the SVZ-OB path in the post-mortem brains
from suicide subjects (Maheu et al., 2015). However, the
evidence for the migration of neuroblasts and mechanisms
underlying their migration towards the OB in the normal
human brain are yet to be validated. In non-primate mammalian
brains, the glial tube structure of the RMS provides a
scaffold platform for the migrating neuroblasts towards the
OB (Lois and Alvarez-Buylla, 1994; Doetsch et al., 1999;

Ming and Song, 2011). A reciprocal interaction between the
neuroblasts and glial cells through the assistance of cell surface
adhesion molecules, extracellular matrix, metalloproteases,
transcription factors, neurotransmitters, neurotrophins and
chemo-attractants have been suggested to mediate this distinct
long-distance cell migratory process in the adult forebrain
(Gritti et al., 2002; Ghashghaei et al., 2007; Ming and
Song, 2011). Besides the glial tube, directional flow of the
cerebrospinal fluid (CSF) mediated by the ciliary movement
of ependymal cells in the ventricle has been proposed to
play a critical role in the migration of neuroblasts along the
SVZ—RMS-OB path (Sawamoto et al., 2006). For yet unknown
reasons, the RMS structure in the human brain seems to
be restricted to the developmental stage and absent in the
adulthood (Kam et al., 2009; Sanai et al., 2011; Wang et al.,
2011).

NEUROGENESIS AND NEUROBLASTOSIS
IN THE ADULT HD STRIATUM

Physical exercise and environmental enrichment paradigms have
been shown to positively influence hippocampal neurogenesis
in the healthy brain (Kempermann et al., 1997; van Praag
et al., 1999). While the SVZ of the adult brain is highly
refractory to external stimuli in the physiological state (Brown
et al., 2003), acute neurological deficits like, cerebral stroke
(Kokaia et al., 2006) and neurotoxic lesions (Winner et al.,
2006) have been shown to trigger the multiplication of a subset
of NSC progenies in the SVZ and the migration of these
cells towards the incapacitated brain regions. Thus, enormous
attempts have been made to characterize the regulation of
neurogenesis and migration of neuroblasts in the forebrain
of adult subjects as it represents a possible self-regenerative
mechanism of the neurodegenerative conditions including HD
(Curtis et al., 2003; Kokaia et al., 2006; Kohl et al., 2007;
Kandasamy et al., 2010; Ernst et al., 2014). Here, several
preclinical models of HD have been generated to investigate the
roles of mutant HD gene in HD pathogenesis. The regulation of
neurogenesis in NSC niches has been evaluated in R6/1 (Lazic
et al., 2006), R6/2 (Kohl et al., 2007), N171-82Q (Duan et al.,
2008), YAC128 (Simpson et al., 2011) and TgHD (Kandasamy
et al., 2010)—genetic rodent models and in the quinolinic acid
injection-induced acute rat model of HD (Tattersfield et al.,
2004). Besides, adult neurogenesis has also been characterized in
post-mortem brains of human HD subjects (Curtis et al., 2003;
Low et al., 2011; Ernst et al., 2014). Notably, the proliferative
potential of NSCs is reduced specifically in the hippocampus
in most genetic models of HD (Lazic et al., 2006; Kohl
et al., 2007; Kandasamy et al., 2010; Simpson et al., 2011),
but no changes in the hippocampal NSC proliferation were
observed in the post-mortem tissue of HD patients (Low et al.,
2011). While the NSC proliferation rate was reduced in the
hippocampus, the overall cell proliferation was unaltered in
the SVZ of R6/1(Lazic et al., 2006), R6/2 (Kohl et al., 2007),
YAC-128 (Simpson et al., 2011) mouse models and of early
stage tgHD rats when compared to that of respective control
animals (Kandasamy et al., 2010). In contrast, cell proliferation
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was found to be reduced in the SVZ of late stage tgHD
rats (Kandasamy et al., 2015). Moreover, the reduced NSC
proliferative capacity in the SVZ appeared to be compensated
by the enhanced mitotic events of neuroblasts in late stage
transgenic HD rats (Kandasamy et al., 2015). This might be
also the case in the SVZ of other genetic models of HD with
different grades of behavioral and neuropathological symptoms
(Kandasamy et al., 2011; Velusamy et al., 2017). As a result,
a vigorous migratory pattern of neuroblasts, instigated towards
the degenerated striatum was highly pronounced at the expense
of olfactory neurogenesis in most genetic models, which in
part, mimicked the reactive neurogenesis reported in the SVZ
or SEL-striatal regions in the brains of the toxic QA-injected
experimental rat model (Tattersfield et al., 2004) and human
HD brains (Curtis et al., 2007; Ernst et al., 2014), respectively.
Taken together, reactive neurogenesis resulting from the striatal
migratory event of neuroblasts seems to be a unique cellular
trait, signifying the emergence of regenerative foci in the
striatum of HD brains throughout the animal kingdom including
humans. This abnormal proliferation of neuroblasts in the
SVZ and their migration into the vulnerable striatum have
recently been recognized as ‘‘reactive neuroblastosis’’ in the
tgHD rat model (Kandasamy et al., 2015; Velusamy et al.,
2017). Apparently, in this context, the process of neurogenesis
is prematurely terminated, i.e., the cell die before they mature
and before they integrate into the striatal circuitry (Figure 1).
In the human HD brain, the situation seems to be similar
(Ernst et al., 2014). Interestingly, the phenomenon of reactive
neuroblastosis seems not to be restricted to HD pathology,
but has recently been reported also in brains of ALS patients
associated with dementia (Galán et al., 2017). Taken together, the
proposed reactive neuroblastosis event observed in the striatum
of the adult brain requires a great scientific consideration
as it provides a fresh perspective on neurobiology of aging
and disease, epitomizing a potential therapeutic target for
in vivo forebrain regeneration. Hence, the functional relevance
of reactive neuroblastosis and its consequence should be carefully
considered in progressive neurodegenerative disorders. Likewise,
where appropriate, the reactive neuroblasotosis process needs
to be investigated in acute neurological complications such
as stroke, seizure, neuroinflommatory disorders and traumatic
brain injuries.

TGF BETA SIGNALING AND HUNTINGTIN
PROTEIN AS POTENTIAL MEDIATOR OF
CELLULAR EVENTS

As mentioned above, SVZ-striatal neurogenesis in HD
is characeterized by reduced stem cell activity, reactive
neruoblastosis and by premature death of the young neurons. An
essential question is of course the physiological and molecular
regulation of these events. We are postulating a framework
that integrates physical activity, transforming growth factor-
beta1 and mutant huntigtin protein as potential regulators.
Physical exercise has been unequivocally shown to prevent
cognitive decline by facilitating neurogenesis specifically in the

hippocampus of healthy adult brains (van Praag et al., 1999).
However, physical exercise has failed to ameliorate impaired
hippocampal neurogenesis in the R6/2 (Kohl et al., 2007) and
N171-82Q (Potter et al., 2010) models of HD. Also, physical
exercise failed to influence the SVZ derived OB neurogenesis in
the healthy brain (Brown et al., 2003). Therefore, hippocampal
and SVZ/OB neurogenesis are differentially affected by
regulatory signaling mechanisms, and physical activity is not
counteracting the impaired hippocampal neurogenesis observed
in HD animal models. Interestingly, a routine physical exercise
practice has accelerated pathogenesis in a marathon runner who
had been diagnosed with pre-symptomatic HD (Kosinski et al.,
2007). The reason for this is unclear, but signaling mediated by
TGF-beta might be crucially involved. First, physical exercise
has been shown to induce the expression of TGF-beta in the
normal healthy brain and to suppress spontaneous motor
activity (Inoue et al., 1999). Second, physiological levels of
TGF-beta and its downstream signaling pathway have been
linked to the regulation of NSC’s self-renewal, migration,
integration and survival of neuroblasts in the normal adult
brain (Kandasamy et al., 2014), and experimentally elevated
levels of TGF beta in the adult brains hindered the proliferative
potential of NSCs and neurogenesis in the hippocampus
(Buckwalter et al., 2006; Wachs et al., 2006; Aigner and
Bogdahn, 2008). Similarly, analysis of phosphorylation events
of Smad2, a downstream component of TGF-beta signaling in
the hippocampal stem cell niches of R6/2 mice and tgHD rats,
revealed that elevated levels of TGF beta/Smad2 signaling play
a crucial role in the induction of quiescence of NSCs leading to
reduced hippocampal neurogenesis (Kandasamy et al., 2010).
Third, an increased Smad2 phosphorylation observed in the
ectopically migrating neuroblasts from the SVZ towards the
striatum of HD brain indicated a possible role of TGF-beta
signaling in the migration/early differentiation of neuroblasts
(Kandasamy et al., 2015; Figure 1). In the healthy brain, this
might well promote structural and functional differentiation and
maturation of neurons, however, in the HD brain, this might
be completely different: although very speculative, involuntary
hyperkinetic movements (Chorea) might cause increased levels
of TGF-beta in the HD brains. In consequence, as Bowles
et al. (2017) had shown, this might lead to the upregulation of
mutant huntingtin protein through the activation of Smad3, a
binding partner of Smad2, and the increased mutant huntingtin
protein levels might trigger the apoptotic events in SVZ derived
neuroblasts or young immature neurons (de Luca et al., 1996;
Schuster and Krieglstein, 2002). In summary, the elevated
levels of TGF-beta in the HD brain might on one hand cause
a lower level of NSC activity, and through elevation of mutant
hintingtin expression cause a premature death of differentiating
neuroblasts regardless of the origin of the neuroblasts. For
example (Magnusson et al., 2014) demonstrated that a subset
of astrocytes have the capacity to produce new neurons in the
striatum independent of the SVZ, while a striatal specific stem
cell niche is yet to be recognized (Magnusson et al., 2014). Also
here, elevated TGF-beta levels might finally reduce the levels
of neuronal production and the survival of the new neurons.
Taken together, it can be proposed that therapeutic physical
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FIGURE 1 | Graphical illustration of cell populations of the CNS—astrocyte (dark green), oligodendrocyte (pinkish red), neuroblasts (drab), interneuron (olive) and
microglia (indigo) in the adult brain during normal aging process (A) and activated microglia, reactive astrocytes and reactive neuroblastosis and neurodegeneration in
the degenerating striatum of Huntington’s disease (HD; B). Concentric circles of yellow and white indicate a possible overlap between pSmad2 (Yellow) and wild-type
(WT) huntingtin protein (white; A) or mutant huntingtin protein (Red; B). (A1–A3) represent a gradual decline of neurogensis in the subventricular zone (SVZ)-striatal
regions upon aging process. (B1–B3) illustrate abnormal neurogenic events and neuro degeneration in the SVZ-striatal regions in early onset, mid and late stages
of HD.

exercise and/or hyperkinetic movements in HD subjects might
play a major role in impeding adult neurogenesis through
elevated TGF-beta/Smad2 signaling, which might elevate
the expression of mutant huntingtin protein in neuroblasts
leading to premature death of these cells. In contrast, in
the healthy brain, physical exercise induced TGF-beta/Smad
signaling may act in synergy with huntingtin protein, and

this in turn can lead to terminal differentiation of neuroblasts
resulting in functional neurogenesis. The source of the elevated
TGF-beta levels upon physical exercise in the healthy brain is
not known, under pathological situations, activated microglia
and reactive astrocytes are potential sources of TGF-beta
(Lindholm et al., 1992; Doyle et al., 2010; Kandasamy et al.,
2010).
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IMMUNOLOGICAL AND
NON-NEUROGENIC ROLES OF REACTIVE
NEUROBLASTOSIS IN THE ADULT
STRIATUM

Reactive neuroblasts in the HD brains might be immunologically
active and modulate microglia activities. Microglia have been
strongly implicated in immune surveillance and synaptic pruning
(Kettenmann et al., 2013), and they are responsible for
synaptic integration of new-born neurons, thereby supporting
the neuroplasticity of adult neurogenesis (Ekdahl, 2012).
A substantial number of reports suggested that disruption
of microglial functions along aging and neurodegenerative
processes leads to synaptic disruptions, neuronal loss and,
consequently, to cognitive impairments (Morris et al., 2013).
The activated microglia mediated prolonged neuroinflammatory
responses have been well recognized in HD (Sapp et al., 2001;
Crotti et al., 2014).

In an independent attempt to characterize microglial cells
in the HD brain using ionized calcium binding adaptor
molecule 1 (IBA 1) staining, the SVZ-region of early stage
tgHD rats showed an indication for microglial activation
compared to controls. In contrast, a drastic reduction in the
number of microglial cells was observed in parallel with the
invasion of neuroblasts in the striatum of late stage tgHD
rats compared to the early stage and that of age matched
controls (unpublished own data). One possible reason might be
a non-cell autonomous mechanism, by which the glial specific
expression of mutant huntingtin protein can induce prolonged
reactive astrocytosis and activated microgliosis (Bradford et al.,
2010; Ehrlich, 2012). Abnormal glial cell activity may result
in depletion of microglia and astrocytes due to phagocytosis
in the pathogenic HD brains. Thus, the observed reactive
neuroblasts in the SVZ deviating towards the striatum may also
be an immunological response in order to compensate for the
reduction in glial cells, particularly the depletion of microglia in
late stage of HD.

Previously, Kohl et al. (2010), demonstrated that the
expression of the mutant huntingtin protein was specifically
found in the dopamine- and cAMP-regulated neuronal
phosphoprotein (DARPP)-32 positive cells of the inner striatum
of R6-2 mice. However, the expression of the mutant huntingtin
protein appears to be delayed in the proliferating precursor cells
of the striatum adjacent to the SVZ in R6/2 animals (Kohl et al.,
2010). This observation closely overlaps and corresponds to
the process of reactive neuroblastosis, in which, the absence of
mutant huntingtin protein and pSmad2 in the neuroblasts has
been proposed for the delayed terminal differentiation of new
neurons in the adjacent striatum of HD subjects (Kandasamy
et al., 2015).

Besides an immunomodulatory role, a concomitant
experimental evidence using transcriptome analysis of NSCs
suggested that induced levels of TGF beta can suppress
the expression of Myelin basic protein (MBP), a marker of
oligodendrocytes (Kandasamy et al., 2014). While conditional
expression of the mutant huntingtin protein has been shown

to induce apoptosis in oligodendrocytes, demylination can
be expected in the striatum of HD subjects (Huang et al.,
2015). Thus, impaired myelination process in the striatum,
in part, might be responsible for the failure in the synaptic
plasticity of newly generated neurons (Alizadeh et al.,
2015; Bourbon-Teles et al., 2017). Taken together, it can
be postulated that the selective proliferation of neuroblasts
responsible for reactive neuroblastosis may partly take over
neuroinflammatory functions of glial cells in the absence or
dysfunction of microglia or astrocytes in the HD striatum.
Besides, depletion or dysregulation of neurotransmitter inputs
have been shown to induce the migration of neuroblasts towards
the striatum by compromising the cell proliferation in the
SVZ (Winner et al., 2006). Thus, the migrating neuroblasts
might also provide an alternate source of neurotransmitters,
trophic and growth factors involved in synaptic plasticity to
support the function of the striatum. It certainly demands
further experiments to investigate the additional roles of
neuroblastosis with respects to immune defense, trophic support
and synaptic pruning compared to glial cells in the adult brain.
Thereby, the extra-neurogenic roles of normal and reactive
neuroblasts can functionally be addressed for many acute
forms of neurological diseases such as stroke and epileptic
seizure.

THE FUNCTIONAL ROLES OF
NEUROBASTS IN THE STRIATUM OF THE
ADULT BRAIN

A significant scientific progress has been made in understanding
the physiological roles and regulation of adult neurogenesis
in aging and disease (Deng et al., 2010; Couillard-Despres
et al., 2011; Marschallinger et al., 2015). The generation and
functional integration of the new born neurons in the adult
brain enticed by physical activity (van Praag et al., 1999;
Vivar et al., 2013) and environmental stimuli (Kempermann
et al., 1997; Zhao et al., 2008; Ming and Song, 2011) not
only contribute to neural plasticity but also facilitate brain
regeneration and functional recovery upon acute brain injuries
and progressive neurodegenerative conditions (Nakaguchi et al.,
2011). The primary roles of hippocampal neurogenesis have
been demonstrated to be linked with pattern separation, mood
regulation, contextual learning and memory processes (Clelland
et al., 2009), whereas the SVZ derived neurogenesis in the
OB has been implicated in odor discrimination and sexual
desire (Sakamoto et al., 2011; Feierstein, 2012; Hill et al., 2015).
Interestingly, evidence for the occurrence of adult neurogenesis
has also been established in amygdala (Jhaveri et al., 2017),
hypothalamus (Paul et al., 2017) and cortex (Gould et al.,
1999) responsible for fear memory, HPA-axis and motor
control, respectively. Thus, different brain regions sustain the
regenerative potential to establish new neurons in the adult
stage.

The striatum is a central part of the basal ganglia, responsible
for the functionality of limbic system attributed to voluntary
motor control, reward process, cognitive functions and behavior
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(Graybiel and Grafton, 2015; Yager et al., 2015). It integrates
inputs from the cortex, thalamus, substantia nigra and brain
stem and processes them to the relevant functional regions of
the brain, including hippocampus and OB, to regulate diverse
neurocognitive and motor functions (Martinez-Marcos et al.,
2005; Ross et al., 2011; Calabresi et al., 2014; Vicente et al.,
2016). While roles for the striatum in motor function have
been well established (Lenz and Lobo, 2013; Hutton et al.,
2017), its functional role on cognition including learning and
memory synchronized together with hippocampus and OB
remain unclear (Setlow et al., 2003; Albouy et al., 2013). The
generation of neuroblasts in the striatum might be responsible
for integrating and processing these external stimuli. For
example, physical exercise (van Praag et al., 1999) and sex
pheromones (Hoffman et al., 2015) have been shown to induce
hippocampal neurogenesis under healthy condition. While
defects in the OB neurogenesis and olfactory dysfunctions
have been reported in the HD (Nordin et al., 1995; Moberg
and Doty, 1997; Hamilton et al., 1999), the regulation of
hippocampal neurogenesis mediated by pheromones through
the olfactory route may not be possible. Moreover, physical
exercise is also not beneficial in promoting the hippocampal
plasticity under HD condition (Kohl et al., 2007) thereby
suggesting a possible disconnection of the hippocampus and
OB from the sensorimotor processes of the striatum in
HD. Likewise, the presence of neuroblasts in the striatum
has been characterized in the normal human brain, but the
striatum of human HD brain has been found to be devoid
of neuroblasts (Ernst et al., 2014). While the DCX positive
cells have been shown to possess electrophysiological properties
and secrete trophic factors (Liu et al., 2009; Couillard-Despres
et al., 2011; Klempin et al., 2011), striatal neuroblasts that
are positive for DCX may play a major role in transmitting
the physical exercise and pheromone-mediated sensorimotor
signals to the hippocampus of the normal adult brain. Thereby,
the striatum might act as a cellular hinge or tissue juncture
of many peripheral and environmental inputs and process
it to other brain region via neuroblasts. It has been well
established that the hippocampus is functionally connected to
the striatum (Albouy et al., 2013). With respect to the physical
activity mediated external stimuli, the regulation of hippocampal
neurogenesis might be facilitated by striatal neuroblasts through
a possible limbic-motor interface. Thus, gradual decline in
physical activities and deficits in environmental stimuli along
with the reduced cerebral metabolic rate and aging systemic
milieu may partially explain a possible reason for failure
in survival of neuroblasts in the striatum of normal aging
human brains. The other newly identified adult neurogenic
regions such as cortex, amygdala and hypothalamus have
classically been known for their connections with the striatum
(Macpherson et al., 2014). Thus, the striatal neurogenesis may
also be collectively associated with motor memory, fear memory,
olfactory memory, contextual memory, hormonal regulation
of memory. Taken together, the neuroblasts in the striatum
may represent a central axis for a sensorimotor pathway to
regulate various neurolplastic functions of the brain including
cognition.

POSSIBLE LIMITING FACTORS OF THE
ANALYSIS OF NEUROBLASTS IN THE
ADULT BRAIN

Obviously, there are still limitations in the techniques that are
used to detect and to analyze neurogenesis. Recently, Jonas
Frisén and colleagues have implemented the radioactive carbon
dating procedure to estimate the persistence of neurogenic
process in the striatum and RMS-OB path along the aging
process and in HD human brains (Bergmann et al., 2012;
Ernst et al., 2014). Though there was no traceable amount of
neuroblasts observed in the RMS, turnover of a interneuronal
population in the striatum was evident in adult human brains
(Ernst et al., 2014). The striatal turnover of neuroblasts is likely
to be originated in the SVZ, but the survival of neuroblasts
was found to be diminished in the striatum of both the
healthy and HD human subjects (Ernst et al., 2014). Eventually,
the disoriented neuroblasts originated from the SVZ failed to
differentiate, integrate and survive in the human striatum (Ernst
et al., 2014), confirming the previous reports on R6/2 mouse
(Kohl et al., 2010) and tgHD rat -models of HD (Kandasamy
et al., 2015). Interestingly, validation of neurogenesis in the
RMS-OB path using radioactive 14C dating enforced the view
that the human OB is devoid of ongoing neurogenesis in the
adulthood (Wang et al., 2011; Bergmann et al., 2012). This is
somewhat contradictory to a previous report in which (Curtis
et al., 2007) using BrdU labeling method demonstrated that
the migration of neuroblasts through the RMS contributes to
neurogenesis in the OB of the human brain. Both paradigms
for tracing newly divided cells in the human brain, either using
nucleotide analogs or radioactive 14C, have their own merits
and limitations. For example, it has generally been believed that
intake of food represents the primary source of carbon in the
human body. However, the olfactory epithelium of the nasal
mucosa is connected with the OB through the filia olfactoria,
in which a fraction of atmospheric air and volatile pheromones
are able to reach the OB during respiration (Coates, 2001;
Lahiri and Forster, 2003; Sun et al., 2009; Gao et al., 2010). As
reported earlier, the OB can sense the atmospheric CO2 (Hu
et al., 2007; Gao et al., 2010; Carlson et al., 2013) where it
can diffuse into bio-available metabolites in the brain through
a CO2 fixation process (Berl et al., 1962; Pincus, 1969; Lahiri
and Forster, 2003; Scott, 2011). Thus, a considerable amount
of radioactive 14C depletion can be expected specifically in the
genome of mitotically active cells in the human OB due to
the well-known ‘‘Suess effect’’ (Stenström et al., 2010; Graven,
2015; Lång et al., 2016), through which radioactive 14C can
be exchanged by normal 12C from the atmospheric CO2 and
some organic volatile compounds such as pheromones (Pinto,
2011; Cazakoff et al., 2014; Ajmani et al., 2016). Moreover, the
radioactive 14C decay has been considered a spontaneous and
highly random process, as different 14C atoms can radically be
reverted into 14N atoms at different degrees due to a subatomic
transmutation process. The safety guideline and dosimetry of
radioactive elements suggest that 14C is a low energy beta
emitter and therefore a short-term external exposure may be
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harmless (Pauling, 1958; Kim et al., 2010). However, according
to Pauling, it would also be expected that a prolonged cell
intrinsic emission of 14C radiation and accumulation of 14C
incorporated cells in close proximity might intensify the dose
of radiation (Pauling, 1958). In turn, a magnitude of radiation
discharged from a large quantity of 14C atoms has been suggested
to induce irreversible mutational events in genome, leading to
carcinogenesis or apoptosis in humans (Pauling, 1958). Hence,
radioactive 14C based tracing of neurogenesis in the human
brain may require further validation to exclude, if present, any
false negative results or artifacts. Similarly, the incorporation
of halogenated thymidine analogs by apoptotic cells (Cooper-
Kuhn and Kuhn, 2002), their toxic effects on cell viability
(Lehner et al., 2011), DNA instability or repair mechanisms and
phagocytosis events rendered by microglia also require a careful
consideration (Rakic, 2002). Nevertheless, it has widely been
accepted that neurogenesis occurs in adult brain as it provides
a foundation for neural plasticity across the animal kingdom
(Ming and Song, 2011; Velusamy et al., 2017). While multiple
intrinsic and extrinsic stimuli have been shown to regulate
adult neurogenesis in the hippocampus and the SVZ-OB, its
regulation in the striatum has become an important topic of
elucidation.

CONCLUSION

The naturally occurring stem cell mediated neuroregenerative
processes in the adult brain under physiological condition
provides a clue in ascertaining a potential therapeutic target
for many neurodegenerative disorders including HD. The
occurrence of SVZ derived neuroblasts as a part of neurogenic
event in the striatum of both animal and human brains, signifies
an impetuous self-restorative attempt of the adult brain. A

growing body of evidence supports the idea that the SVZ
derived neuroblasts in the striatum may provide structural
and neurophysiological alternative for trophic support and
neuronal loss and thereby it may contribute in restoring the
motor and cognitive functions that are lost in HD. Therefore,
investigation into the molecular mechanism involved in reactive
neuroblastosis at the levels of cell proliferation, migration,
integration and survival in the damaged area may provide a clue
for therapeutic intervention not only for treating HD but also
for a variety of neurological deficits such as stroke, Parkinson’s
disease and Alzheimer’s disease.
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