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Bone metastasis in breast, prostate and lung cancers often leads to chronic pain, which
is poorly managed by existing analgesics. The neurobiological mechanisms that underlie
chronic pain associated with bone-metastasized cancers are not well understood, but
sensitization of peripheral nociceptors by tumor microenvironment factors has been
demonstrated to be important. Parathyroid hormone-related peptide (PTHrP) is highly
expressed in bone-metastasized breast and prostate cancers, and is critical to growth
and proliferation of these tumors in the bone tumor microenvironment. Previous studies
have suggested that PTHrP could sensitize nociceptive sensory neurons, resulting
in peripheral pain hypersensitivity. In this study, we found that PTHrP induces both
heat and mechanical hypersensitivity, that are dependent on the pain-transducing
transient receptor potential channel family vanilloid, member-1 (TRPV1), but not the
mechano-transducing TRPV4 and TRPAT ion channels. Functional ratiometric Ca*+
imaging and voltage-clamp electrophysiological analysis of cultured mouse DRG neurons
show significant potentiation of TRPV1, but not TRPA1 or TRPV4 channel activation
by PTHrP. Interestingly, PTHrP exposure led to the slow and sustained activation of
TRPV1, in the absence of any exogenous channel agonist, and is dependent on
the expression of the type-1 parathyroid hormone receptor (PTH1), as well as on
downstream phosphorylation of the channel by protein kinase C (PKC). Accordingly,
local administration of specific small-molecule antagonists of TRPV1 to mouse hindpaws
after the development of PTHrP-induced mechanical hypersensitivity led to its significant
attenuation. Collectively, our findings suggest that PTHrP/PTH1-mediated flow activation
of TRPV1 channel contributes at least in part to the development and maintenance of
peripheral mechanical pain hypersensitivity, and could therefore constitute a mechanism
for nociceptor sensitization in the context of metastatic bone cancer pain.
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INTRODUCITON

Advanced breast and prostate cancer frequently metastasize to
bones and growth of these metastatic tumors is often associated
with severe pain and discomfort (Roodman, 2004; Papachristou
et al., 2012; Mantyh, 2013; Rucci and Angelucci, 2014; Schmidt,
2014). This type of pain is often undermanaged with existing
analgesics, due to the development of tolerance and dose limiting
side effects of traditional opioids (Mantyh, 2013; Schmidt,
2014; Lucchesi et al, 2017). While the precise mechanisms
underlying metastatic bone cancer pain are poorly understood,
it is thought to be initiated in part by sensitization of peripheral
nociceptors innervating the site of bone tumor growth (Schmidt,
2014). Multiple studies have shown that cytokines, chemokines,
growth factors and other peptides released into the tumor
microenvironment sensitize nociceptive fibers (Constantin et al.,
2008; Schweizerhof et al., 2009; Pan et al., 2010; Stosser et al.,
2011; Mantyh, 2013; Schmidt, 2014). One such mediator is
parathyroid hormone-related peptide (PTHrP), which is highly
expressed in metastatic breast and prostate cancers (Iwamura
et al., 1993; Soki et al,, 2012). A recent study showed that
the levels of the proteolytic fragment peptide PTHrP (12-48)
are high in the plasma (range: 50 pg/ul to >200 pg/pl, with
a mean of ~100 pg/pl or ~10 nM) of human patients with
breast cancer bone metastasis vs. non-bone metastatic breast
cancers (Washam et al, 2013). PTHrP selectively binds to
the type-1 parathyroid hormone receptor (PTH1), but not the
PTH2, and initiates a cascade of G protein-coupled receptor
(GPCR)-mediated intracellular signaling (Hoare and Usdin,
2001). Both PTHI1 and PTH2 are expressed in DRG neurons,
with PTH1 being expressed on most DRG neurons, while
PTH2 expression is largely confined to medium- and large-
diameter myelinated nerves (Macica et al, 2006; Matsumoto
et al., 2010; Mickle et al., 2015a).

We recently demonstrated that PTHrP can potentiate the
activity of the nociceptive ion channel transient receptor
potential, family vanilloid, member-1 (TRPV1) and elicit
peripheral pain hypersensitivity behaviors in mice (Mickle
et al, 2015a). TRPV1 is predominantly expressed on peripheral
nociceptors and can be activated by noxious heat, acidic pH,
and a number of endogenous lipid mediators, as well as by
exogenous algogens such as capsaicin (Caterina et al., 1997;
Tominaga et al., 1998; Hwang et al., 2000; Loo et al., 2012;
Mickle et al., 2015b). Initial characterization of TrpvI—/~
mice suggested that the TRPV1 channel is critical to the
development of inflammatory heat hyperalgesia, without any
influence on mechanical hypersensitivity (Caterina et al., 2000;
Davis et al., 2000). However, several studies in the recent
past have now suggested the involvement of TRPVI1 in
mechanical pain hypersensitivity in the context of a number
of painful pathologies, such as inflammation, nerve injury,
sickle cell disease and primary bone cancers (Ghilardi et al.,
2005; McGaraughty et al., 2008; Shinoda et al., 2008; Hillery
et al, 2011; Brenneis et al, 2013; Chung et al, 2015).
Direct activation of TRPV1 by mechanical forces, such as
those observed with peizo-driven polished blunt-tip glass
pipets have not been shown. Rather, the slowly-adapting

mechanical currents in mouse DRG neurons were shown to be
completely blocked by a TRPA1 channel antagonist (Vilceanu
and Stucky, 2010). A number of studies have suggested that
protein kinase C (PKC) phosphorylation of TRPV1 channel
is associated with the development of peripheral mechanical
hypersensitivity in rodent models of painful pathologies, without
any direct evidence that PKC could influence the channel
and its contribution to mechanical sensitization (Lee et al.,
2012; Chung et al., 2015; Wang et al., 2015). Overall, the
prevailing view on the role of TRPV1 in mechanical pain
sensitization is that neurogenic inflammation downstream
of robust activation of this channel initiates a cascade of
signaling, involving multiple pain-transducing ion channels and
receptors, that culminates in the development of mechanical pain
hypersensitivity (Patapoutian et al.,, 2009; Julius, 2013; Mickle
et al., 2016; Gouin et al., 2017).

We recently found that both heat and mechanical
hypersensitivity evoked by PTHrP were absent in TrpvI~/~
mice (Mickle et al, 2015a). Conventionally, it is thought
that mechano-transducing sensory ion channels, such as
TRPA1 and TRPV4, contribute to the development of
mechanical hypersensitivity (Kwan et al, 2006; Alessandri-
Haber et al, 2008; Brierley et al, 2009; Ho et al, 2012;
Nilius and Voets, 2013). Therefore, the aim of the current
study was to make an unambiguous investigation of the
contribution of nociceptive TRP channels to PTHrP-induced
mechanical pain hypersensitivity. Our results suggest that
TRPV1, and not TRPV4 or TRPA1 channel activity is required
for the initiation of peripheral mechanical hypersensitivity
induced by hindpaw injection of PTHrP in mice. We found
that PTHrP perfusion leads to flow activation of TRPVI,
which is dependent on PKC phosphorylation of the channel.
Furthermore, peripheral TRPV1 channel activity significantly
contributes to the maintenance of PTHrP-induced mechanical
hypersensitivity.

MATERIALS AND METHODS

Animals

All experiments were performed using adult (6-14 weeks
old) mice housed in the University of Iowa and Washington
University Animal facilities on a 12-h light/dark cycle with
access to food and water ad libitum. All the procedures
involving mice were approved by the Institutional Animal
Care and Use Committees of The University of Iowa and
Washington University in St. Louis, St. Louis, MO, USA and
in strict accordance with the US National Institute of Health
(NIH) Guide for the Care and Use of Laboratory Animals.
Every effort was made to minimize the number of mice
and their suffering in this study. C57BL/6] (B6-WT; Stock
No: 000664), B6/129PF2/] (B6/129-WT; Stock No: 100903),
B6/129PF2/]-Trpal~/~ (B6/129-Trpal~/~; Stock No: 006401),
and C57BL/6]—Trpv1_/_ (B6—Trpv1_/_; Stock No: 003770) mice
were purchased from Jackson Labs. The C57BL/6]-Trpvd~/~
mouse line was generated and generously provided by Dr.
Wolfgang Liedtke (Liedtke and Friedman, 2003). Based on
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our previous findings on PTHrP-modulation of thermal and
mechanical hypersensitivity in male vs. female mice (Mickle
et al., 2015a), animals of both sexes were used in all behavioral,
Ca** imaging and electrophysiological experiments. Intraplantar
(i.pl.) injections were performed as described previously (Loo
et al., 2012; Mickle et al., 2015a). Mice were manually restrained
with the aid of a cloth such that the plantar surface of
one hindpaw was exposed. A 10 pL volume was injected
into the plantar surface of the hind paw via a 33-gauge
stainless steel needle coupled to a Hamilton syringe. Mice were
continuously monitored post-injection. Experimenters were
blinded to mouse genotypes, saline/drug injection types and
injection laterality during the conduct of experiments and data
recordings.

Chemicals and Reagents

Purified recombinant human/rodent collagenase and pronase
were purchased from EMD Chemicals, and the Ca?*-
sensitive dye Fura-2AM, pluronic acid, Lipofectamine-2000,
Dulbecco’s modified-Eagle’s medium (DMEM), bovine
serum and antibiotics for cell culture were purchased
from Invitrogen—Thermo Fisher Scientificc. PTHrP was
purchased from Peprotech. AMG9810 (2E-N-(2,3-Dihydro-
1,4-benzodioxin-6-yl)-3-(4-(1,1-dimethylethyl)phenyl)-2-
Propenamide), capsaicin, GSK1016790A, poly-L-ornithine,
and laminin were purchased from Merck-Millipore-Sigma.
TNB-100 culture medium and Protein-lipid complex for neuron
cultures were purchased from Biochrom-Merck-Millipore.
5-Iodoresiniferotoxin ~ (IRTX;  6,7-Deepoxy-6,7-didehydro-
5-deoxy-21-dephenyl-21-(phenylmethyl)-daphnetoxin, 20-
(4-hydroxy-5-iodo-3-methoxybenzeneacetate), ~ Tetrodotoxin
and Bisindolylmaleimide-I (BIM-1) were purchased from
Tocris—R&D systems. All other chemicals used in this study
were purchased from Merck-Millipore-Sigma, VWR and
Thermo Fisher Scientific. The HEK293T cell line was purchased
from American Type Culture Collection (ATCC), Manassas,
VA, USA and routinely tested for mycoplasma contamination
using the LookOut® kit (Merck-Millipore-Sigma).

Behavioral Assessment of Heat and
Mechanical Hypersensitivity on Mouse

Hindpaws
Mice were acclimated to the testing environments for 2 days
prior to testing by placing them in the testing chambers for
30 min, two times a day separated by at least 1 h. Heat
hypersensitivity was tested using Hargreaves’ method (IITC Life
Sciences), as described previously (Loo et al., 2012; Mickle et al.,
2015a). Briefly, mice were put in individual Plexiglas testing
chambers placed on a glass plate maintained at thermo-neutral
temperature (~30°C) for at least 30 min before testing. A focused
high-intensity beam of light was illuminated onto the plantar
surface of the hindpaw and the latency to paw withdrawal was
recorded. For each time point, the paw withdrawal latency (PWL)
was measured twice for both limbs and averaged for analysis.

To test mechanical sensitivity, mice were placed individually
on a wire mesh platform covered by a Plexiglas box for

15 min before testing. Mechanical sensitivity was then measured
counting paw withdrawals to applications of von Frey hair
filaments (eight filaments; strength range 0.04-2 g; Stoelting Co.)
applied to the plantar surface of the mouse hindpaw. Tests were
performed starting with the lowest filament strength (0.04 g)
and moving up to the filament with maximum strength (2 g).
Each filament (in an ascending order of filament strength) was
applied to each individual mouse hindpaw five times, and the
number of paw withdrawal responses was recorded. To assess
the changes in paw withdrawal response over the whole range
of filaments for each testing period, the area under the curve
(AUC) was calculated for each animal and the average AUC for
each hindpaw and treatment group was calculated as detailed
previously (Mickle et al., 2015a; Shepherd and Mohapatra, 2018).
Baseline measurements were taken for both heat and mechanical
sensitivity, and then after saline/drug injections for different
durations. All behavioral experiments were performed on mice
of individual genotypes (wherever mentioned), in two or more
cohorts of animals.

Primary Cultures of Mouse DRG Neurons
DRGs were isolated from adult B6-WT, B6-Trpvi~/—, B6-
Trpv4=/~, B6/126-WT and B6/126-Trpal~/~ mice, as described
previously (Loo et al., 2012; Mickle et al., 2015a). Isolated ganglia
(C4 to L5) were dissociated and digested with collagenase and
pronase, and then plated onto poly-L-ornithine- and laminin-
coated glass coverslips (for Ca?t imaging or electrophysiology).
Cells were incubated in culture media comprised a of 1:1 ratio
of TNB media supplemented with protein-lipid complex, and
DMEM with 10% fetal bovine serum, at 37°C in a 5% CO,
incubator for 2-3 days, before use in Ca®" imaging and
electrophysiological experiments.

Functional Ca** Imaging

Ca’* imaging experiments on cultured mouse DRG neurons
were performed as described previously (Loo et al, 2012;
Mickle et al., 2015a). The standard extracellular HEPES-buffered
HBSS (HH buffer) contained (in mM) 140 NaCl, 5 KCI,
1.3 CaClz, 0.4 MgSO4, 0.5 MgCIZ, 0.4 KH2PO4, 0.6 NaHPO4,
3 NaHCOs, 10 glucose and 10 HEPES, pH 7.35 with NaOH
(310 mOsm/kg with sucrose). Glass coverslips of mouse DRG
neurons were incubated with 3 pM of Fura-2AM/pluronic
acid for 20 min at room temperature (~22°C) prior to the
experiment. The coverslips were washed in HH buffer following
incubation to remove excess dye and then placed in the recording
chamber mounted on the stage of an inverted Leica DMI6000B
microscope, followed by at least a 5 min wash with HH bulffer.
Fluorescence was alternately excited at 340 and 380 nm (12 nm
bandpass) using a Lambda LS Xenon lamp (Sutter Instrument)
and a 10x/N.A 0.4 objective. Emitted fluorescence was collected
at 510 nm using a Hamamatsu ORCA-100 CCD camera. Pairs
of images were sampled at 1 Hz, background fluorescence
was subtracted and the ratio of fluorescence (F349/F3g9) was
calculated. Bath application of agonists (capsaicin, AITC or
GSK1016790A) was made twice (15 s each for capsaicin and
AITGC; 30 s for GSK1016790A) in HH buffer, with a 3 min
interval. The recording chamber was perfused with HH buffer
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for 1 min after the 1st agonist application, followed by vehicle or
PTHrP in HH buffer for 2 min before the 2nd agonist application.
Data were analyzed by calculating the ratio of the 2nd over
Ist agonist-induced peak Ca’t signal (F340/F3g0), in order to
determine the magnitude of TRP channel sensitization. All Ca®*
imaging experiments were performed in >3 batches of DRG
neuron cultures from each mouse genotype.

Site-Directed Mutagenesis and Culture

and Transfection of HEK293T Cells

The rat TRPV1 ¢cDNA (in pcDNA3) was generously provided
by Prof. David Julius. Site-directed mutagenesis was performed
on rTRPV1-pcDNA3 to generate the phospho-disruptive alanine
substitution at PKC phosphorylation sites, S502, T704 and S800
(rTRPV1-S502A/T704A/S800A or rTRPVI-TM as denoted in
the figure), as described previously (Mohapatra et al., 2003;
Loo et al, 2012). Mutations at only these three residues
were confirmed by DNA sequencing of the full cDNA.
Human embryonic kidney cells stably expressing the T-antigen
(HEK293T) were cultured in DMEM (with Glutamax), 10%
FBS and penicillin/streptomycin. Cells were co-transfected
with plasmids containing eYFP-N1 (Clontech) and wild-type
(WT) or PKC-triple mutant TRPV1, and/or YFP-tagged rat
PTH1 (generously provided by Prof. Matthew Mahon) cDNAs
using the Lipofectamine-2000™ reagent per the manufacturer’s
instructions, as detailed previously (Mohapatra and Nau, 2003,
2005; Loo et al., 2012). Transfected cells were used for recordings
1-2 days post-transfection.

Electrophysiology and Data Analysis
Voltage-clamp electrophysiological recordings in whole-cell
mode were performed on cultured mouse DRG neurons and
transfected HEK293T cells, as described previously (Loo et al.,
2012; Mickle et al, 2015a). The pipette solution contained
(in mM): 5 NaCl, 140 KCl, 1 CaCl,, 1 MgCl,, 10 HEPES,
5 EGTA and 3 Na-ATP, pH 7.3 with KOH. Cells were bathed
in extracellular buffer containing (in mM) 140 NaCl, 5 KCl,
0.1 CaCl,, 1 MgCl,, 10 HEPES, 10 glucose, pH 7.3 with NaOH.
For neuronal recordings 1 pM tetrodotoxin was added to the
bath solution in order to block fast-activating Na, currents. A
low extracellular Ca?* concentration was used to minimize the
Ca’*-dependent desensitization of TRPV1 (Mohapatra et al,
2003). All agonists/drugs were diluted in the extracellular buffer
and perfused locally onto the cell under recording with a flow
rate of 2 ml/min, using individual channels of a gravity driven
multiple-barrel perfusion system. Currents were recorded at
room temperature (~22°C) with an Axopatch 200B patch-clamp
amplifier connected to a Digidata 1440A data acquisition system
(Molecular Devices). The holding potential was —70 mV, and
the data were sampled at 2 kHz and filtered at 1 kHz using
pClamp 10 software (Molecular Devices). Patch pipettes were
pulled from borosilicate glass tubes and heat polished at the
tip using a microforge (World Precision Instruments) to give
a resistance of 2-5 M2 when filled with the pipette solution.
Clampfit 10 (Molecular Devices), Excel (Microsoft Co.), and
Prism 7 (GraphPad Software) software were used for the analysis
of currents and preparing traces/figures.

Statistics

Data are presented as mean =+ SEM. For behavioral and
electrophysiological data, two-way ANOVA with multiple group
comparisons and Bonferroni’s post hoc test were performed.
p < 0.05 in each set of data comparisons was considered
statistically significant. Ca?" imaging data were analyzed using
one-way ANOVA with Bonferroni’s post hoc test. All analysis was
performed using GraphPad Prism 7.0 (GraphPad Software, Inc.,
La Jolla, CA, USA).

RESULTS

PTHrP-induced Heat and Mechanical
Hypersensitivity Is Dependent on TRPV1,
But Not TRPA1 or TRPV4

We have previously shown that hindpaw administration of
PTHrP induces robust thermal and mechanical hypersensitivity
in mice with an early onset (0.5 h), and is persistent at
5.5 h post-injection (Mickle et al., 2015a). Our preliminary
findings suggested the critical role of TRPV1 therein. We next
verified the role of other TRP channels, such as TRPA1 and
TRPV4, which have been suggested to play important roles
in inflammatory pain hypersensitivity (Kwan et al, 2006;
Alessandri-Haber et al., 2008; Patapoutian et al., 2009; Julius,
2013; Mickle et al., 2016). Hindpaw PTHrP injection (1 pM
in 10 pL; i.pl.) led to the development of heat hypersensitivity
in the ipsilateral hindpaws of WT (Figures 1A,D), Trpv4—/~
(Figure 1C) and Trpal~/~ (Figure 1E) mice, but not Trpvl =/~
mice (Figure 1B). We must mention here that the PTHrP
concentration used in these experiments (1 uM = 10 pmol
in 10 pl injection volume) are based on a recent finding
that the proteolytic fragment peptide PTHrP (12-48) are
high in the plasma (range: 50 pg/ul to >200 pg/ul, with
a mean of ~100 pg/pml or ~10 nM) of human patients
with breast cancer bone metastasis vs. non-bone metastatic
breast cancers (Washam et al., 2013). While it has been well
established that TRPV1 plays a critical role in inflammatory heat
hypersensitivity, its direct role in mechanical hypersensitivity
remains a topic of debate (Caterina et al., 2000; Davis
et al, 2000; Kwan et al, 2006; Patapoutian et al., 2009;
Julius, 2013; Mickle et al, 2016). We next investigated if
TRPV1 is also directly involved in PTHrP-induced mechanical
hypersensitivity. PTHrP injection into mouse hindpaws led to
robust mechanical hypersensitivity in WT mice (Figure 2A),
whereas no significant alteration in hindpaw mechanical
sensitivity was observed in Trpvl~/~ mice (Figure 2B). It has
been shown that robust peripheral activation of TRPV1 initiates
local neurogenic inflammation, which presumably leads to the
activation of other mechano-transducing channels, such as
TRPA1 and TRPV4, to induce mechanical pain hypersensitivity
(Kwan et al, 2006; Alessandri-Haber et al., 2008; Brierley
et al, 2009; Patapoutian et al., 2009; Julius, 2013; Mickle
et al., 2016; Gouin et al., 2017). We therefore tested the
role of TRPAl and TRPV4 in PTHrP-induced mechanical
hypersensitivity, presumably acting downstream of TRPVI.
Interestingly, PTHrP-induced mechanical hypersensitivity was
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FIGURE 1 | Parathyroid hormone-related peptide (PTHrP) induces heat hypersensitivity in mice, and is dependent on transient receptor potential channel family
vanilloid, member-1 (TRPV1). PTHrP (1 uMin 10 L, i.pl.) acutely caused a significant decrease in the paw withdrawal latency (PWL) to heat stimuli in the ipsilateral
hindpaw of B6-wild-type (WT) mice, which persisted at 5.5 h after injection compared to saline injected controls (A). This decrease in PWL by PTHrP injection was
absent in B6-Tprv1—/~ mice (B), but not in B6-Trpv4~/~ (C). PTHrP-induced decrease in PWL was also observed in B6/129-Trpa?~/~ (D) to a similar extent as in
B6/129-WT (E) and B6-WT mice (A). Data are presented as mean + SEM of hindpaw PWL. **p < 0.001 and “ns”-not significant, two-way ANOVA with

observed in Trpv4~/~ and Trpal~/~ mice, to the same extent as
seen with WT mice (Figures 2C-E). This observation suggests
that TRPV4 and TRPA1 are not involved either upstream
or downstream of TRPVI1 activation to induce mechanical
hypersensitivity upon PTHrP injection.

PTHrP Sensitizes TRPV1-, But Not TRPA1-

or TRPV4-mediated CaZ* Influx

We next wanted to determine if TRPA1 or TRPV4 channels
could modulate TRPV1 meditated Ca?" influx in response
to PTHrP. As we have previously observed, PTHrP (10 nM,
2 min) could significantly potentiate capsaicin-mediated (50 nM,
15 s) Ca** influx in WT DRG neurons (Figures 3A,B).
This concentration of PTHrP is based on a recent finding
that the proteolytic fragment peptide PTHrP (12-48) are
high in the plasma (mean = ~100 pg/pl or ~10 nM)
of human patients with breast cancer bone metastasis vs.
non-bone metastatic breast cancers (Washam et al., 2013).
PTHrP potentiation of capsaicin-mediated Ca?* influx was
intact in Trpal~/~ and Trpv4~/~ DRG neurons, but was
absent in Trpvl_/ ~ DRG neurons (Figures 3A,B). We also

investigated if PTHrP could influence TRPA1- or TRPV4-
mediated Ca?* influx. Application of PTHrP (10 nM, 2 min)
between two AITC applications (50 pM, 15 s) did not lead
to any significant alteration in Ca?" influx in DRG neurons
cultured from WT and Trpvi~/~ mice, suggesting no direct
influence of PTHrP on TRPA1 channel activity (Figures 3C,D).
We next tested if PTHrP could modulate TRPV4-mediated
Ca*" influx. Using the TRPV4-specific agonist GSK1016790A
(I wM, 30 s), we did not observe any significant change in
Ca** influx in mouse DRG neurons with PTHrP application
(Figure 3E). Expression of TRPV4 in mouse DRG neurons
has been debated lately, with studies showing no expression
of functional TRPV4 channels (Alexander et al., 2013), and
very low levels of Trpv4 mRNAs (Girard et al., 2013; Goswami
et al, 2014). Furthermore, it has been suggested that the
highly potent and specific activator of TRPV4, GSK1016790A,
induces mild-to-moderate levels of Ca?* influx in 1%-2%
of mouse DRG neurons from both WT and Trpv4~/~ mice
(Alexander et al., 2013). In line with these observations,
our analysis of >1000 cultured mouse DRG neurons from
>5 WT and Trpv4~/~ mice each showed only 10 out of
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FIGURE 2 | PTHrP induces mechanical hypersensitivity in mice, in a TRPV1-dependent manner. PTHrP injection (1 wM in 10 L, i.pl.) led to a significant increase in
mechanical sensitivity on mouse (B6-WT; A) ipsilateral hindpaw, as measured by area under the curve (AUC) of von Frey filament-response curve (see “Materials and
Methods” section for details). Interestingly, PTHrP-induced hindpaw mechanical hypersensitivity was absent in B6-Tprv1~/~ mice (B), but not in B6-Trpv4~/~ (C),
B6/129-WT (D), and B6/129-Trpa1~/~ (E) mice. Data are presented as mean + SEM of hindpaw AUC. *p < 0.05, **p < 0.001 and “ns”-not significant, two-way
ANOVA with Bonferroni’s post hoc correction.

1077 neurons in WT mice and 9 out of 1139 neurons in
Trpv4~/~ mice showed any quantifiable Ca?* influx, in response
to GSK1016790A application (Figure 3E). Furthermore, PTHrP
did not significantly alter GSK1016790A-mediated Ca?" influx
in those ~1% DRG neurons from both WT and Trpv4—/~
mice (Figure 3E). These findings suggest no functional
TRPV4 expression in mouse DRG neurons, which also is in
line with no involvement of TRPV4 in PTHrP-induced hindpaw
heat/mechanical hypersensitivity (Figures 1C, 2C).

PTHrP Induces TRPV1-dependent Inward
Currents and Potentiation of
Capsaicin-induced Currents in Mouse DRG
Neurons and Transfected HEK293T Cells in
a PKC Dependent Manner

Our previous study has shown potentiation of TRPV1 currents
by PTHrP, which is largely dependent on Src signaling
downstream of PTHI1 activation (Mickle et al, 2015a).
Interestingly, Src inhibitor administration led to attenuation of
PTHrP-induced heat, but not mechanical hypersensitivity on
mouse hindpaws (Mickle et al., 2015a). Since, TRPV1 is critically

involved in PTHrP-induced mechanical hypersensitivity,
we next investigated if PTHrP could directly influence
TRPV1 channel activation in the absence of any exogenous
agonist. Perfusion of PTHrP (10 nM, 1.5 min) in between
two capsaicin applications (50 nM, ~5 s) led to significant
potentiation of capsaicin currents in WT mouse DRG neurons
(Figures 4A,B). Interestingly, PTHrP perfusion led to a steady
increase in inward currents in WT capsaicin-positive mouse
DRG neurons, which was absent in DRG neurons from Trpvl =/~
mice (Figures 4A,C-E), indicating this current to be mediated
by TRPVI1. We further investigated if the PTHrP-induced
inward currents in DRG neurons could also be contributed by
channels other than TRPV1, following its opening and/or Ca?*
influx. Perfusion of the specific inhibitor of TRPV1, AMG9810
(10 pM), along with PTHrP rapidly and completely inhibited
the inward current in its entirety (Figures 4D,E), indicating
that PTHrP perfusion-induced sustained inward currents
in mouse DRG neurons are contributed by TRPV1 channel
only.

In order to further confirm these observations, we utilized
heterologous expression of TRPV1 and PTHI, alone or in
combination in HEK293T cells. Perfusion of PTHrP (10 nM,
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traces), B6-Trpv4~/~ and B6/129-Trpal~/~ (right panel traces) mouse DRG neurons with two successive application of capsaicin (50 nm, 15 s), with or without the
perfusion of PTHrP (10 nM, 2 min) in between. (B) Quantification of the extent of PTHrP-induced potentiation of TRPV1-mediated Ca®* influx by calculating the ratio
of 2nd vs. st capsaicin-induced peak Ca?* influx. PTHrP causes a significant potentiation of capsaicin-induced Ca?* influx in cultured DRG neurons from B6-WT,
B6-Trpv4—/~, B6/129-WT and B6/129-Trpal~/~ mice, compared to respective vehicle controls. There was no quantifiable Ca®* influx, and any change in the ratio of
the 2nd vs. the 1st Ca®* flux in cultured DRG neurons from Trpov7~/~ mice. (C) Representative Ca®* imaging traces from cultured B6-WT mouse DRG neurons with
two successive application of AITC (50 pm, 30 s), with or without PTHrP (10 nM, 2 min) perfusion in between. (D) PTHrP did not significantly alter AITC-mediated
Ca?* flux in cultured DRG neurons from B6-WT, B6-Trpov1~/~, and B6/129-WT mice, compared to respective vehicle controls. (E) Quantification of the ratio of 2nd
vs. 1st peak GSK1016790A-induced (TRPV4 activator; 1 um, 60 s) Ca* influx in cultured DRG neurons from B6-WT mice, with recordings made in a similar fashion
as in (A,C). PTHrP perfusion (10 nM, 2 min) did not cause any significant alteration in the ratio of 2nd vs. 1st peak GSK1016790A-induced Ca®* influx in few cultured
DRG neurons from both B6-WT and B6-Trpv4~/~ mice. Pie charts showing the number of neurons exhibiting any quantifiable GSK1016790A-induced Ca?* influx in
B6-WT (10 out of 1077 neurons) and B6-Trpv4~/~ (9 out of 1139 neurons) mouse cultured DRG neurons. Data in (B,D,E) are presented as mean + SEM, and the
individual group neuron numbers from >4 culture batches are indicated within the figure panels. ***p < 0.001 and “ns”-not significant, two-way ANOVA with

Bonferroni’s post hoc correction.
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1.5 min) in between two capsaicin applications (50 nM, ~5 s)
led to potentiation of TRPV1 currents in HEK293T cells
expressing both TRPV1 and PTHI, but not in cells expressing
TRPV1 alone (Figures 5A,B). Similar to our observation in
DRG neurons, PTHrP perfusion led to a steady increase in
inward currents in HEK293T cells expressing both TRPV1 and
PTHI, but not in cells expressing TRPV1 alone or PTH1 alone
(Figures 5A,C). These findings confirmed that PTHrP activation
of PTH1 subsequently leads to TRPV1 channel activation
without any exogenous activator.

Previous studies focusing on modulation of TRPV1 channel
activation by PKC have shown that high concentrations
of synthetic PKC activators, such as phorbol 12-myristate
13-acetate (PMA) and 12-O-tetradeconoylphorbol-13-acetate
(TPA), could lead to TRPV1-mediated Ca** influx and channel

activation in heterologous systems, in a PKC-dependent manner
(Premkumar and Ahern, 2000; Vellani et al., 2001; Bhave et al.,
2003). We next investigated if PTHrP-inward currents, as well
as the potentiation of TRPV1 activation are dependent on
PKC. Co-application of the PKC inhibitor BIM-1 (0.5 wM)
completely attenuated both PTHrP-induced inward current and
potentiation of TRPV1 channel activation in cultured mouse
DRG neurons, as well as in HEK293T cells co-expressing WT
rTRPV1 and rPTH1 (Figures 6A-D). Furthermore, the tripple
Ala-substitution phospho-disruptive mutant TRPV1 channel at
PKC phosphorylation sites S502, T704 and S800 (PKC-TM),
when expressed in HEK293T cells along with rPTH1 failed to
elicit any inward currents and potentiation of TRPV1 activation
upon PTHrP perfusion (Figures 6E,F). These results suggest
that PTHrP-PTH1-PKC activation could lead to constitutive
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FIGURE 4 | Potentiation and direct flow activation of TRPV1 currents in mouse DRG neurons by PTHrP. (A) Representative whole-cell current recordings from
Trpv1+/+ and Trpv1~/~ cultured DRG neurons showing three consecutive capsaicin (50 nM, ~5 s) application, with extracellular perfusion of vehicle or PTHrP

(10 nM; 1.5 min) between 2nd and 3rd capsaicin application. (B) Quantification of the extent of PTHrP-induced potentiation of TRPV1 currents in cultured DRG
neurons from Trpv1*/* mice. (C) Peak inward currents mediated by on-cell perfusion of vehicle or PTHrP (10 nM; 1.5 min) in cultured DRG neurons from Trpv1+/+
and Trpv1~/~ mice. Data in (B,C) are presented as mean 4+ SEM, and the individual group cell numbers from culture batches of >4 mice are indicated within figure
panels. (D) Representative whole-cell current recordings from capsaicin positive (Cap*¥¢) and negative (Cap~"¢) cultured DRG neurons from Trpv1+/+ mice, as well
as from DRG neurons from Trpv1~/~ mice showing sustained inward currents elicited by PTHrP (10 nM; 1.5 min) in Cap*¥® (50 nM, ~5 s) neurons only. This
PTHrP-induced sustained inward currents can be completely blocked by the selective TRPV1 inhibitor AMG9810 (10 wM), as quantified in (E) **p < 0.001 and

and sustained activation of TRPV1 channel, without any other
physico-chemical activator of the channel.

Pharmacological Inhibition of Local
TRPV1 Reduces PTHrP-induced

Mechanical Hypersensitivity

We next tested if TRPV1 channel activity could be directly
linked to PTHrP-induced mechanical hypersensitivity on
mouse hindpaws. Local administration of a highly potent
specific small molecule antagonist of TRPV1, IRTX (50 nM
in 10 pL; ipl) 2 h post PTHrP injection (1 pM in
10 pL; ipl) led to significant attenuation of hindpaw
mechanical hypersensitivity, as compared to saline-injected
control (Figures 7A,B). Administration of another specific
small molecule antagonist of TRPV1, AMG9810 (10 uM
in 10 pL; ipl) 2 h post PTHrP injection (1 puM in
10 pL; ipl) also led to significant attenuation of hindpaw
mechanical hypersensitivity, as compared to saline-injected

control (Figure 7C). Administration of IRTX (50 nM in 10 wL;
ipl) or AMG9810 (10 uM in 10 pL; i.pl) 2 h post saline
injection (10 pL; i.pl.) did not lead to any significant alteration in
hindpaw mechanical sensitivity, similar to that in double saline-
injected mice (Figures 7A-C). These results suggest that local
TRPV1 activity is required in part for peripheral mechanical
hypersensitivity induced by PTHrP.

DISCUSSION

Our study indicates that PTHrP elicits thermal and mechanical
hypersensitivity in mice, both of which are dependent upon
expression of functional TRPVI1 channels. In addition,
both PTHrP-induced heat and mechanical hypersensitivity
are unaffected by genetic deletion of TRPV4 or TRPAI,
suggesting that the development of heat, as well as mechanical
hypersensitivity, are predominantly driven by TRPV1 activity.
These behavioral observations are consistent with our in vitro
Ca’** imaging data, which again specifically implicate direct
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activation and modulation of TRPVI1 in the potentiation of
sensory neuron activity by PTHrP, and exclude a role for
other mechano-transducing TRPA1 or TRPV4 channels in
this process. Our electrophysiological analysis shows slow and
sustained TRPV1 channel activation by PTHrP/PTHI in the
absence of any exogenous channel agonists in DRG neurons and
in heterologous expression system. Furthermore, this current
could be completely inhibited by a specific TRPV1 antagonist,
thereby ruling out the contribution of other channels. Consistent
with these observations, local administration of specific
small molecule antagonists of TRPVI1 attenuated PTHrP-
induced mechanical hypersensitivity on mouse hindpaws,
suggesting its involvement in peripheral mechanical pain
sensitization.

PTHrP has been shown to be instrumental in breast and
prostate cancer tumor growth and bone metastasis, and is
enriched in the metastatic bone tumor microenvironment
(Soki et al, 2012). A recent report showed that levels of
proteolytic fragment of PTHrP are elevated in the plasma
of breast cancer patients with bone metastasis vs. non-bone
metastatic tumors, and could be utilized as a biomarker for
bone-metastasized breast cancer (Washam et al,, 2013). We
have previously shown that it plays a critical role in nociceptor
excitation and induction of pain hypersensitivity (Mickle
et al., 2015a). Signaling downstream of the PTHI1 receptor
may therefore represent (along with local acidosis and
other, pro-inflammatory mediators) a molecular and cellular
mechanism underlying pain associated with metastatic bone
cancer. TRPV1 has been shown to be expressed in sensory
nerve fibers innervating hind limb bones (Ghilardi et al., 2005;
Shepherd and Mohapatra, 2012). Prior studies have shown
the involvement of TRPV1 in rodent models of primary bone
cancer pain, and TRPV1 antagonists significantly attenuated
primary bone cancer-related pain behaviors (Ghilardi et al,

2005; Shinoda et al., 2008; Pan et al., 2010). Together with our
findings, it could be suggested that tumor microenvironment-
enriched factors, such as PTHrP, could lead to constitutive
activation of local nociceptive afferents, thereby constituting
a tumor-nerve crosstalk mechanism underlying chronic
pain.

We observed a lack of mechanical hypersensitivity following
PTHrP administration in Trpvl~/~ mice. It is a distinct
possibility that one of the reasons for this failure of Trpvi=/=
mice to respond to PTHrP is that neurogenic inflammation
does not occur. In other words, the absence of functional
TRPV1 channels precludes the release of neuropeptides
and induction of pro-inflammatory processes downstream
of TRPVI1-mediated Ca?T influx, thereby preventing the
development of sustained mechanical hypersensitivity.
Activation and/or modulation of TRPV4 and TRPAI have
previously been proposed to play an important role in the
development of inflammatory mechanical hypersensitivity
downstream of neurogenic inflammation (Kwan et al., 2006;
Alessandri-Haber et al., 2008; Brierley et al., 2009; Patapoutian
et al., 2009; Julius, 2013; Mickle et al., 2016; Gouin et al., 2017).
However, our results indicate no involvement of TRPV4 and
TRPA1 in PTHrP-induced mechanical hypersensitivity, rather
TRPV1 serves as the critical channel, presumably through
PTHrP/PTH1-mediated sustained activation of the channel.
This is confirmed by our observation that PTHrP/PTHI-
mediated sustained inward current in sensory neurons is
mediated by TRPV1 in its entirety. Attenuation of PTHrP-
induced mechanical hypersensitivity by the TRPV1 antagonists
IRTX and AMG9810 is consistent with the hypothesis that
TRPV1 is involved in mechanical hypersensitivity. However, the
fact that TRPV1 antagonists are able to attenuate mechanical
hypersensitivity after it has already developed also indicates
that there is an ongoing requirement for TRPV1 function
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FIGURE 6 | PTHrP-mediated potentiation and direct flow-activation of TRPV1 currents is dependent on protein kinase C (PKC) phosphorylation of the channel.

(A) Representative whole-cell current recordings from cultured mouse DRG neurons showing three consecutive capsaicin (50 nM, ~5 s) application, with
extracellular perfusion of a specific inhibitor of PKC, BIM-1 (0.5 wM, 0.5 min), followed by BIM-1 (0.5 M) alone or along with PTHrP (10 nM; 1.5 min) between 2nd
and 3rd capsaicin application. (B) Quantification of the extent of PTHrP-induced potentiation of TRPV1 currents (left), as well as PTHrP-induced peak inward currents
(right) in mouse DRG neurons, with or without BIM-1 application. (C) Representative whole-cell current recordings from HEK293T cells transfected with plasmids
containing WT rat TRPV1 (rTRPV1-WT) and rat PTH1 (rPTH1) cDNAs showing three consecutive capsaicin (50 nM; ~5 s) application, with extracellular perfusion of
BIM-1 (0.5 uM, 0.5 min), followed by BIM-1 (0.5 wM) alone or along with PTHrP (10 nM; 1.5 min) between 2nd and 3rd capsaicin application. (D) Quantification of
the extent of PTHrP-induced potentiation of TRPV1-WT currents (left), as well as PTHrP-induced peak inward currents (right) in HEK293T cells, with or without BIM-1
application. (E) Representative whole-cell current recordings from HEK293T cells transfected with plasmids containing rat TRPV1 with phospho-disruptive mutations
at PKC phosphorylation sites, S502, T704 and S800 (rTRPV1-TM) and rat PTH1 (rPTH1) cDNAs showing three consecutive capsaicin (50 nM; ~5 s) application,
with extracellular perfusion of vehicle or PTHrP (10 nM; 1.5 min) between 2nd and 3rd capsaicin application. (F) Quantification of the extent of PTHrP-induced
potentiation of TRPV1-TM currents (left), as well as vehicle or PTHrP-induced peak inward currents (right) in HEK293T cells. Data in (B,D,F) are presented as

mean £ SEM, and the individual group cell numbers from >4 mice and/or transfection culture batches are indicated within individual figure panels. “ns”-not
significant, one-way ANOVA with Bonferroni’s post hoc correction.
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FIGURE 7 | PTHrP-induced mechanical hypersensitivity could be acutely attenuated with TRPV1 antagonists. (A) PTHrP injection (1 uMin 10 uL; i.pl.) led to a
significant increase in mechanical sensitivity of mouse (B6-WT) ipsilateral hindpaws, which persisted 6 h after injection (i.e., 3 h after injection of saline i.pl. at the same
site). (B) Administration of TRPV1 antagonist (50 nM 5’-lodoresiniferotoxin (IRTX) in 10 pL; i.pl.) 2 h post-PTHrP injection (1 wM in 10 pL; i.pl.) significantly attenuates
hindpaw mechanical sensitivity in mice. Administration of IRTX (50 nM in 10 pL; i.pl.) 2 h post-saline injection (10 wL; i.pl.) did not influence hindpaw mechanical
sensitivity in mice. (C) Administration of another TRPV1 antagonist (10 puM AMG8910 in 10 pL; i.pl.) 2 h post-PTHrP injection (1 wuMin 10 pL; i.pl.) also led to
significant attenuation of hindpaw mechanical sensitivity in mice. Administration of AMG9810 (10 wM in 10 pL; i.pl.) 2 h post-saline injection (10 wL; i.pl.) did not lead
to any alteration in hindpaw mechanical sensitivity in mice. Data in all panels represent AUC of von Frey filament-response curves (see “Materials and Methods”
section for details). All data are presented as mean £+ SEM of hindpaw AUC. The AUC data for ipsilateral and contralateral hindpaws in PTHrP | Saline group from
(A) are re-plotted in (B,C) as dotted lines for drug vs. saline group comparison and statistical analysis. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. respective saline
control/drug ipsilateral groups; #p < 0.01 and ###p < 0.001 vs. respective PTHrP | Saline ipsilateral group; two-way ANOVA with Bonferroni’'s post hoc correction.

in the maintenance of mechanical hypersensitivity. It must
be noted here that TRPV1 antagonists did not completely
attenuate  PTHrP-induced mechanical hypersensitivity.
Therefore, further studies are required to better understand
the downstream effects of TRPVI-mediated neurogenic
inflammatory processes, and their relative contribution to
the induction vs. the maintenance of heat and mechanical
hypersensitivity.

The TRPV1-dependent current observed in DRG neurons
induced by the application of PTHrP in the absence of
any exogenous activator of TRPV1 suggests there could be
constitutive activation of TRPV1 induced by PTHI1 receptor
signaling. Our findings show that both TRPV1 channel
and PTHI are both required for this current, without any
contribution from other sensory channels. Furthermore,
our results show that PTHrP-induced inward current is
also dependent on PKC phosphorylation of TRPV1. Initial
phenotypic reports of the TRPVI-null mouse appeared
to rule out a role for TRPV1 in normal or pathological
mechanotransduction (Caterina et al., 2000), but subsequent
studies in inflammatory, nerve injury, muscle injury, sickle
cell and sarcoma models have all implicated TRPV1 in
mechanical hypersensitivity (McGaraughty et al, 2008;
Shinoda et al., 2008; Pan et al, 2010; Hillery et al, 2011;
Walder et al, 2012; Brenneis et al, 2013; Chung et al,
2015). We have previously shown that Src-mediated
trafficking and potentiation of TRPV1 activity downstream
of PTHrP increases spontaneous and capsaicin-evoked action
potential firing in DRG neurons, suggesting that similar
signaling might also underlie this phenomenon. However,
Src inhibition was unable to attenuate PTHrP-induced

mechanical hypersensitivity on mouse hindpaws (Mickle
et al, 2015a). It is plausible that PKC activation plays a
predominant role in constitutive mechanical activation of
TRPV1 channel to flow pressure, which is in part supported
by our results in the present study. The exogenous PKC
activators such as TPA and PMA have previously been shown
to activate TRPV1 channel under heterologous expression
system (Premkumar and Ahern, 2000; Vellani et al, 2001;
Bhave et al,, 2003). Therefore, future in-depth investigations
are warranted to understand the structural and biophysical
mechanisms underlying such constitutive activation of
PKC-phosphorylated TRPV1 channel. However, it could be
possible that other as-yet unidentified mediator(s) downstream
of PTH1 activation could serve as an intracellular agonist for
TRPV1 channel activation, which also needs to be explored in
detail.

TRPA1 has been shown to mediate mechanical
hypersensitivity in some contexts, such as inflammatory
conditions and neuropathic pain induced by experimental
nerve injury and chemotherapeutic drugs (Kwan et al,
2006; Brierley et al., 2009; Patapoutian et al., 2009; Julius,
2013; Mickle et al., 2016; Trevisan et al., 2016; Gouin et al.,
2017). However, we find no evidence to support a role of
TRPA1 in PTHrP-induced heat and mechanical hypersensitivity.
TRPV4 has been reported to be activated by osmotic changes
and mechanical forces such as shear stress (Alessandri-Haber
et al, 2003; Kohler et al., 2006; Ho et al.,, 2012), but our
data are consistent with prior observations that functional
TRPV4 channels are not expressed on DRG neurons (Alexander
et al, 2013), suggesting no involvement of this channel
in PTHrP-induced mechanical hypersensitivity. A number
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of reports have shown that TRPV4 and TRPA1 channel
activity could be modulated by PKC signaling (Cao et al,
2009; Meotti et al., 2017), although we did not observe that
in our experiments with PTHrP. As such, our study did
not detect functional expression of TRPV4 in mouse DRG
neurons, similar to other’s findings (Alexander et al., 2013).
TRPA1 modulation downstream of bradykinin Bl receptor-
mediated PKC activation has been shown to contribute to
mechanical hypersensitivity (Meotti et al., 2017). With regard
to absence of TRPA1 modulation by PTHrP-PKC in our study,
it could be speculated that PTH1 and TRPV1 are co-expressed
in specialized local signaling complexes, which provides
PKC-mediated channel modulatory signal to TRPV1 only.
Such a possibility needs to be experimentally verified, with
the identification of individual components of such signaling
complexes.

From prior reports and our present finding, we cannot
exclude the possibility that TRPV1 drives the development and
maintenance of mechanical hypersensitivity via interaction(s)
with channels other than TRPA1l and TRPV4. For example,
prior studies have reported interaction of TRPV1 with NMDA
receptors and with lysophosphatidic acid receptors via a
PKC-mediated mechanism to mediate peripheral mechanical
hypersensitivity in the context of muscle pain and bone
cancer pain (Pan et al, 2010; Lee et al., 2012). Alternatively,
PKC and Src, both of which are activated downstream of
PTHI1 activation (Mickle et al., 2015a), are known to modulate
other ion channels expressed in sensory neurons, such as
ASIC3, Nayl.7 and Nayl.8 (Amir et al, 2006). Further
studies will attempt to address these potential interactions.
Another set of mechano-transducing channels have been
described more recently, the Piezo channels (Coste et al,
2012). The role of Piezol and Piezo2 channels in the
development of inflammatory, cancer and/or neuropathic
pain conditions remains to be explored in detail. One
study showed that Piezo2 channel activation to mechanical
touch-force could be significantly potentiated by bradykinin-
mediated activation of PKA and PKC (Dubin et al., 2012).
Subsequent studies have now shown that Piezo2 is not involved
in mechanical transduction in nociceptive neurons, rather
are critical in touch sensation mediated by proprioceptive
sensory neurons (Ranade et al, 2014; Woo et al, 2014).
Interestingly, it has been recently shown that TRPV1 channel
activation in DRG neurons inhibits Piezol- and Piezo2-mediated
mechanosensitive currents by depleting phosphatidylinositol
4,5-bisphosphate and phosphatidylinositol 4-phosphate from
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