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The intact synaptic structure is critical for information processing in neural circuits. During

synaptic transmission, rapid vesicle exocytosis increases the size of never terminals

and endocytosis counteracts the increase. Accumulating evidence suggests that SV

exocytosis and endocytosis are tightly connected in time and space during SV recycling,

and this process is essential for synaptic function and structural stability. Research in

the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and

endocytosis; however, the mechanisms that timely connect these two fundamental

events are poorly understood at central synapses. Here we discuss recent progress in SV

recycling and summarize several emerging mechanisms by which synapses can “sense”

the occurrence of exocytosis and timely initiate compensatory endocytosis. They include

Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the

spatial organization of endocytic zones adjacent to active zones provides a structural

basis for efficient coupling between SV exocytosis and endocytosis. Through linking

different endocytosis pathways with SV fusion, these mechanisms ensure necessary

plasticity and robustness of nerve terminals to meet diverse physiological needs.

Keywords: exocytosis-endocytosis coupling, active zone, endocytic zone, sensors, dynamin, membrane tension

INTRODUCTION

Synaptic transmission is fundamental to brain function. Nerve terminals release neurotransmitter
at a different speed, depending on the types of synapses and stimulation. The rate of synaptic vesicle
(SV) exocytosis directly controls neurotransmission strength. It can vary a few orders of magnitude
at a single terminal (from <1Hz up to ∼1,000Hz) (Lou et al., 2005) and thus provide a large
dynamic range of synaptic transmission (Schneggenburger and Rosenmund, 2015). Depending on
release probability and readily releasable vesicle pool (RRP) size, a presynaptic terminal can rapidly
release numerous SVs during a brief train of action potentials (APs) (Neher, 2015).

Given the smaller size of AZs, each SV fusion can significantly expand the plasma membrane
(PM) of AZs and thus impact its ultrastructure and function (Figure 1). Remarkably, synapses are
capable to counteract this structural change by endocytosis in a timely fashion (Ceccarelli et al.,
1972; Heuser and Reese, 1973). The temporal coupling between exocytosis and endocytosis ensure
the structural stability and functional integrity of chemical synapses during active SV recycling.

Decades of research have generated a wealth of knowledge on the molecular mechanisms
of SV exocytosis (Jahn and Fasshauer, 2012; Südhof, 2013; Herman and Rosenmund, 2015)
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and endocytosis (Saheki and De Camilli, 2012; Wu L. G. et al.,
2014; Soykan et al., 2016). However, exactly how synapses
timely coordinate these two fundamental events remains largely
ambiguous. SV exocytosis, which occurs within a millisecond,
is much faster than any type of SV endocytosis reported so far.
During rapid neurotransmission, repeated SV release places an
important task for synapses to avoid SV traffic jam. The presence
of synaptic active zones (AZs), a highly-specialized structure
that regulates SV trafficking (recruitment, docking, fusion and
coupling to endocytosis), makes the exo-endocytosis coupling
of SVs more complex than dense core vesicles (DCVs) in other
types secretory cells (Liang et al., 2017; Neher, 2018). This paper
focuses primarily on SV exocytosis-endocytosis coupling at the
presynaptic nerve terminals.

SV EXOCYTOSIS–ENDOCYTOSIS
COUPLING AT NERVE TERMINALS

Prevalence
SV exocytosis–endocytosis coupling exists at a variety of
nerve terminals. The direct evidence in living synapses
comes from two types of experiments. One is capacitance
recordings, which monitor cell surface area (Neher and Marty,
1982). The presynaptic membrane capacitance (Cm) shows a
depolarization-triggered Cm increase and a subsequent recovery
to baseline (Sun and Wu, 2001; Lou et al., 2008), indicating
SV fusion with the PM and an equal amount of membrane
retrieval afterward (Figure 1C). The PM expansion is transient
in response to a short pulse but lasts longer during continuous
stimulation, indicating the net balance of exocytosis and
endocytosis. Similar Cm changes have been reported at other
types of nerve terminals, such as ribbon synapses in the
retina (von Gersdorff and Matthews, 1994; Neves and Lagnado,
1999) and hair cells (Moser and Beutner, 2000), mossy fiber
boutons in the hippocampus (Hallermann et al., 2003) and
cerebellum (Delvendahl et al., 2016). The second evidence is from
interference reflection microscopy at living ribbon synapses.
Direct imaging demonstrates rapid cell surface expansion and
subsequent recovery that matches with the Cm responses (Llobet
et al., 2003).

Optical imaging with pH-sensors also supports the tight
exocytosis-endocytosis coupling. At individual synapse levels,
APs trigger a rise-and-fall of fluorescence from pHluorin-tagged
SV proteins (Sankaranarayanan and Ryan, 2000). At the single
SV level, the timely coupling is also demonstrated by VAMP2-
pHluorin (Gandhi and Stevens, 2003), quantal dots (Zhang
et al., 2009), synaptophysin-pHluorin (Granseth et al., 2006; Zhu
et al., 2009), and vGlut-pHluorin (Balaji and Ryan, 2007; Leitz
and Kavalali, 2014). Similarly, cypHer-tagged probes produce a
mirror response (fall-and-rise) to pHluorin sensors because of its
opposite pH sensitivity (Hua et al., 2013). These data suggest a
tight balance between SV exocytosis and endocytosis at central
synaptic terminals.

In addition, electron microscopy (EM) studies support
the ultrastructure changes of motor nerve terminals in frog
neuromuscular junctions (NMJs) (Ceccarelli et al., 1972; Heuser

and Reese, 1973). The quick-freezing EM examines the nerve
terminals at different intervals post an AP and demonstrates
the brief surface expansion and subsequent recovery (Miller
and Heuser, 1984), with an AZ ultrastructure recovery within
∼90 s. A recent flash-freezing EM study in hippocampus cultures
reported a much fast coupling (within ∼100ms) between SV
exocytosis and endocytosis. On average, ∼0.7 SV exocytosis
is coupled with ∼0.6 SV-equivalent membrane retrieval per
synapse (Watanabe et al., 2013b). Cortical synapses are able to
maintain their size both in cultures (Hayashi et al., 2008) and
intact brain circuitry (Lou et al., 2008) even in the absence
of dynamin-1, a protein involved in vesicle fission. Under
strong stimulation, bulk endocytosis is upregulated about 2-
fold in dynamin KO synapses to counteract the nerve terminal
expansion (Hayashi et al., 2008; Wu Y. et al., 2014).

Function
The timely coupling of exocytosis and endocytosis has a profound
impact on synaptic structure and function. First, it preserves the
overall size of nerve terminals. Second, it recycles SV components
that are required for new SV production (Dittman and Ryan,
2009). Long-term neurotransmission relies on endocytosis and
SV recycling, even though RRP and reserve pool SVs can
support short-term neural activity (Rizzoli and Betz, 2005;
Neher, 2015). In addition, only a very small portion of total
SVs participate actively in vesicle recycling during sustained
transmission (Denker et al., 2011), adding another layer of
urgency for rapid SV regeneration.

Third, the timely retrieval of SV components is important
for release-site clearance (Neher, 2010). The limited release-sites
must be re-used during sustained neurotransmission. Each SV
fusion leads to two basic impacts: (1) vesicle components (e.g.,
SV proteins Takamori et al., 2006, used SNAREs) occupy release
sites and need to be cleared away rapidly (Neher, 2010). The
efficient clearance would make release-site re-competent for a
new round of vesicle fusion, and this process may become rate-
limiting during fast neurotransmission (Neher, 2010; Hua et al.,
2013; Mahapatra et al., 2016). 2) ultrastructure change of AZs.
Given the average size of SVs (∼45 nm in diameter) (Lou et al.,
2008) and AZs (∼0.04 µm2, ranging from 0.02∼ 0.2 µm2) (Han
et al., 2011; Holderith et al., 2012) (Figure 1), each SV fusion adds
an additional membrane area of ∼6,362 nm2 ( A = 4 π r2),
∼16% of the original AZ area (Figure 1B). This expansion can
alter AZ nanostructure and release-site organization (t-SNARE,
complexin, Munc-13, Ca2+ channels, etc). The quick-freezing
EM study in NMJs (Heuser and Reese, 1981) has captured
such effects. These two impacts may become prominent during
repeated SV fusion since most SVs fuse at AZs (Figure 1A) rather
than randomly. Thus, tight SV exocytosis-endocytosis coupling
helps to maintain AZ ultrastructure integrity.

MULTIPLE MODES OF SV
EXOCYTOSIS-ENDOCYTOSIS COUPLING

Four types of endocytosis are proposed at synapses: “kiss
and run” (K&R), clathrin-mediated endocytosis (CME), bulk
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FIGURE 1 | The transient expansion of the presynaptic surface area. (A) Ultrastructure of the presynaptic nerve terminals in a mouse cerebellum (chemical fixation).

Note two AZs with high electronic density (between the arrowheads). (B) The surface area of a single SV after it fuses and merges with the PM at an AZ. The scheme

size is shown in scale, the AZ area is 0.4 µm2 (Holderith et al., 2012) and SV diameter is 45 nm (Lou et al., 2008). (C) Transient changes of the surface area are

recorded at the calyx of Held during a 20ms depolarization pulse (arrow) (Lou et al., 2008). Note the rapid increase and subsequent recovery of Cm, suggesting SV

fusion and compensatory endocytosis.

endocytosis, and ultrafast endocytosis (for details, see Saheki
and De Camilli, 2012; Alabi and Tsien, 2013; Wu L. G. et al.,
2014; Soykan et al., 2016; Watanabe and Boucrot, 2017). None
of them alone can account for all the experimental observations
at synapses in literature. Each endocytosis route likely couples
differently with exocytosis events, depending on neural activity
as well as synapse types.

First, endocytosis couples with exocytosis at the same site via
K&R (or Kiss-and-stay). An SV fuses with the PM and pinches off
at the same location without collapsing (Alabi and Tsien, 2013).

This mechanism is first proposed by Ceccarelli and colleague
based on EM studies (Ceccarelli et al., 1972), and it remains
highly debatable since then. K&R at synapses completes within
∼0.5 s (Gandhi and Stevens, 2003; Zhang et al., 2009) or ∼0.3 s
(He et al., 2006). This coupling mode is thought to promote rapid
SV recycling because of its fast speed than CME.

Second, SVs fuse at AZs and are retrieved by CME at endocytic
zones (EZs) (Dittman and Ryan, 2009; Saheki and De Camilli,
2012). CME is proposed by Heuser and Reese (Heuser and Reese,
1973, 1981) and subsequently investigated extensively (Dittman
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and Ryan, 2009; Saheki and De Camilli, 2012). It operates at a
time constant (τ ) of ∼15 −20 s according to pHluorin assays
(Granseth et al., 2006; Balaji and Ryan, 2007), consistent with
the Cm assays at the calyx of Held (τ = ∼10–25 s) (Wu
et al., 2005; Yamashita et al., 2005; Lou et al., 2008). CME
accelerates at physiological temperature (PT, 37◦C) (Renden and
von Gersdorff, 2007; Wu et al., 2016) as compared to room
temperature (RT), despite the estimated endocytosis rate varies
largely among different research groups [e.g., τ = ∼3 s (Leitz
and Kavalali, 2011), 6 s (Balaji and Ryan, 2007; Armbruster
et al., 2013), and 20 s (Soykan et al., 2017)]. Multiple lines of
evidence support that CME is a dominant endocytosis pathway
at nerve terminals (Heuser and Reese, 1973; Granseth et al.,
2006; Dittman and Ryan, 2009; Saheki and De Camilli, 2012).
For example, typical SV endocytosis is severely impaired after
clathrin-knockdown (Granseth et al., 2006; Nicholson-Fish et al.,
2015) and AP-2 α-µ2 double mutants in C. elegans (Gu et al.,
2013). CME is also critical in squid giant synapses (10–15◦C)
(Augustine et al., 2006), whose physiological temperature is low;
perturbations of clathrin assembly (or uncoating) showed a loss
of SVs and expansion of presynaptic PM area (Morgan et al.,
1999, 2000). However, this notion is challenged by recent studies
(Sato et al., 2009; Kononenko et al., 2014; Watanabe et al., 2014;
Delvendahl et al., 2016; Soykan et al., 2017). This is a critical
question especially for mammals in which synapses operate
routinely at 37◦C. Therefore, more work is required to address
SV CME under physiological condition.

Third, SV fusion couples with bulk endocytosis. Bulk
endocytosis is observed frequently under EM, where it displays
as large membrane vacuoles with variable sizes (∼80–300 nm
in diameter) (Miller and Heuser, 1984; Hayashi et al., 2008;
Wu Y. et al., 2014). Further EM tomography demonstrates that
those vacuole structures are unconnected with the presynaptic
PM (Hayashi et al., 2008). Bulk endocytosis requires VAMP-4
(Nicholson-Fish et al., 2015) and F-actin (Shupliakov et al., 2002;
Holt et al., 2003), and it occurs mainly during high-frequency
APs as shown in neuronal cultures (Clayton et al., 2008; Wu Y.
et al., 2014). Bulk endocytosis has a higher capacity to retrieve the
PM (Shupliakov et al., 2002; Wu and Wu, 2007; Lou et al., 2008)
but possesses a poorer cargo-selectivity and quality control than
CME (Miller and Heuser, 1984; Nicholson-Fish et al., 2015). In
addition, some large PM cisterns are also observed 15min after
stimulation in frog NMJs (Heuser and Reese, 1973), indicating
a delayed or different form of bulk endocytosis. It is unclear
whether this type of bulk endocytosis is relevant to the step-
like Cm decrease recorded at the calyx of Held (Wu and Wu,
2007; Lou et al., 2008). Bulk endocytosis likely serves as an
emergency endocytosis route for synapses to counteract their
surface expansion during high neural activity.

Finally, SV fusion couples with ultrafast endocytosis.
Ultrafast endocytosis is reported by Watanabe et al using
high-pressure freezing EM in combination with optogenetic
stimulation (Watanabe et al., 2013a,b). Synapses expressing
channelrhodopsin are stimulated with a blue light to trigger
neurotransmitter release. Ultrafast endocytosis peaks at 50–
100ms of stimulation and generates uncoated vesicles with a
uniform size (∼82 nm in diameter, ∼2-fold larger than SVs)

(Watanabe et al., 2013b, 2014). Ultrafast endocytosis operates
selectively at 34 ∼ 37◦C (but fails at 20◦C) in mammalian
synapses (Watanabe et al., 2014) although it also appears at
RT in motor nerve terminals of C. elegans (Watanabe et al.,
2013a) (whose cultivation temperature spans 15 ∼ 25◦C).
Ultrafast endocytosis requires SV fusion and F-actin. It is also
sensitive to dynasore, a dynamin inhibitor, but its effect on
F-actin and other targets (Park et al., 2013; Mahapatra et al.,
2016) should be carefully considered. This new form of SV
exocytosis-endocytosis coupling adds a new layer of complexity
to SV recycling.

Interestingly, in the time-resolved quick-freezing EM study
(with a single AP stimulation at RT) (Heuser and Reese, 1981),
Heuser and Reese have reported both CME and “a second form
of membrane retrieval.” The latter operates through “a random
bite” of a large piece of plasma membrane without clathrin-coat,
similar to bulk endocytosis. Moreover, it occurs “in the first a
few milliseconds after stimulation” (Heuser and Reese, 1981),
similar to (if not faster than) the ultrafast endocytosis under flash-
freezing EM at PT. It is unclear whether they are the same form
of endocytosis.

While the details of CME have been addressed, themechanism
for other forms of endocytosis remains poorly understood.
Future work on molecular characterization may help to better
define these different forms of endocytosis. Ultrafast endocytosis
and bulk endocytosis exhibit different properties (in speed,
retrieval size, temperature sensitivity, and stimulation strength to
trigger them), but they also have some common features (e.g.,
high capacity, clathrin-independence, F-actin dependence, and
endosome sorting).

SENSORS AND TRIGGERS FOR
ENDOCYTOSIS IN THE COUPLING

Despite the significant progress on SV exocytosis as well as
endocytosis, very little is known about their temporal and spatial
coupling. What triggers SV endocytosis at the right time and
place remains a longstanding question. Recent work suggests
that several factors are involved in SV exocytosis-endocytosis
coupling, in which a synapse “senses” the SV exocytosis event
and initiates endocytosis. Here, we discuss the potential means
of coupling at nerve terminals.

Ca2+ and Ca2+ Sensors
Intracellular Ca2+ classically regulates both exocytosis and
endocytosis (Neher and Sakaba, 2008) and is therefore a suitable
candidate for the coupling (Figure 2A). Intracellular Ca2+

micro- or nano-domains (Neher, 1998) are generated during an
AP due to the uneven distribution of Ca2+ channels at AZs
(Althof et al., 2015; Nakamura et al., 2015). While the local
Ca2+ domains tightly regulate SV fusion (Eggermann et al.,
2011; Schneggenburger et al., 2012), they are also required in
SV endocytosis as demonstrated at the mature calyx of Held
(Yamashita et al., 2010). Ca2+ uncaging experiments suggest that
a ∼15µM Ca2+ increase is needed to trigger rapid endocytosis
in inner hair cells, despite endocytosis remaining constant (τ
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= 16 s) below that Ca2+ level (Beutner et al., 2001). A minimal
of ∼10µM Ca2+ is necessary to initiate endocytosis at the
calyx of Held (Hosoi et al., 2009), consistent with the result
(∼11µM) from lamprey reticulospinal synapses (Gad et al.,
1998). These Ca2+ values are as high as that for triggering
SV fusion (Bollmann et al., 2000; Schneggenburger and Neher,
2000; Lou et al., 2005; Neher and Sakaba, 2008; Kochubey et al.,
2011), implying that endocytosis occurs much closer to Ca2+

channels than previously thought. Accordingly, AP-2 is shown
to interact with Ca2+ channels at the synprint region (Watanabe
et al., 2010). Therefore, intracellular Ca2+ is likely a trigger for
endocytosis.

Following Ca2+ elevation, synaptotagmin acts as a Ca2+

sensor for endocytosis, similar to its function in exocytosis
(Geppert et al., 1994; Chapman, 2008). Genetic perturbations of
synaptotagmin severely impair SV endocytosis (Poskanzer et al.,
2003; Llinás et al., 2004; Nicholson-Tomishima and Ryan, 2004;
Yao et al., 2012). The Ca2+ sensing property of synaptotagmin is
critical for this effect (Poskanzer et al., 2006; Yao et al., 2011). It is
reported that different Ca2+ binding affinity of Ca2+ sensors (e.g.,
synaptotagmin-1 and−7) allows differential endocytic regulation
under weak and strong stimulations (Li et al., 2017). Similarly,
Ca2+ sensor otoferlin is found to regulate endocytosis in hair cells
(Duncker et al., 2013).

In addition to synaptotagmin and otoferlin, calmodulin
(CaM) is another Ca2+ sensor for endocytosis (Figure 2A).
Intracellular Ca2+ elevation activates CaM-calcineurin to
dephosphorylate dephosphins, a group of endocytosis proteins
that are constitutively phosphorylated at rest (Cousin and
Robinson, 2001). Interruptions of CaM (Artalejo et al., 1996;
Wu et al., 2009; Yao and Sakaba, 2012) and calcineurin
(Marks and McMahon, 1998; Sun et al., 2010; Yamashita et al.,
2010; Wu X. S. et al., 2014) inhibit endocytosis, although
results vary with stimulation conditions (Yao and Sakaba,
2012) and age (Yamashita et al., 2010). Dynamin-1 (Serines
at 774 and Ser 778) dephosphorylation and phosphorylation
mutations abolish the biphasic regulation of Ca2+ on SV
endocytosis (Armbruster et al., 2013). This effect depends on
dynamin interactions with syndapin-1 rather than endophilin
or synaptophysin (Anggono et al., 2006). After the neural
activity, intracellular Ca2+ recovery and CaM-calcineurin
activity decreases; meanwhile cyclin-dependent kinase 5 (Cdk5)
rephosphorylates dephosphins to terminate endocytosis (Tan
et al., 2003). This CaM-calcineurin/Cdk5 balance offers another
way of Ca2+-sensing in SV exocytosis-endocytosis coupling. In
addition, it is reported that CaM interacts with N-BAR proteins
Rvs167 (in yeast), amphiphysin and endophilin-A (Myers et al.,
2016), suggesting a calcineurin-independent regulation of CaM
on endocytosis.

Two relevant questions are noteworthy. First, Ca2+

elevation alone appears insufficient in triggering endocytosis, as
demonstrated by the experiment in munc13-1 and−2 double KO
synapses (Watanabe et al., 2013b). Accordingly, perturbations
of Ca2+ downstream molecules (e.g., synaptotagmin, CaM,
and calcineurin) do not abolish endocytosis in many studies.
High sucrose stimulation also triggers efficient endocytosis
(Yao et al., 2011). These data suggest that Ca2+ needs to work
with other factors. Second, Ca2+ has a more complex role

in endocytosis than in exocytosis (Leitz and Kavalali, 2016).
For example, local Ca2+ domains accelerate endocytosis but a
global dialysis of Ca2+ inhibits it (Wu and Wu, 2014); similar
counteracting effects also occurs at the same synapses under
different conditions (Armbruster et al., 2013): accelerating
endocytosis under moderate stimulation and slowing it down
under strong stimulation.

SV Proteins
There are a large number of proteins on individual SVs. After
SV fusion, some of SV proteins that newly added to the PM
are suitable candidates for SV exocytosis-endocytosis coupling,
which allow synapses to “sense” SV fusion events and initiate
endocytosis in a timely fashion (Figure 2B).

Synaptotagmin-1
This molecule has a high copy number on each SV (15
copies/SV) (Takamori et al., 2006). After its delivery to the PM,
synaptotagmin serves as a nucleating factor to recruit AP-2
(Haucke and De Camilli, 1999), a key component of CME. it can
directly interact with clathrin-associated sorting protein stonin-2
(Jung et al., 2007), adaptor protein AP-2 (Willox and Royle, 2012)
and SV2A/B (Kaempf et al., 2015). Consequently, synaptotagmin
shows dual roles in SV endocytosis: sensing Ca2+ and nucleating
CME components.

SNARE Proteins
VAMP2 (also called Synaptobrevin-2) is a core protein of SNARE
complex and has the highest copy number (∼70 copies/SV)
on SVs (Takamori et al., 2006). After VAMP-2 interruptions,
endocytosis is impaired as shown in experiments using VAMP-
2 KO (Deák et al., 2004), knockdown (Zhang et al., 2013)
and its blocking peptide or cleavage toxin (tetanus toxin)
(Hosoi et al., 2009; Xu et al., 2013). VAMP-4 is reported to
regulate bulk endocytosis selectively (Nicholson-Fish et al., 2015).
Interestingly, other components of SNARE machinery have also
been reported to regulate endocytosis, including syntaxin1a (Xu
et al., 2013), SNAP-25 (Xu et al., 2013; Zhang et al., 2013), and
complexin (Li et al., 2017). Syntaxin1a and SNAP-25 probably
play a permissive role rather than acting as a trigger in SV
endocytosis, since they are already present abundantly on the PM
before SV fusion.

Synaptophysin-1, Endophilin, and vGlut-1
Synaptophysin-1 has the second highest copy number on SVs
(32 copies/SV) and resides exclusively on SVs. Both properties
make it a suited endocytosis sensor. Synaptophysin-1 KO blocks
VAMP-2 endocytosis (Gordon et al., 2011) in a stimulation-
and frequency-dependent manner (e.g., 200 AP at 20Hz) (Kwon
and Chapman, 2011; Rajappa et al., 2016). Endophilin plays
a role in CME and SV uncoating (Milosevic et al., 2011); it’s
activity-dependent sub-synaptic translocation (from SV clusters
to EZs) in C-elegant DA neurons (Bai et al., 2010) indicates
its potential role in facilitating efficient coupling. Moreover,
endophilin can bind dynamin, synaptojanin (Milosevic et al.,
2011), and vGlut-1 (Voglmaier et al., 2006), and thus accelerates
CME. Knockdown of vGlut-1 also slows down endocytosis of
SV2 and synaptophysin, suggesting a new role of vGlut-1 in
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FIGURE 2 | Four hypothetical mechanisms by which synapses sense exocytosis and initiate endocytosis in time and space. (A) Ca2+ is a trigger, and synaptotagmin

and CaM are sensors in the SV exocytosis-endocytosis coupling. (B) SV fusion is a trigger, and SV proteins (both transmembrane and associated proteins) are

sensors to initiate CME by interacting with AP-2. (C) SV fusion is a trigger to generate the local membrane stress. (D) The annular spatial arrangement of EZs

surrounding AZs. The large scaffolds are critical for SV exocytosis-endocytosis coupling by facilitating SV proteins transportation and recapture.

regulating cargo sorting and endocytosis during CME (Pan et al.,
2015).

Flower
This is an SV-associated protein with Ca2+-permeable channel
property (Yao et al., 2009). Once inserting in the PM after SV
fusion, Flower is an ideal factor to generate local Ca2+ elevation
for endocytosis. The flower was identified by a forward genetic
screening in Drosophila, in which Flower mutants exhibited
impaired endocytosis and basal Ca2+ (Yao et al., 2009). It is
able to form Ca2+ permeable channels in vitro and to increase
intracellular Ca2+ concentration when expressed in salivary
gland cells. This phenomenon is similar to the case of P-type
Ca2+ channels in sea urchin eggs (Smith et al., 2000), in which the
channels on secretory granules insert in the PM after exocytosis

and determine the endocytosis location. However, the channel
activity of Flower is undetectable at the calyx of Held synapses
(Xue et al., 2012); its Ca2+ permeability appears to be critical
selectively for bulk endocytosis (Yao et al., 2017).

The Large Scaffolds That Bridge AZs and
EZs
SV fusion and endocytosis occur at adjacent PM domains: AZs
and EZs, respectively. The AZ is a tiny presynaptic area with
high electron-density (Gundelfinger and Fejtova, 2012). AZs
contain a set of large, multiple-domain proteins (called the
cytomatrix of AZs, CAZs), including CAST/ELKS/Bruchpilot
protein (Brp), Liprin-α, Rab3-interacting molecules (RIMs),
RIM-binding proteins (RIM-BPs), Bassoon, Piccolo/Aczonin,
and UNC-13/Munc-13 (Gundelfinger and Fejtova, 2012; Südhof,
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2012; Ackermann et al., 2015). CAZs control SV dynamics
and release probability by regulating AZ ultrastructure. Genetic
perturbations of key genes encoding CAZ proteins impair
neurotransmission (Südhof, 2012; Ackermann et al., 2015).
For example, Brp mutation in fly NMJ causes AZ (T-bar)
disassembly, Ca2+ channel cluster loss, and exocytosis defect
(Fouquet et al., 2009). ELSK and RIM double KO synapses in
mice display similar phenotypes: AZ disassembly, lack of docked
SVs, decreased transmitter release, and degradation of other
CAZ proteins (Wang et al., 2016). In addition to functioning in
SV fusion, CAZ proteins also coordinate exocytosis-endocytosis
coupling (Haucke et al., 2011) by promoting SV protein
sorting, transportation from AZs to EZs, and recruitment
of endocytosis proteins. Available work focuses primarily on
transmitter release—future work is required to explore their roles
in SV exocytosis-endocytosis coupling.

EZs have abundant endocytosis proteins such as AP-2,
clathrin, dynamin, DAP160, and intersection (Wahl et al., 2013;
Gimber et al., 2015). The nanoscale organization of EZs at nerve
terminals remains largely unclear. It seems excluded from but
adjacent to AZs. An annulus EZ surrounding an AZ is reported at
drosophilaNMJs (Roos and Kelly, 1999); this spatial arrangement
between EZs and AZs can facilitate re-capture of SV proteins
once they diffuse away from AZs, providing a structural base for
the efficient exocytosis-endocytosis coupling (Figure 2D). Based
on free diffusion of VAMP2 at a diffusion coefficient (D) of 0.2
µm2/s at the presynaptic PM (Ramadurai et al., 2009; Gimber
et al., 2015; Joensuu et al., 2016), it takes∼2.5 s to diffuse∼1µm
[t = x2/(2 ∗ D)]. In addition to annulus EZs, other forms of EZ
organization is also possible in different types of never terminals,
including random distribution in the terminals or in patches at
peri-AZs (similar to the EZ around PSDs; Lu et al., 2007). EZs
appear relatively stable during stimulation and offer a platform
where some endocytosis proteins with multiple domains can
stabilize other endocytosis proteins and recruit SV proteins. For
example, intersectin/DAP160, which has five SH3 domains, binds
many proteins including dynamin, synaptojanin, stonin-2, N-
WASP, Eps15 homology (EH) domains, and SNAP-25 (Roos and
Kelly, 1998; Evergren et al., 2007). Loss of Dap16/Intersectin
impairs the FM1-43 loading in fly NMJs and destabilizes
dynamin, synaptojanin, and endophilin (Koh et al., 2004; Marie
et al., 2004), suggesting its role in stabilizing endocytosis
machinery at EZs (Pechstein et al., 2010). However, intersectin-
1 KO synapses (Yu et al., 2008) exhibit little endocytosis defect
(Sakaba et al., 2013), possibly due to its redundancy in mammals.

Filamentous actin (F-actin) is highly enriched in EZs. An
annulus of F-actin is shown to surround the AZ in motor
terminals of lamprey (Shupliakov et al., 2002; Bloom et al., 2003;
Morgan et al., 2004) and NMJs (Richards et al., 2004), implying
its important role in endocytosis. Disruption of F-actin inhibits
multiple forms of endocytosis at nerve terminals (Shupliakov
et al., 2002; Watanabe et al., 2013b; Wu et al., 2016) (but see
Sankaranarayanan et al., 2003). Meanwhile, F-actin also enhances
SV replenishment, priming, and fusion at synapses (Sakaba and
Neher, 2003; Cingolani and Goda, 2008; Lee et al., 2012, 2013).
The dual-role of F-actin in both exocytosis and endocytosis
suggests its potential role in coupling these two processes. The
underlying details are unclear. F-actin likely enhances SV protein

diffusion between AZs to EZs, traps SV proteins in EZs and slows
their escaping, and promotes SV scission.

Dynamin is a key component that regulates different
endocytosis at nerve terminals. Among three dynamin genes in
mammals, Dynamin-1 is themajor isoform in neurons (Ferguson
et al., 2007). Dynamin-1 KO impairs CME but increases bulk
endocytosis ∼2-fold (Hayashi et al., 2008; Wu Y. et al., 2014),
suggesting its different roles in CME and bulk endocytosis.
Dynamin-1 KO calyces alter the short-term plasticity via different
mechanisms (Mahapatra et al., 2016; Mahapatra and Lou,
2017). The reduction of synaptic depression selectively at high
frequency (>100Hz) APs (Mahapatra et al., 2016) agrees with
the change of endocytosis from CME to the enhanced bulk
endocytosis in the absence of dynamin-1 (Mahapatra et al., 2016).
Dynamin-1 and-3 double KO exaggerates the phenotypes of
single dynamin-1 KO (Raimondi et al., 2011; Fan et al., 2016).
In the native brain circuitry, dynamin-mediated endocytosis is
required for synapse development and maturation (Fan et al.,
2016). Dynamin inhibitors are useful tools in endocytosis studies,
but the data interpretation may be more complex than it seems
because of its off-target effects (Park et al., 2013; Mahapatra et al.,
2016). This sometimes can lead to different conclusions. For
example, dynasore blocks ultrafast endocytosis, but it also affects
actin (Park et al., 2013), a factor is critical for ultrafast endocytosis
(Watanabe et al., 2013b). Moreover, it seems challenging for
dynamin molecules to recruit, polymerize and disassemble at
fission necks in ultrafast endocytosis, because these processes
are known to be slow, ∼24 s in CME as measured by direct
TIRF imaging in non-excitatory cells (Merrifield et al., 2002;
Doyon et al., 2011; Taylor et al., 2011). That is several orders of
magnitude slower than 100ms. The presence of preassembled
clathrin coatsd (Wienisch and Klingauf, 2006) can accelerate
endocytosis, but clathrin is not required in ultrafast endocytosis
at PT (Watanabe et al., 2014) (which agrees with the slow
assembly dynamics of clathrin coats; Cocucci et al., 2012).
Another possibility is that the dynamics and process of dynamin
assembly at fission sites are somewhat different between non-
neuronal cells and synapses, such as stronger membrane bending
property of dyanmin-1 at synapses than dynamin-2 at non
excitatory cells (Liu et al., 2011) and a higher number of dynamin
molecules pre-localized at EZs. Therefore, future work is required
to address how synapses may use dynamin differently as the
fission machinery to regulate different modes of SV exocytosis-
endocytosis coupling.

Local Membrane Stress
There exists dramatic membrane stress at presynaptic terminals
during exocytosis and endocytosis. The local stress can arise
from SV fusion itself. SVs are the smallest bi-layer membranous
structures that nature can make, with an outer/inner diameter
ratio of up to ∼4:3 or higher. SV fusion adds more membrane
on the inner leaflet than the outer leaflet of the PM, which can
produce an asymmetric membrane stress at the local PM. This
local stress may delay SV flattening after fusion, promote PM
lateral diffusion, and/or enhance PM invagination at EZs (only
∼100 nm away from AZs). Furthermore, insertion of SV proteins
alters the rigidity of local PM, a factor playing important role in
endocytosis (Hassinger et al., 2017).
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The local membrane stress likely facilitates the coupling
between exocytosis and endocytosis (Figure 2C). Themechanical
spread of membrane stress can be fast at AZs and is suitable to
trigger those fast forms of endocytosis (e.g., ultrafast endocytosis,
K&R, and bulk endocytosis). For example, while it is challenging
to utilize traditional molecule signaling as in CME for ultrafast
endocytosis, the local membrane stress generated by SV fusion
may transfer instantly from AZs to EZs. The downside of this
mechanism is that SV components removing from AZs may not
be as fast as the force transfer and thus limit the benefit of ultrafast
endocytosis during high-frequency neurotransmission.

The characterization of local membrane mechanics is not
well-established during SV exocytosis-endocytosis, and it is
likely affected by several factors including membrane tension,
membrane stiffness, and local force (Hassinger et al., 2017). As
a key force generator in cells, F-actin is shown to be required
in multiform of endocytosis including ultrafast endocytosis
(Watanabe et al., 2013b) and bulk endocytosis (Shupliakov
et al., 2002; Holt et al., 2003). It likely generates local
vertical force (against the PM) during membrane bending
and fission or radial force (parallel the PM plane) at the
fission neck (Walani et al., 2015; Hassinger et al., 2017).
Endophilin may enhance the local membrane stress (Simunovic
et al., 2017) via its curvature-sensing and curvature-generating
properties (McMahon and Gallop, 2005). It has been shown to
regulate clathrin-independent endocytosis in non-excitatory cells
(Boucrot et al., 2015; Renard et al., 2015).

PERSPECTIVES

SV exocytosis-endocytosis coupling has a profound role in
synaptic transmission, a process that is essential for neural

circuit function and brain performance. Several factors emerge
as sensors for endocytosis events, and we are only at an initial
stage toward the mechanistic understanding of SV exocytosis-
endocytosis coupling at synapses; even how SVs are born
under physiological conditions remains a conundrum. Themajor
challenge arises mainly from the complex biophysical features
of exocytosis-endocytosis coupling at presynaptic terminals, such
as the transient reaction, small structure, and poor accessibility.
Despite these hurdles, the field is steadily moving forward with
the application of new cutting-edge approaches spanning super-
resolution fluorescence microscopy, single SV fusion detection,
acute optogenetic manipulations (Ji et al., 2017), flash-freezing
EM, and in-situ cryo-EM tomography. With advances in novel
techniques and an increasing need to understand synaptic
mechanisms, there has never been a better time to engage in
investigating this fundamental process of brain function.
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