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Inflammation is a complex biological response fundamental to how the body deals with

injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike

a normally beneficial acute inflammatory response, chronic inflammation can lead to

tissue damage and ultimately its destruction, and often results from an inappropriate

immune response. Inflammation in the nervous system (“neuroinflammation”), especially

when prolonged, can be particularly injurious. While inflammation per se may not

cause disease, it contributes importantly to disease pathogenesis across both the

peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson

disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury,

depression, and autism spectrum disorder] nervous systems. The existence of extensive

lines of communication between the nervous system and immune system represents a

fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory

molecules are critical for regulation of host responses to inflammation. Although these

mediators can originate from various non-neuronal cells, important sources in the

above neuropathologies appear to be microglia and mast cells, together with astrocytes

and possibly also oligodendrocytes. Understanding neuroinflammation also requires

an appreciation that non-neuronal cell—cell interactions, between both glia and mast

cells and glia themselves, are an integral part of the inflammation process. Within this

context the mast cell occupies a key niche in orchestrating the inflammatory process,

from initiation to prolongation. This review will describe the current state of knowledge

concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia

interactions, then conclude with a consideration of how a cell’s endogenous mechanisms

might be leveraged to provide a therapeutic strategy to target neuroinflammation.

Keywords: inflammation, mast cells, microglia, astrocytes, oligodendrocytes, neuro-immune, crosstalk,

palmitoylethanolamide

INTRODUCTION

Inflammation is a response triggered by damage to living tissues. To quote from Encyclopædia
Britannica, Inc., “The inflammatory response is a defense mechanism that evolved in higher
organisms to protect them from infection and injury. Its purpose is to localize and eliminate the
injurious agent and to remove damaged tissue components so that the body can begin to heal.”
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An inflammatory response can be either acute (seconds
to hours) or a response of longer duration referred to
as chronic inflammation. The former is usually beneficial,
while the latter may result in tissue destruction caused, for
example, when regulatory mechanisms of the inflammatory
response are defective or when there is an inappropriate
immune response with consequent prolonged and damaging
inflammation (Castellheim et al., 2009). As succinctly stated by
Nathan and Ding (2010), “the core problem with inflammation
is not how often it starts, but how often it fails to subside.”
Non-resolving inflammation, without doubt, contributes to the
overall medical burden in our society, and is now viewed
as a new therapeutic frontier (Fullerton and Gilroy, 2016).
Inflammation can be especially perilous where the nervous
system is involved (so-called “neuroinflammation”), whether
it be of an acute nature or chronic—the latter involving
sustained activation of glia and recruitment of immune elements.
This phenomenon is recognized as a cardinal element in the
pathogenesis of both peripheral nervous system conditions
like neuropathic pain and other disorders with chronic pain
(Myers et al., 2006; Kim et al., 2007; Ellis and Bennett,
2014; Martini and Willison, 2016), and acute (Iadecola and
Anrather, 2011) as well as chronic (McGeer and McGeer, 2013;
Freeman and Ting, 2016; Ransohoff, 2016a) central nervous
system (CNS) diseases, including mood disorders (Najjar et al.,
2013; Castanon et al., 2015; Theoharides et al., 2015a; Calcia
et al., 2016; Calsolaro and Edison, 2016; Wohleb et al., 2016)
and autism (Noriega and Savelkoul, 2014; Theoharides et al.,
2016).

Once thought to be immune-privileged, the CNS now
enjoys extensive communication links with the immune system.
Indeed, were it not for such interactions it is unlikely
that neuroinflammation would occur. Immune cell-derived
pro-inflammatory mediators play a key role by regulating
host responses to infection, inflammation, and reactions to
stress or trauma (Le Thuc et al., 2015; Piirainen et al.,
2017). While these inflammatory molecules may originate
from a number of non-neuronal cell populations, a large
body of evidence points to microglia (the brain’s main
immune guardians) and mast cells, along with astrocytes
(and possibly even oligodendrocytes) as important sources of
such agents in the above pathologies (Thacker et al., 2007;
Appel et al., 2011; Cunningham, 2013; Silver and Curley,
2013; Amor and Woodroofe, 2014; Harcha et al., 2015;
Dong et al., 2017; Kempuraj et al., 2017; Skaper et al.,
2017; Spangenberg and Green, 2017; Balducci and Forloni,
2018; Simon et al., 2018). Given the complex nature of
cellular involvement in inflammation-associated pathologies
across the central and peripheral nervous systems, viewing
neuroinflammation in the context of microglia (Masgrau
et al., 2017), astrocyte or mast cell involvement alone fails
to fully appreciate the homotypic and heterotypic cell—cell
interactions that are an integral part of the inflammation
process. This review is intended to describe recent contributions
in our understanding of the biology and cellular signaling
mechanisms of inflammation as it affects the nervous system,
with emphasis on a mast cell-glia (microglia, astrocyte,

oligodendrocyte) interactions. This will be followed by a
consideration of approaches to counteract neuroinflammation
that capitalize on natural defense mechanisms and lipid signaling
molecules.

GLIA

Among the cell types that participate in inflammation of
the nervous system, tissue-resident and blood-borne glia
and immune system-derived cells comprise key elements.
Microglia are the principal immune effector cells of the
brain, constantly surveying their environment in preparation
for insult or injury (“immunosurveillance”). When activated,
they phagocytose cellular debris, present antigens to T cells
and release cytokines/chemokines, the latter providing cells
with the ability to communicate with one another and
orchestrate complex multicellular behavior (Becher et al.,
2017). In homeostatic terms, microglia regulate cell death
and neurogenesis, and actively engulf synaptic material and
play a major role in synaptic pruning during postnatal
development, thereby linking microglia surveillance to synaptic
maturation (Paolicelli et al., 2011). This synaptic pruning
is dependent upon neural activity and the microglia-specific
phagocytic signaling pathway, complement receptor 3/C3
(Schafer et al., 2012). Interestingly, this normal developmental
synaptic pruning pathway appears to be activated early in
the Alzheimer disease (AD) brain and mediates synapse
loss (Hong et al., 2016). Yet another role for microglia in
CNS development comes from a new study describing a
unique phenotype of neonatal (CD11c+) microglia in primary
myelinating areas of the developing brain that deliver signals
necessary for myelination and neurogenesis (Wlodarczyk et al.,
2017).

Microglia plasticity is complex, and activation states
have generally been classified into two functional subtypes:
M1 (classic/pro-inflammatory) and M2 (alternative
polarization/neuroprotective) (Tang and Le, 2016). While
providing a framework for exploring the diverse functions of
microglia, this terminology has been questioned (Ransohoff,
2016b). At least in the case of experimental autoimmune
encephalomyelitis (EAE), a widely utilized animal model of MS,
inhibiting inflammatory agent secretion by microglia reduces
disease severity, while transplanting M2 polarized microglia into
the CNS facilitated recovery (Miron et al., 2013; Zhang et al.,
2014). Studies by Peferoen et al. (2014) indicate that microglia
express an intermediate activation status in all pre- active and
remyelinating MS lesions and distinct from microglia profiles
in actively demyelinating lesions, thus supporting the view that
activation status of microglia is a dynamic process which occurs
as a continuum across the M1 and M2 phenotypes. Microglial
cell progression from beneficial to detrimental is schematically
portrayed in Figure 1.

Astrocytes, the most abundant cell type in the CNS and
historically viewed as “brain glue,” participate in a number of
critical physiological functions, including maintaining blood-
brain barrier (BBB) integrity by forming astrocytic end feet
around endothelial cells, regulation of axonal outgrowth and
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FIGURE 1 | Microglia, like Janus, the two-faced Roman god of beginnings and transitions, display two sides—physiological as well as pathological. While microglial

cell activation participates in surveillance that functions to maintain homeostasis and promote synaptic maturation, prolonged exposure to pathogen activators or in

settings of systemic inflammation, as may occur in conditions such as diabetes or obesity, can culminate in a state of chronic, non-resolving neuroinflammation.

Ultimately, these responses will provoke functional and structural changes and neuronal cell death (neurodegeneration).

myelination (Kiray et al., 2016), and formation of intracellular
communication networks, e.g., signaling via Ca2+ release
and uptake (Volterra and Meldolesi, 2005; Kimelberg and
Nedergaard, 2010). Injury leads to an increase in astrocyte
reactivity (Sofroniew and Vinters, 2010) with changes in
morphology, increased expression of glial fibrillary acidic
protein, proliferation and secretion of pro-inflammatory
molecules and growth factors (Jensen et al., 2013; Pekny et al.,
2016). Further, these factors may exert autocrine/paracrine
actions to promote astrocytic reactivity and impact neighboring
cells. Astrocyte-microglia interactions are also possible
(Figure 2).

Oligodendrocytes (OLs) are responsible for myelin
production in the CNS, and are generated in the germinal
zone from migratory bipolar oligodendrocyte precursor cells
(OPCs; Grinspan, 2002). Myelinating OLs not only provide
trophic support for axons, but also release lactate through
the monocarboxylate transporter 1 which is then utilized by
axons for mitochondrial ATP generation (Saab et al., 2013). The
migration of OPCs is influenced by receptor-ligand adhesions
with the extracellular matrix, such as integrins, and signaling
molecules (Soliven, 2001) which may provide a critical link
between neuronal cell activity and OPCs. Cells of the OL

lineage acquire cell surface markers with maturation and
respond specifically to factors which regulate proliferation,
migration, differentiation, and survival. Moreover, cells of
the OL lineage express and respond to a broad range of
receptor-ligand pairs, including glutamic acid, γ-aminobutyric
acid, ATP, serotonin, acetylcholine, nitric oxide, opioids,
prostaglandins, prolactin, cannabinoids, and nuclear receptors
(Marinelli et al., 2016). While known for their ability to support
axonal functions and long-term integrity (Nave, 2010), OLs
participate also in neuropathology, as will be discussed in later
sections.

MAST CELLS

Glial cell participation in inflammation-associated
neuropathologies encompasses not only their inflammatory
signals, but also their response to mediators produced by other
immune system-derived cells, both blood-borne (dendritic cells,
lymphocytes, neutrophils), and tissue-resident (mast cells).
While receiving comparably less attention than glia, the mast
cell nonetheless represents an important peripheral immune
signaling link to the brain in an inflammatory setting. Mast
cells share a relationship with basophils but have a distinct
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FIGURE 2 | Reciprocal interactions between microglia and astrocytes provoke beneficial and harmful effects in the brain. (Left) Physiological actions include microglia

phagocytosis/debris clearance, release of anti-inflammatory cytokines/chemokines ( ), and trophic agents to favor neuronal cell survival. (Right) Non-resolving

neuroinflammation results in a pathological, pro-inflammatory activation profile of microglia/mediator production ( ), blood-brain barrier (BBB) compromise,

immune cell infiltration, gliosis, and neuronal cell death [Adapted and extensively modified from Le Thuc et al. (2015). The complex contribution of chemokines to

neuroinflammation: switching from beneficial to detrimental effects (Figure 3). Copyright © 2015 John Wiley and Sons. With permission].

haematopoietic lineage development, leaving the circulation to
enter peripheral tissues where the local environment determines
protease phenotype expression packaged in cytoplasmic granules;
these also contain histamine and heparin (Table 1; Prussin and
Metcalfe, 2003). As a major sensory arm of the body’s innate
immune system, mast cells function as environmental “sensors”
to communicate with other elements in physiological and/or
immune responses thanks to their widespread tissue presence
near blood vessels and surfaces exposed to the environment
(Gilfillan et al., 2011). These immune effector cells are found
in tissues innervated by small caliber sensory nerve fibers
(A-delta and C-fibers responsible for pain transmission that
extend from the periphery to the spinal cord and brain), in
meninges, and apposing cerebral blood vessels. Upon activation,
mast cells secrete “packaged” or synthesized de novo, numerous
vasoactive, neurosensitizing and pro-inflammatory mediators,
which include biogenic amines (histamine, serotonin), cytokines,
proteolytic enzymes (e.g., chymase, tryptase, acid hydrolases,
among others), lipid metabolites (prostaglandin D2, leukotriene
C4, platelet-activating factor), ATP, neuropeptides, nerve
growth factor (NGF), vascular endothelial growth factor
and nitric oxide (Kalesnikoff and Galli, 2008; Silver and
Curley, 2013). While more than 50 mediators are known
to date, their expression by mast cells is heterogeneous and
determined to a large extent by species and tissue location.
Additionally, mast cell-derived chemoattractants recruit
eosinophils (Wardlaw et al., 1986), monocytes, and neutrophils
(Wezel et al., 2015).

As antigen-presenting cells, mast cells can induce T cell
activation, proliferation, and cytokine secretion (Bulfone-Paus

and Bahri, 2015). Indeed, the capability of mast cells to
present antigens by class I and II major histocompatibility
complex molecules, respective, to CD4+ and CD8+ T cells
constitutes a major antigen-dependent interaction between mast
cells and T cells—the so-called immunological synapse (Monks
et al., 1998; Grakoui et al., 1999; Suurmond et al., 2013), and
depends on cytoskeletal control of receptor triggering (Comrie
and Burkhardt, 2016). Optimal activation of antigen-specific
T cells requires interaction between CD28 on T cells and
CD86/CD80 on mast cells. Additional interaction between mast
cell OX40L and T cell OX40—together with mast cell-derived
tumor necrosis factor-α (TNF-α)–promotes antigen-stimulated
mast cell enhancement of T cell activation (Nakae et al., 2006)
while polarizing T cell secretory machinery toward the mast cell
(Gaudenzio et al., 2009). It is not surprising, thus, to see mast cell
involvement in T cell-associated immune responses such as EAE
(Elieh Ali Komi and Grauwet, 2017).

NEUROINFLAMMATION IS AMPLIFIED BY
MAST CELL—GLIA AND GLIA—GLIA
CROSSTALK

The contribution of mast cells and glia to neuroinflammation
is strongly influenced by their potential for mutual interaction
and exacerbation of pathology. These cell types are often
found in close proximity to each other, facilitating cell-
cell communication. Further, ligand-receptor pairings, whose
expression may be up-regulated in inflammatory tissues, can
facilitate chemotactic actions to bring mast cells and glia in closer
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TABLE 1 | Mast cells: a primer.

Origin and classification:

• First description in 1878, noted for their staining characteristics and

abundant cytoplasmic granules

• Share some characteristics with circulating basophil granulocytes; thought

to arise from distinct bone marrow precursor cells expressing CD34

• Unique hematopoietic lineage development in comparison to other

myeloid-derived cells: immature lineage mast cells leave the bone

marrow to enter the circulation and immediately undergo transendothelial

recruitment into peripheral tissues where formation of secretory granules

with a particular protease phenotype is regulated by the peripheral tissue.

• Mast cell types are generally divided into connective tissue cells and a

distinct set, mucosal mast cells (whose activities are dependent on T-cells)

• Broad tissue distribution, often close to blood vessels and prominent

near boundaries between the body’s external environment and the internal

milieu, such as skin, mucosa of lungs and digestive tract, and in mouth,

conjunctiva, and nose

• Mast cells also found in the nervous system, including meninges, brain

parenchyma, and nerve endoneurium

Physiology:

• Play a key role in the inflammatory process

• Upon activation rapidly release mediator-loaded granules into the

interstitium

• Degranulation is caused by direct injury (e.g., physical or chemical), cross-

linking of IgE receptors or by activated complement proteins

• Elaborate a vast array of important cytokines and other inflammatory

mediators

• Express multiple “pattern recognition receptors” (e.g., Toll-like receptors)

involved in recognizing broad classes of pathogens

• Granules loaded with a plethora of bioactive chemicals, proteoglycans,

serine proteases, neuropeptides, and growth factors; can be transferred

to nearby immune cells and neurons via transgranulation and their

pseudopodia

Disease involvement:

• Allergic reactions

• Anaphylactic shock

• Inflammatory pain, chronic (including neuropathic) pain

• Acute and chronic neurodegenerative disorders

• Mood disorders

contact. Indeed, recruitment and activation of these immune
cell populations in a defined temporal pattern necessitates a
reciprocal communication between them. Some examples are
briefly discussed below.

The complement system appears to play a role in
crosstalk between mast cells, microglia, and astrocytes. For
example, microglia (and astrocytes) showed up-regulation
of the chemoattractant anaphylatoxin peptide C5a and its
receptor CD88 in inflamed CNS tissues (Gasque et al., 1997).
Complementary expression of C5a receptor on activated mast
cells provides a strong chemoattractant signal toward C5a
peptide (Pundir et al., 2015). The C5a-C5a receptor pathway
plays a vital role in brain inflammatory injury, including
intracerebral hemorrhage (Young et al., 2013; Yuan et al., 2017).
In the context of AD, the central complement factor C3 secreted
from astrocytes interacts with microglial C3a receptor to mediate
β-amyloid pathology and neuroinflammation in AD mouse

models (Lian et al., 2015, 2016). Neuronal cell overproduction
of Aβ activates astroglial nuclear factor-κB (NF-κB) to elicit
extracellular release of C3.

In neuropathic (and other forms of chronic pain) pain, plastic
changes in dorsal horn neurons contribute to a phenomenon
of hypersensitivity to pain sensation that is maintained over
time, known as central sensitization (Constandil et al., 2011).
The neurotrophin brain-derived neurotrophic factor (BDNF) is a
crucial neuromodulator involved in nociceptive hypersensitivity
in the CNS (Coull et al., 2005; Khan and Smith, 2015).
BDNF generates a long-lasting neural excitability change in the
spinal cord via tyrosine kinase B receptor signaling, similar
to that observed in chronic pain models such as neuropathy
(Constandil et al., 2011). Peripheral nerve injury up-regulates
the purinergic P2X4 receptor in microglia of the sensory part
of the spinal cord (Beggs et al., 2012) to mediate BDNF release
and neuropathic pain (Ulmann et al., 2008). An important
signaling pathway in the development of neuropathic pain is
extracellularly-derived ATP, a ubiquitous danger signal released
from damaged cells which engages P2 purinoceptors on target
cells (Burnstock, 2016). ATP is a potent stimulus for microglia,
as well. Distinct P2 receptor subtypes are expressed on mast cells
as a function of species and source from which mast calls are
derived (Bulanova and Bulfone-Paus, 2010). ATP has a rather
large “footprint” and, once released from a mast cell (e.g., FcεR1
cross-linking, stress) can diffuse several hundred micrometers
to act on in neighboring cells, including other mast cells as an
autocrine/paracrine factor (Osipchuk and Cahalan, 1992). ATP-
induced BDNF expression and release is mediated by the P2X4

receptor (Klein et al., 2012) through a mechanism involving
Ca2+ entry, induction of Ca2+/inositol 1,4,5-trisphosphate/PKC
signaling, phosphorylation of IKKα and IKKβ and activation and
nuclear translocation of NF-κB and gene induction (Trang et al.,
2009; Figure 3). Another route by which P2X4 receptor acts to
release BDNF involves mast cell tryptase cleavage of microglial
protease-activated receptor 2 (PAR2) which couples to G proteins
and induces canonical phospholipase C/Ca2+/protein kinase C
signaling that leads to the activation and nuclear translocation
of NF-κB and gene induction (Yuan et al., 2010; Sakamoto
et al., 2016; Figure 3). Microglia, by releasing pro-inflammatory
cytokines like TNF-α and interleukin-6 (IL-6), amplify mast cell
activation/degranulation and numbers (Zhang et al., 2011). An
additional mast cell-microglia feedback loop, again linked to
ATP, invokes its binding to P2 receptors to stimulate release
of IL-33 from microglia pre-activated with pathogen-associated
molecular patterns (PAMPs) acting on Toll-like receptors (TLRs),
thereby inducing mast cell secretion of IL-6, IL-13, and CCL2
which then modulate microglia activity.

Cytokines released following binding of PAMPs to
TLR2/TLR4 on mast cells recruits immune cells (e.g., microglia)
to the sites of injury that is dependent on signaling pathways
involving TLR2/TLR4 (Pietrzak et al., 2011). Further, mast
cell activation up-regulates chemokine expression (including
CCL5/RANTES); the latter molecules are capable of inducing
a pro-inflammatory response in microglia. Microglia-derived
IL-6 and CCL5 may, in turn, influence mast cell expression of
TLR2/TLR4.
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TABLE 2 | Avenues of mast cell—glia and glia—glia communication.

Biological actions

Effector Microglia/Astrocytes/Oligodendrocytes Mast cells References

C5a receptor (C5aR) C5aR up-regulated by microglia activation; C5a peptide

released in neuroinflammation; crosstalk between C5a

and TLR4

C5aR up-regulated by activation; strong mast

cell chemoattractant signal toward C5a

peptide; crosstalk between C5a and TLR4

Gasque et al., 1997; Griffin

et al., 2007; Soruri et al.,

2008; Yuan et al., 2017

C3 and C3 receptor (C3aR) Astrocyte C3 interacts with microglial C3aR to mediate

Aβ pathology and neuroinflammation

Lian et al., 2015, 2016

ATP/P2 receptors ATP stimulates IL-33 release from microglia pre-activated

with pathogen-associate molecular patterns via TLRs

IL-33 binds to mast cell receptor to induce

secretion of IL-6, IL-13 and monocyte

chemoattractant protein 1 which modulate

microglial cell activity

Osipchuk and Cahalan,

1992; Burnstock, 2016

Proteinase-activated

receptor 2 (PAR2)

Mast cell tryptase cleaves/activates PAR2 on microglia,

resulting in P2X4 receptor up-regulation and release of

brain-derived neurotrophic factor

Microglial cell IL-6 and TNF-α up-regulate mast

cell expression of PAR2, with mast cell

activation and TNF-α release

Osipchuk and Cahalan,

1992; Yuan et al., 2010;

Zhang et al., 2010

TLR2, TLR4 Microglial cell-derived IL-6 and CCL5 affect mast cell

expression of TLR2/TLR4

Up-regulation of cytokine/chemokine release;

CCL5/RANTES induces pro-inflammatory

profile in microglia;

recruitment of immune cells (including mast

cells) to site(s) of injury

Orinska et al., 2005; Tanga

et al., 2005; Kim et al.,

2007; Buchanan et al.,

2010; Pietrzak et al., 2011;

Skuljec et al., 2011; Liu

et al., 2012

CXCR4/CXCL12 Promotion of microglia migration/activation;

CXCR4/CXCL12 up-regulated in hypoxia/ischemia

CXCR4 is a mast cell chemotaxin Juremalm et al., 2000; Yang

et al., 2010;

Knerlich-Lukoschus et al.,

2011

CD40/CD40L CD40 up-regulated on activated astrocytes; crosstalk

with CD40L leads to production of inflammatory

cytokines/chemokines trigger mast cell degranulation

CD40L expression enhanced in activated mast

cells; crosstalk with CD40 leads to production

of inflammatory cytokines

Kim et al., 2011

IL-33 Released by oligodendrocytes in neuropathic pain IL-33 binds to mast cell receptor to induce

secretion of TNF-α which up-regulates

oligodendrocyte expression of acute phase

proteins

Zarpelon et al., 2016;

Barbierato et al., 2017

Serum amyloid A (SAA) Up-regulated by inflammatory cytokines released from

glia, mast cells; localized to amyloid β-peptide deposits

SAA is an attractant for mast cells; mast

cell-derived cytokines (e.g., TNF-α can

uo-regulate SAA expression by glia

Nelson et al., 1993; Olsson

et al., 1999; Barbierato

et al., 2017

Translocator protein (TSPO) Retinal inflammation/injury leads to TSPO up-regulation

in retinal microglia;

TSPO endogenous ligand diazepam-binding inhibitor

(DBI) up-regulated in microglia; DBI-TSPO signaling

promotes microglia-microglia interactions

Wang et al., 2014

Cytokines/chemokines

(e.g., CCL2)

Reciprocal interactions between microglia and astrocytes Le Thuc et al., 2015; Xu

et al., 2017

Exosomes Participate in oligodendrocyte—microglia crosstalk Peferoen et al., 2014

IL-18/IL-18 receptor Nerve injury increases expression of IL-18 in microglia

and IL-18R in astrocytes; IL-18 induces astrocytic

hypertrophy and release of IL-1β, IL-6, TNF-α

Miyoshi et al., 2008

IL, interleukin; TLR, Toll-like receptor; TNF-α, tumor necrosis factor-α.

Activation of antigen-presenting cells, including mast
cells, requires the co-stimulatory protein CD40 for binding
to CD40L. A CD40-CD40L interaction has been described
between mast cells and astrocytes which induces cytokine
and chemokine production via Rho-family GTPases/Ca2+-
dependent protein kinase C isoforms, mitogen-activated
protein kinases, NF-κB, and signal transducer and activator
of transcription 1 (Kim et al., 2011). These authors observed
also a feedback action of the released cytokines on astrocytes
to bring about their re-activation. Additional microglia—
astrocyte interactions have been demonstrated at the level of

translocator protein, a marker of gliosis in neurodegeneration
(Wang et al., 2014) and in terms of their ability to exercise
a reciprocal interaction through release of pro-inflammatory
cytokines/chemokines (Le Thuc et al., 2015). Moreover, several
investigators have proposed a crosstalk between oligodendrocytes
and microglia involving exosomes—small vesicles containing
proteins, lipids, and regulatory RNAs thought to provide a
means of intercellular communication and of transmission of
macromolecules between cells via membrane vesicle trafficking,
thereby influencing the immune system (Peferoen et al., 2014)
(Table 2).
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FIGURE 3 | Mast cell—microglia crosstalk in the release of brain-derived neurotrophic factor (BDNF). ATP-induced BDNF expression and release is mediated by the

P2X4 receptor through a mechanism involving Ca2+ entry, induction of Ca2+/inositol 1,4,5-trisphosphate/PKC signaling, phosphorylation of IKKα and IKKβ and

activation and nuclear translocation of nuclear factor-κB (NF-κB) and gene induction The purinergic P2X4 receptor acts to release BDNF via mast cell tryptase

cleavage/activation of protease-activated receptor 2 (PAR2) on microglia which couples to G proteins and induces canonical phospholipase C (PLC)/Ca2+/protein

kinase C (PKC) signaling, activation and nuclear translocation of NF-κB, culminating in BDNF gene induction and translation. The latter cells release tumor necrosis

factor-α (TNF-α) and interleukin-6 (IL-6) which can further drive mast cell activation and degranulation and numbers, leading to a potential feedback loop between

mast cells and microglia.

INFLAMMATION AND NEUROLOGICAL
DISORDERS

Alzheimer Disease
Alzheimer disease is the most prevalent chronic, progressive
neurodegenerative disease, and cause of dementia (Selkoe and
Hardy, 2016). Principal pathological features are the presence
in brain of focal extracellular deposits (senile plaques) of
fibrillar amyloid β-peptide (Aβ) and intracellular neurofibrillary
tangles composed of hyperphosphorylated tau protein (Selkoe,
2011). The amyloid hypothesis of AD was initially based on
the idea that pathogenesis starts with amyloid deposition as
senile plaques, although this view has shifted to AD as a
disease in which soluble oligomeric forms of Aβ impair synaptic
plasticity and behavior (Selkoe, 2008). Disease pathogenesis
involves also interactions with immunological mechanisms in
the brain. Regional inflammatory responses occur in AD brain
with deposits of Aβ as foci, with elevated expression of pro-
inflammatory cytokines, acute phase proteins, and complement
components (Cameron and Landreth, 2010; Calsolaro and
Edison, 2016), along with signs of activated microglia and
reactive astrocytes (Wyss-Coray, 2006; Medeiros and LaFerla,
2013; Regen et al., 2017; Balducci and Forloni, 2018). Post-
mortem AD brain samples and those of mouse transgenic
models of AD bearing deposits of insoluble Aβ display
alterations in microglia and astrocytes (Parvathenani et al.,

2003; Heneka et al., 2015); Aβ plaques in the frontal cortex
of AD brain are surrounded by IL-1β-positive microglia
(Heuberger, 2011). Amyloid precursor protein, from which
Aβ peptides derive reportedly regulates microglial phenotype
(Manocha et al., 2016). In AD brain, activated microglia may
phagocytose toxic Aβ and produce survival-promoting trophic
factors (Rivest, 2009); however, if prolonged such activation can
result in the elaboration of synaptotoxic/neurotoxic cytokines,
chemokines, and reactive oxygen/nitrogen species (Wyss-Coray,
2006; Rivest, 2009; Balducci and Forloni, 2018; Simon et al.,
2018). Indeed, Biscaro et al. (2012) using a transgenic mouse
AD model demonstrated that inhibition of microglial activation
protects hippocampal neurogenesis and improves cognitive
deficits.

Recent studies have defined a complement-dependent
intercellular cross talk whereby Aβ overproduction by neurons
activates astroglial cell NF-κB to elicit release of C3 (Lian et al.,
2015, 2016). The released C3, in turn, interacts with neuronal and
microglial cell C3a receptor (C3aR) to alter cognitive function
and impair Aβ phagocytosis—in effect, promoting a pathogenic
cycle. Abnormal activation of NF-κB has been implicated in AD
(Kaltschmidt et al., 1997), and Lian et al. (2015) showed that
exposure to Aβ activates astroglial NF-κB and C3 release.

A role for mast cells in AD disease onset/progression is
less well-established. Tryptase-positive mast cells were found
in proximity to Aβ plaques in post-mortem AD brain
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(Maslinska et al., 2007), and fibrillar Aβ was reported to cause
CD47-dependent mast cell secretory and phagocytic responses
(Niederhoffer et al., 2009). In a more recent study, Harcha
et al. (2015) showed that acute treatment of brain mast cells
with the 25–35 amino acid fragment of Aβ activates Panx1 and
Cx43 hemichannels, accompanied by increases in Ca2+ influx,
degranulation, and histamine release. These authors also found
raised Panx1 and Cx43 hemichannel activity in a transgenic
mouse AD model along with greater mast cell numbers in cortex
and hippocampus prior to Aβ plaque formation. Acute phase
proteins like serum amyloid A (SAA) are produced in response
to inflammation. SAA immunoreactivity co-localized with Aβ

deposits in AD brain (Kindy et al., 1999), and SAA concentration
wasmuch higher in cerebrospinal fluid (CSF) of AD subjects than
in normal controls (Miida et al., 2006). A new study by Barbierato
et al. (2017) shows that inflammatory stimuli up-regulate
expression of SAA1 by CNS glia—including oligodendrocytes—
providing an attractant for mast cells and promoting movement
toward Aβ deposits (Nelson et al., 1993; Olsson et al., 1999). The
data propose a potential for paracrine/autocrine effects between
these cell types. Moreover, Harcha et al. (2015) suggest that mast
cells are among the first brain cells to sense Aβ peptides and
thus may play a critical role in the onset and progression of
AD. Masitinib, a potent and selective oral protein tyrosine kinase
inhibitor targeting c-Kit (the receptor for the mast cell growth
factor stem cell factor; Dubreuil et al., 2009) that inhibits the
survival, migration and activity of mast cells, when administered
as add-on therapy to AD patients receiving standard care during
24 weeks was associated with slower cognitive decline (Piette
et al., 2011). It is currently in Phase II/III clinical trials for the
treatment AD (Folch et al., 2015).

Neuroendocrine and behavioral changes accompanying the
stress response can affect homeostasis, over the long term,
in terms of detrimental effects such as impairing neuronal
cell metabolism, plasticity, and survival. Stress-induced
hormonal and behavioral reactions may also indirectly induce
neuropathological processes participating in the development
and progression of AD (Mravec et al., 2018), in part throughmast
cell-mediated BBB breakdown (Esposito et al., 2001). Indeed,
chronic stress reportedly accelerates AD pathogenesis in human
and animal models through increases in inflammatory responses,
Aβ accumulation, tau hyperphosphorylation, oxidative stress,
mitochondrial impairment, and glucose metabolism (Machado
et al., 2014), while early-life stress increases the risk of cognitive
disorders in an aged mouse model of AD (Hoeijmakers et al.,
2017). Mast cell activation plays a crucial role in stress-dependent
inflammatory mechanisms. Human mast cells synthesize and
secrete corticotropin releasing hormone (CRH) and express
functional CRH receptors (Cao et al., 2005). CRH released from
mast cells can act in an autocrine/paracrine manner to activate
mast cells and microglia in stress and neuroinflammatory
conditions (Karagkouni et al., 2013; Kritas et al., 2014a). Chronic
psychological stress is a risk factor for dementia and AD by
inducing microglial proinflammatory status (Piirainen et al.,
2017) and, conceivably, a crosstalk loop between the former
cells and mast cells. These observations propose that mast
cells play a crucial role in stress responses associated with

inflammation that may predispose to AD pathogenesis in
high-risk groups.

Parkinson Disease
Parkinson disease (PD) is the first and second most prevalent
motor and neurodegenerative disease, respectively (Hirsch et al.,
2016). Pathological hallmarks of PD are the progressive death
of dopaminergic neurons in the substantia nigra pars compacta
and intracellular accumulation of Lewy bodies enriched in α-
synuclein protein (Shulman et al., 2011). In addition to motor
defects, clinical features of PD comprise non-motor symptoms
that become increasingly prevalent during the course of the
disease. Although PD is a complex, multisystem disorder,
neuroinflammatory responses, and neuroinflammation appear
to exacerbate PD pathogenesis (Stojkovska et al., 2015; Wang
et al., 2015). A number of studies suggest that microglial cell
activationmay have a role in PD. For example, Zhang et al. (2017)
reported that pathological α-synuclein exacerbates progression of
PD through microglial activation via the transcription factor NF-
κB and expression of pro-inflammatory cytokines such as TNF-
α and IL-1β. Further, expression of major histocompatibility
complex II by microglia is needed for activation of these cells by
α-synuclein, which can play a role in immune responses (Harms
et al., 2013). A number of gene defects have been identified
in familial forms of PD, the most commonly mutated gene
being that for leucine-rich repeat kinase 2, whose pathogenic
mutations influence the ability of microglia to internalize and
degrade α-synuclein—thereby exacerbating α-synuclein-induced
microglial pathology and neuroinflammation (Recchia et al.,
2004; Schapansky et al., 2015). Immunomodulator dysregulation
increases microglial activation and the degeneration of dopamine
neurons (Zhang et al., 2011). Dopaminergic neurons are
especially sensitive to injury by pro-oxidant species, and whose
activation of microglia in PD can lead to degeneration of
dopaminergic cells (Appel et al., 2010; Herrera et al., 2015).

A role that mast cells may play in PD pathogenesis is, until
now, largely lacking. However, recent reports by Kempuraj
et al. (2016, 2018) showed that incubation of mouse bone
marrow-derived mast cells (BMMCs) and human umbilical
cord blood-derived cultured mast cells with the dopaminergic
toxin 1-methyl-4-phenylpyridinium (MPP+) led to release of
the chemokine CCL2 and matrix metalloproteinase-3 which is
claimed to play a role in PD pathogenesis. Moreover, MPP+-
treated BMMCs exposed to glia maturation factor (an activator
of glia inducing neuroinflammation/neurodegeneration;
Zaheer et al., 2007) enhanced CCL2 release. Interestingly,
MPP+-induced CCL2 release was greater in BMMCs-astrocyte
co-cultures (see also Kim et al., 2010). Based on their findings
the authors suggest that mast cells may play role in PD
pathogenesis.

Multiple Sclerosis
Multiple sclerosis (MS) is the prototypical inflammatory disease
of the CNS, whose defining feature is the destruction of myelin
(Compston and Coles, 2008). MS is the most frequent cause
of chronic neurological impairment in young people (Kamm
et al., 2014). Often thought of as a disorder of white matter
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demyelinating lesions, cortical demyelination contributes greatly
to MS disabilities and may even precede the appearance of classic
white matter plaques in some MS patients (Lucchinetti et al.,
2011). The autoimmune nature of the disease (whether through
genetic predisposition or yet to be elucidated environmental
triggers) is initiated by myelin-reactive T cells, being then
amplified by an inflammatory response involving myeloid cells,
including microglia and infiltrating macrophages (Peferoen
et al., 2015; Sospedra and Martin, 2016). Triggering receptor
expressed on myeloid cells 2 (TREM-2) is a member of the
immunoglobulin and lectin-like superfamily and operates as
part of the innate immune system. It is highly expressed
by microglia (Hickman et al., 2013) and facilitates nervous
tissue debris clearance (Takahashi et al., 2007). TREM-2 is
cleaved by microglia to produce soluble TREM-2, whose levels
are reportedly increased in CSF of patients with relapsing-
remitting, secondary progressive, and primary progressive MS,
being normalized by treatment with the immunomodulatory
drug natalizumab (Öhrfelt et al., 2016).

Mast cells are likely to play an important role in MS
pathogenesis (Theoharides et al., 2008b; Kritas et al., 2014b;
Conti and Kempuraj, 2016) by mediating inflammation and
demyelinization via presentation of myelin antigens to T
cells and/or disrupting the BBB, thereby allowing entry of
inflammatory cells and cytokines. In the latter instance,
expression of the mast cell chemoattractant CXCL12 at the
lumen surface of endothelial cells (McCandless et al., 2008)
could favor trafficking and accumulation of CXCR4-expressing
mast cells. Mast cell tryptase is elevated in CSF from MS
patients (Rozniecki et al., 1995), promotes mononuclear cell
secretion of TNF-α and IL-6 (Malamud et al., 2003), and
stimulates protease-activated receptors (PARs) that may disrupt
BBB integrity (Bunnett, 2006). Interestingly, barrier breakdown
occurs prior to pathological/clinical signs of MS (Kermode et al.,
1990). EAE, a widely utilized animal model of MS based on an
immune reaction against myelin oligodendrocyte glycoprotein,
evidences degranulating mast cells in brain (Brenner et al., 1994).
Mast cell activation and neutrophil recruitment is reported to
promote early and robust inflammation in the meninges in EAE
(Christy et al., 2013). Myelin activates mast cells (Medic et al.,
2008), causing demyelination (Theoharides et al., 1991) and
oligodendrocyte cell death (Medic et al., 2010). In spite of the
broad use of these mouse EAE models, disagreement remains
as to whether mast cell effects on EAE development depend
on mouse strain, immunization protocol, or disease type and
severity (Nelissen et al., 2013).

Mast cell-derived IL-1 and IL-6 promote transition of
regulatory T cells to IL-17-producing active T helper type 17
(Th17) lymphocytes (Dudeck et al., 2011; El-Behi et al., 2011;
Ganeshan and Bryce, 2012). IL-17 is elaborated by both adaptive
immune cells (e.g., Th17 and cytotoxic T cells; Kolbinger et al.,
2016) and innate immune cells (e.g., mast cells; Kan et al.,
2016). By synergizing with other pro-inflammatory cytokines
(e.g., released by microglia and mast cells themselves), IL-
17 can induce release of yet additional cytokines/chemokines
to recruit new inflammatory cells, ultimately impacting the
function of microglia, astrocytes, oligodendrocytes, neurons,

neural precursor cells and endothelial cells (Kolbinger et al.,
2016).

The Th17 cytokine granulocyte macrophage-colony
stimulating factor (GM-CSF) is a key player in EAE-associated
neuroinflammation, as demonstrated by the absence of myelin-
specific T cell accumulation in meninges and production of
GM-CSF in mast cell-deficient animals (Russi et al., 2016a,b).
Using mast cell-T cell co-cultures and selective mast cell
reconstitution of the meninges of mast cell-deficient mice,
these authors showed meningeal mast cells to be an early
source of caspase-1-dependent IL-1β production. IL-1β
promotes T cell expression of GM-CSF, thereby enhancing their
encephalitogenicity. Interestingly, MS patients in the effector
phase display mast cell-T cell co-localization (crosstalk?) in the
meninges and CNS (Russi et al., 2016b). Beyond white matter
demyelination, plaques in the gray matter also contribute to
MS disease pathogenesis, with cortical demyelination being
characterized by inflammation in the meninges—where mast
cells are resident.

Another member of the IL-1 cytokine family, IL-33, is tied in
to inflammatory and autoimmune diseases (Liew et al., 2010).
Its receptor is mainly expressed by T helper 2 cells and mast
cells. Frequently released from damaged cells, IL-33 is considered
a danger signal (“alarmin”). IL-33 released from mast cells
may exert autocrine/paracrine actions on these same cells by
augmenting the stimulatory effects of IgE and substance P and by
triggering their release of cytokines (Theoharides et al., 2015b).
IL-33 is up-regulated in both peripheral leukocytes and CNS
of MS patients (Christophi et al., 2012), and IL-33 blockade
suppresses development of EAE in C57BL/6 mice during the
induction phase (Li et al., 2012). Although IL-33 is expressed by
neurons, astrocytes, oligodendrocytes and microglia in human
brain, its receptor ST2 is mainly neuronal in location. Acute
and chronic MS brain lesion tissues show augmented expression
levels of IL-33 and ST2 compared to normal brain (Allan et al.,
2016). Further, rat myelinating spinal cord co-cultures treated
with IL-33 exhibited inhibition of myelination. MS patients
frequently suffer from central neuropathic pain (Osterberg et al.,
2005; Solaro et al., 2013). An intriguing possibility is that such
pain might involve spinal cord oligodendrocyte-derived IL-33
inducing expression of TNF-α and IL-1β in spinal cord (Zarpelon
et al., 2016).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is neurodegenerative disease
that primarily affects upper and lower motor neurons, resulting
in progressive muscular paralysis and typically leading to death
within 2–5 years of diagnosis. ALS shows clinical, pathological,
and genetic overlap with frontotemporal dementia (FTD; Lall
and Baloh, 2017). While ALS appears as a composite syndrome
with a number of aberrant cellular pathways (Geloso et al.,
2017), neuroinflammation is recognized as a key aspect of
ALS pathology (Philips and Robberecht, 2011; Liu and Wang,
2017). Activated microglia are a universal feature of ALS/FTD
pathology, together with activation of astrocytes at specific
disease stages in mouse models of ALS (Hall et al., 1998;
Brites and Vaz, 2014; Lee et al., 2016; Lall and Baloh, 2017)
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and in humans (Turner et al., 2004). Strong evidence points
to impairment of the neurovascular unit, including the blood-
brain and blood-spinal cord barriers in patients and animal
models of ALS (Rodrigues et al., 2012). Mast cells contain
preformed TNF-α (unlike glia) and vasoactive mediators, and so
may participate in regulating the function of both blood-brain
(Ribatti, 2015) and blood-spinal cord barriers. In so doing, mast
cells would facilitate entry of immune cells, including themselves
(Sayed et al., 2010) across these barriers when compromised, as
happens in ischemic stroke and ALS, respectively. Indeed, ALS
spinal cord is reported to contain IL-17-expressing (Fiala et al.,
2010) and degranulating mast cells. Regulatory T cells enhance
mast cell production of IL-6 via surface-bound transforming
growth factor-β (Gao and Ji, 2010), which then promotes Th17
activity (Dudeck et al., 2011). Moreover, serum and CSF of ALS
patients display elevated amounts IL-12 and IL-15 (Rentzos et al.,
2010), the latter cytokine acting as a mast cell chemoattractant
(Jackson et al., 2005), while mast cells are a major source of the
former (Nakano et al., 2007). IL-12 up-regulates mast cell surface
expression of TLR2/TLR4 (Yang et al., 2010), members of a major
class of pattern recognition transmembrane receptors activated
by PAMPs. PAMPs are molecules associated with groups of
pathogens recognized by cells of the innate immune system
(Chakraborty et al., 2010). Mast cell (and microglia) TLR2 and
TLR4 respond to molecules called damage associated molecular
patterns, for example, the high mobility group box 1 protein
that is elevated in spinal cord of ALS patients (Casula et al.,
2011). Moreover, IL-6 and CCL5 elaborated by microglia could
modulate TLR2 and TLR4 expression by mast cells (Pietrzak
et al., 2011) to up-regulate chemokines and induce a pro-
inflammatory profile in microglia (Skuljec et al., 2011). IL-12
is able as well to up-regulate expression of PAR2 (Zhang et al.,
2007), an emerging target for neuroinflammation (Bushell, 2007).
Collectively these data point to mast cell-microglia crosstalk, as
well as potential autocrine/paracrine actions of cytokines like
IL-12 on mast cells.

Mast cell involvement in the neuromuscular junction (NMJ)
denervation of ALS was recently investigated in a rat hereditary
ALS model (SOD1G93A), where the authors observed a marked
infiltration and degranulation of mast cells that started after
paralysis onset and correlated with progressive NMJ denervation
(Trias et al., 2017). Further, mast cells accumulated around
degenerating motor axons and NMJs, and were also associated
with macrophages. Mast cell accumulation and degranulation
in paralytic muscle was prevented by systemic treatment with
masitinib; motor deficits were reduced as well.

Cerebral Ischemia
Eight out of 10 strokes are due to cerebral ischemia, and
the remaining ones from cerebral hemorrhage. Stroke is the
most common cause of disability, the second commonest cause
of dementia and the fourth commonest cause of death in
the developed world (Sveinsson et al., 2014) and the leading
cause of serious, long-term disability in the United States.
Stroke pathology is characterized by an inflammatory response
involving microglia activation, cytokine/chemokine release, and
macrophage/neutrophil infiltration (Wang et al., 2007; Jordán

et al., 2008). Interestingly, in the early phase of the ischemic
episode inhibiting microglial cell activation may be of benefit
(Hanisch and Kettenmann, 2007), perhaps by phagocytosing
debris and/or releasing neurotrophic factors. Another important
element in ischemic injury is activation/degranulation of mast
cells, a phenomenon that plays a role in initiating the early
phase of pathology (Jin et al., 2009; Lindsberg et al., 2010)—
even before microglia and astrocyte activation. BBB breakdown
accompanies ischemia, allowing for immune inflammatory cell
infiltration into brain parenchyma. Mast cells occur within the
dura and meninges, and on the brain side of the BBB (Silver and
Curley, 2013), and promote BBB breakdown, edema, neutrophil
infiltration, and hemorrhage in a rodent model of focal cerebral
ischemia (McKittrick et al., 2015). Mast cell degranulation
has been observed both in the immature brain after stroke
(Biran et al., 2008) and in adult rats undergoing transient
global ischemia (Hu et al., 2004). A mast cell role in stroke
is strengthened by studies showing that pharmacological mast
cell stabilization and genetic mast cell deficiency in rats reduces
BBB permeability, brain edema, and neutrophil recruitment
(Strbian et al., 2006; Jin et al., 2007; Mattila et al., 2011; Kocic
et al., 2015), perhaps by regulating, in part, acute microvascular
gelatinase activation (Mattila et al., 2011). Moreover, mast
cell blocking limits brain edema and hematoma volume and
improves outcome after experimental intracerebral hemorrhage
(Strbian et al., 2007). Yet another factor implicated in BBB
breakdown is the angiogenic factor vascular endothelial growth
factor, which is synthesized, stored, and released by mast cells
(Grützkau et al., 2012). In the case of MS, data from EAE models
suggest that meningeal (mast cell-mediated) inflammation is a
precursor to CNS immune cell (e.g., T cells) infiltration as a
consequence of a loss of integrity of both the local BBB and
CSF-blood barrier (Sayed et al., 2010; Colloca et al., 2017).

Traumatic Brain Injury
Traumatic brain injury (TBI) is a non-degenerative, non-
congenital insult to the brain from an external mechanical force
that causes brain dysfunction. Mild TBI may cause temporary
dysfunction of brain cells. More serious injury can result in
bruising, torn tissues, bleeding, and other physical damage to
the brain followed by secondary pathological processes including
excitotoxicity, ischemia, and neuroinflammation that result in
long-term complications and/or death (Hagberg et al., 2012;
Xiong et al., 2013). Cognitive and behavioral deficits caused by
TBI to the immature brain are more severe and persistent than
injuries to the adult brain (Rivara et al., 2012). Among the first
events of the injury response, in both the adult and the developing
brain, is the degranulation of mast cells (Lozada et al., 2005;
Stokely and Orr, 2008) that may facilitate a compromised BBB.
In addition, mild TBI evoked by closed head injury is associated
with persistent (up to 1 month) dura mast cell degranulation
(Levy et al., 2016) and a chronic immune response (Ertürk et al.,
2016).

Microglia, together with astrocytes and oligodendrocytes, play
instrumental roles in shaping the microenvironment after TBI
(Koshinaga et al., 2000; Ramlackhansingh et al., 2011; Karve et al.,
2016; Kumar et al., 2017; Taib et al., 2017). In a longitudinal
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study in humans, chronically activated microglia and tissue
degeneration was observed even years after injury (Johnson
et al., 2013). Experimental studies in rodents are consistent
with the above, showing up-regulation of pro-inflammatory
markers (Holmin and Mathiesen, 1999), chronic microglial
cell activation, lesion expansion, and hippocampal neuron and
myelin loss (Loane et al., 2014). Although often overlooked
in the context of TBI secondary injury, also the complement
system plays a notable role in this multifaceted inflammatory
reaction (Hammad et al., 2018). Astrocytes undergo reactive
changes in a setting of TBI, becoming hypertrophic with
swelling and extension of processes in the first few days,
followed by glial scar formation (Villapol et al., 2014) and
with reactive gliosis persisting up to several months post-
injury. Although scarring is a potentially a protective mechanism
against further injury, it can act to inhibit axonal regrowth
and regeneration (Silver and Miller, 2004). Another feature of
astrocyte reactivity in TBI is that of proliferation, manifested by
an up-regulated expression of glial fibrillary acidic protein, close
to the lesion site (Bardehle et al., 2013) and which appears to
peak in the acute phase after experimental TBI. As discussed
earlier astrocytes, like microglia, can elicit both beneficial and
detrimental effects. Moreover, as astrocytes render microglia
more responsive to pro-inflammatory stimuli (Barbierato et al.,
2013, 2017; Facci et al., 2014) and neurotoxic reactive astrocytes
are induced by activated microglia (Liddelow et al., 2017), such
behaviors could work in concert the affect the local environment
after TBI.

Postoperative cognitive dysfunction shares some features
with TBI. Neuroinflammation initiated by extra-CNS surgical
trauma, followed by release of CNS inflammatory mediators can
damage synapses and neurons and may be a critical component
of surgery-induced cognitive dysfunction (Riedel et al., 2014).
This phenomenon is often seen in the elderly consequent to
surgery and hospitalization (Terrando et al., 2011). As with
TBI, cerebral mast cells have been suggested to contribute
to postoperative cognitive dysfunction and pain after surgical
procedure-mediated neuroinflammation (Oliveira et al., 2011;
Li et al., 2017) by promoting BBB breakdown (Zhang S. et al.,
2016; Zhang X. et al., 2016). In addition, astrocyte-derived
CCL2 participates in surgery-induced cognitive dysfunction and
neuroinflammation via evoking microglia activation (Xu et al.,
2017).

Neuropathic Pain
Acute and chronic pain are cardinal features of inflammation,
albeit different clinical entities. The former is provoked by a
specific disease or injury, serves a useful biologic purpose, and is
self-limited. Chronic pain, on the other hand, may be considered
a disease state that outlasts the normal time of healing and is
thought to result from alterations in neuronal cell plasticity.
Such alterations include sensitization of peripheral nociceptors
in dorsal root and trigeminal ganglia (Basbaum et al., 2009)
and central nociceptive neurons in the spinal cord, trigeminal
nucleus, brain stem, and cortex (Ossipov et al., 2010). Together,
peripheral sensitization and central sensitization translate into
a heightened perception of pain. Chronic pain represents a

substantial and rising unmet medical need (Smith and Torrance,
2012), and affects 7–10% of the general population (Colloca et al.,
2017).

Neuropathic pain represents, without doubt, the most
debilitating type of chronic pain, and is a consequence of damage,
degeneration, or dysfunction of the sensory nervous system (Jay
and Barkin, 2014). Epidemiological studies place a population
prevalence of pain with neuropathic characteristics at between
6.9 and 10% (van Hecke et al., 2014), yet it remains largely
untreatable. Neuropathic pain is either peripheral or central, as
a function of lesion location caused by disease (e.g., diabetes
mellitus), medical intervention (chemotherapy, surgery), and
injury, the last most often caused by stroke, spinal cord injury,
or MS (Kerstman et al., 2013). Peripheral neuropathic pain
(painful neuropathy) is, in effect, a brain disease where alterations
in neural networks affect multiple aspects of brain function,
structure, and chemistry (Borsook, 2012). Analgesics continue
to focus on reducing pain transduction and transmission in
neurons, which likely accounts for their limited success in
controlling disease progression (Ji et al., 2014). This “neuron-
centric” view fails to consider that initiation and maintenance
of neuropathic pain depend to a great extent on Schwann cells,
spinal microglia, and astrocytes, together with elements of the
peripheral immune system (Ren and Dubner, 2010) such as mast
cells—as will be discussed below.

Mast cells (Héron and Dubayle, 2013) and microglia are
frontline protagonists as primary interlocutors for pain neurons,
in the periphery as well as at the spinal/supraspinal levels. In the
latter case, a new study (Kissel et al., 2017) demonstrates that
spinal nerve ligation corresponds temporally and in magnitude
with degranulation of thalamic mast cells—a rich source of these
cells (Florenzano and Bentivoglio, 2000). Protracted alterations
in these immune cells promote persistent neuroinflammation
that ultimately impacts neuron functionality. Mast cell mediators
like IL-6 activate/sensitize nociceptors which not only contribute
to neuropathic pain (Xanthos et al., 2011) but also activate
trigemino-cervical and lumbosacral pain pathways, causing
widespread tactile pain hypersensitivity (Levy et al., 2012).
Peripheral nerve-resident mast cells (and not microglia) are
the responders at the site of damage, where they promote
recruitment of neutrophils and macrophages (Zuo et al., 2003).
In addition, mast cell-derived NGF (Leon et al., 1994) can
not only sensitize nociceptors (Kelleher et al., 2016), but mast
cells themselves may respond to NGF in a paracrine/autocrine
manner. Mast cells could also help in recruiting other immune
cell types (e.g., T-cells) which, in turn, release pro-nociceptive
mediators. Rats with chronic constrictive nerve injury and
treated with glucocorticoids exhibit a reduction in pain and TNF-
α-positive mast cell numbers (Hayashi et al., 2011). Mast cells
appear to be crucial mediators of chronic visceral pain, as well
(Done et al., 2012), and have been proposed as a target in the
treatment of complex regional pain syndrome (Dirckx et al.,
2013).

Glia are important interlocutors of pain processes at the
spinal level (Grace et al., 2014; Old et al., 2015; Echeverry
et al., 2017). For example, spinal microglia, upon activation
by either cell surface molecules or pro-inflammatory signals
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released from peripheral immune cells such as mast cells
elaborate IL-1β to modulate neuronal cell activity. Dorsal
horn microglia become activated in pathological conditions
(e.g., peripheral nerve injury) accompanied by up-regulation
of ionotropic P2X and metabotropic P2Y purinergic receptors
(Kobayashi et al., 2008; Skaper et al., 2010; Biber et al., 2011)
to participate in neuropathic pain (Burnstock, 2016; Tsuda,
2016); indeed, inhibiting the function or expression of these
microglial receptors strongly attenuates neuropathic pain (Tsuda,
2016). Interactions between mast cells and glia, as will be
discussed in a later section, may contribute to amplification of
peripheral pain signals at the spinal level. Astrocytes also are
a key contributor to neuropathic pain (Milligan and Watkins,
2009; Ji et al., 2013). A recent study by Peng et al. (2016)
suggests that microglia and monocytes may act synergistically
to promote the transition from acute to chronic pain after
nerve injury. Collectively, these findings propose thatmoderating
mast cell-glia reactivity may be a viable therapeutic direction
for treating neuropathic pain (Gao and Ji, 2010; Skaper and
Facci, 2012; Popiolek-Barczyk and Mika, 2016). In this context
it is interesting to point out that acute intracerebroventricular
administration of N-palmitoylethanolamine (PEA), a congener
of the endocannabinoid anandamide with analgesic and anti-
inflammatory activities linked to mast cell/microglia modulation
(Alhouayek and Muccioli, 2014; Petrosino and Di Marzo,
2017), reduced carrageenan-induced paw oedema/hyperalgesia
(D’Agostino et al., 2007), and chronic pain in man (Paladini et al.,
2016).

While not often considered, intriguing evidence suggests
that oligodendrocytes, the myelin-producing cells of the CNS,
may also participate in pain mechanisms. Among their
other roles, oligodendrocytes support, in a myelin-independent
manner, axonal functions ,and long-term integrity (Nave, 2010;
Bankston et al., 2013). Oligodendrocyte ablation causes spinal
axonal pathology, along with induction/maintenance of a
heightened nociceptive sensitivity in the absence of innate or
adaptive immune responses (Gritsch et al., 2014). Further, they
produce and respond to chemokines/cytokines that modulate
CNS immune responses, express antigen-presenting molecules,
complement and complement receptor molecules, complement
regulatory molecules, neuroimmune regulatory proteins as well
as extracellular matrix proteins (Peferoen et al., 2014; Zeis
et al., 2016), and interact with microglia (Peferoen et al.,
2014). Intrathecal administration of N,N-dimethylsphingosine
(DMS) in rats, whose dorsal horn production is triggered by
inflammation, induces neuropathic pain-like behavior (Patti
et al., 2012). Human oligodendrocytes produce DMS, and
their levels of DMS rise when challenged with agents that
damage white matter (Chen et al., 2014). These authors suggest
that damage to oligodendrocytes can result in increased DMS
production to drive inflammatory astrocyte responses in sensory
neuron sensitization. In the case ofMS, for example, autoimmune
inflammation driven by invading peripheral immune cells may
lead to injury/degeneration of oligodendrocytes and neurons,
and play a part in the neuropathic pain often experienced by MS
patients. In addition, spinal cord oligodendrocyte-derived IL-33
reportedly mediates neuropathic pain (Zhang et al., 2014).

von Büdingen et al. (2015) recently demonstrated that NGF
directly binds to myelin oligodendrocyte glycoprotein (which
shares structural features with TrkA), a protein localized to
the outermost lamellae of compact CNS myelin. These authors
posit that myelin oligodendrocyte glycoprotein may serve a
protective mechanism to remove excess NGF and prevent
aberrant sprouting and neuropathic pain after peripheral nerve
injury. It is interesting to note that inflammatory cytokines
in peripheral nerves have been implicated in the Wallerian
degeneration of peripheral nerves after injury and in certain types
of inflammatory neuropathies. In analogy to oligodendrocytes
(Barbierato et al., 2017), Schwann cells are the primary source of
SAA1 production after peripheral nerve injury (Jang et al., 2012).

Depression
Peripheral immune modulators can induce psychiatric
symptoms in animal models and humans. Medical conditions
associated with chronic inflammatory and immunological
abnormalities, including obesity, diabetes, rheumatoid arthritis,
and MS are risk factors for depression (Mezuk et al., 2008; Faith
et al., 2011; Matcham et al., 2013; Feinstein et al., 2014). Almost
one-half of non-depressed hepatitis C and cancer patients treated
with interferon develop depressive symptoms associated with
increased serum IL-6 levels (one of the more reliable peripheral
biomarkers in major depression) (Loftis and Hauser, 2004), while
significantly higher circulating concentrations of TNF-α and
IL-6 were reported in depressed subjects compared with controls
(Dowlati et al., 2010). Intravenous administration in healthy
male volunteers of low-dose endotoxin not only induces a
significant increase in peripheral blood concentrations of TNF-α,
IL-6, and IL-10 but also results, with some delay, in a selective
increase of IL-6 in CSF (Engler et al., 2017). These authors also
found a strong association between endotoxin-induced increase
of IL-6 in CSF and severity of mood impairment. The cellular
mechanisms that underlie depression remain unclear, perhaps
due at least in part to the fact that research until now has focused
on neuronal cell dysfunction. The role of non-neuronal cells (glia
and mast cells especially) in depression has lagged behind. Newer
studies indicate that impairment of the normal structure and
function of microglia (Prinz and Priller, 2014), caused by either
intense inflammatory activation or by decline and senescence
of these cells (e.g., during aging), can lead to depression and
associated impairments in neuroplasticity and neurogenesis
(Brites and Fernandes, 2015; Yirmiya et al., 2015).

Tryptophan catabolism, another important facet of
inflammation-induced depression (Hendriksen et al., 2017),
involves up-regulation of indoleamine 2,3-dioxygenase (IDO;
Maes et al., 2011), the rate-limiting enzyme in the kynurenine
pathway. Elevated levels of kynurenine have been linked to
depressive-like symptoms in man (Gabbay et al., 2012). As
kynurenine has been suggested to enhance IgE-mediated
mast cell responses (Kawasaki et al., 2014), it is conceivable
that the latter could be affected by alterations in tryptophan
metabolism (and, hence, kynurenine levels) (Campbell et al.,
2014). Mastocytosis, a rare mast cell activation disorder of both
children and adults is characterized by mast cell accumulation in
peripheral organs (Valent et al., 2001). Patients with mastocytosis
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often exhibit not only acute and chronic pain (Wirz and
Molderings, 2017) but also psychopathological manifestations
such as cognitive impairment; depression appears to be their
most common complaint and ranges from 40 to 70% (Rogers
et al., 1986; Hermine et al., 2008). Conceivably, systemic brain
involvement mediated by mast cell mediators might account for
the high prevalence of depression. In this context, mastocytosis
patients reportedly display lower levels of tryptophan and
serotonin but higher levels of kynurenic and quinolinic acids
(Georgin-Lavialle et al., 2016), leading these authors to propose
a role for mast cells in the tryptophan pathway leading to
depression. Additionally, mast cells have been implicated in
mechanisms related to the regulation of emotion (Nautiyal et al.,
2008). Masitinib was shown efficacious in treating cutaneous
mastocytosis in dogs (Cadot et al., 2011) and in improving
recovery from depression associated with mastocytosis (Paul
et al., 2010; Moura et al., 2011), suggesting a link between
depression in mastocytosis and mast cell activation.

Autism Spectrum Disorder
Autism spectrum disorder (ASD) is a life-long condition
characterized by marked neurological deficits, especially as
relates to cognitive function. Although its pathogenesis remains
unknown the major hypothesis at present posits that autism
is a multifactorial disorder, possibly being associated to some
degree with aspects of autoimmune dysfunction (Theoharides
et al., 2013). Mast cells, part of the innate immune system, are
reportedly activated in autism (Theoharides et al., 2008a, 2012,
2016), and ASD incidence is claimed to be 10-fold higher in
children with mastocytosis (Theoharides, 2009). One such mast
cell activator is the neuropeptide neurotensin (Carraway et al.,
1982), whose circulating levels are elevated in ASD patients
(Tsilioni et al., 2014). A growing body of evidence supports
the view that a chronic subclinical inflammation involving both
the gut and CNS may contribute to autism symptomatology
(Vargas et al., 2005; Thacker et al., 2007; Morgan et al.,
2010, 2012; Kern et al., 2016), with active neuroinflammatory
processes being found throughout the brain in both cerebral
cortex and cerebellum of patients with autism. Intriguingly, a
new pair of studies in Nature, by Kim et al. (2017) and Shin
Yim et al. (2017) describe how infection during pregnancy
increases the risk of neurodevelopmental disorders, such as
autism, in offspring. These mouse studies now reveal a link
between gut bacteria and atypical brain-circuit connections.
Brain abnormalities in persons diagnosed with ASD reportedly
show significant ongoing neuroinflammation as a central element
of the pathology (Herbert, 2005). Areas of abnormally developed
cortex have been identified in individuals with autism (Stoner
et al., 2014), and suggest dysregulation of layer formation and
layer-specific neuronal differentiation at prenatal developmental
stages. Tetreault et al. (2012) reported higher densities of
microglia throughout cerebral cortex in brains of people with
autism. When sustained, microglial activation can contribute to
disease progression and injury of healthy brain tissue through
release of pro-inflammatory mediators (Smith et al., 2012)
and by engulfing synapses (Rodriguez and Kern, 2011) and
other neuronal tissue, thereby leading to cell loss and reduced

connectivity, both of which are found in ASD brain (Rodriguez
and Kern, 2011).

Fibromyalgia Syndrome
Fibromyalgia syndrome is a prevalent rheumatic disease,
that strikes between 2 and 4% of the general population
(Queiroz, 2013), predominantly females. This syndrome is
characterized by widespread chronic pain, tenderness in muscles
and deep tissues, and fatigue/sleep disturbances. The pain
of fibromyalgia is a disabling condition and can become
quite marked when provoked by digital pressure at tender
points. Pain in fibromyalgia is believed to be associated
with a generalized alteration (sensitization) in the central
somatosensory system (Kim et al., 2015), a condition most
likely sustained by neuroinflammatory processes triggered by
microglia (Alfonso Romero-Sandoval and Sweitzer, 2015) and
mast cell (Kissel et al., 2017) activation. Interestingly, a recent
study identified neuropathy of small nerve fibers in patients
with fibromyalgia (Üçeyler et al., 2013). Cross-talk between the
nervous and immune systems no doubt plays an important
role in the initiation and progression of chronic pain in
fibromyalgia syndrome and other central sensitivity syndromes
(Staud, 2015).

NEUROINFLAMMATION: THE RISK OF
GROWING OLD

Frailty is a common geriatric syndrome characterized by age-
associated declines in physiologic and cognitive reserves across
multi-organ systems, resulting in an increased vulnerability
for adverse health outcomes (Heuberger, 2011). Chronic (non-
resolving) inflammation is likely a key pathophysiologic process
that contributes to the frailty syndrome directly and indirectly
through other intermediate physiologic systems, and complex
multi-factorial etiologies such as obesity and diabetes. Aging
is associated with elevated levels of circulating cytokines and
pro-inflammatory markers, and age-related changes in the
immune system (often referred to as “immunosenescence” or
“inflammoaging”) (Michaud et al., 2013; Mate et al., 2014).
Hippocampal processing is more easily disrupted in old animals
than in younger ones when the peripheral innate immune system
is stimulated, suggesting that aging can facilitate neurobehavioral
complications associated with peripheral infections (Chen et al.,
2008; McManus and Heneka, 2017).

Innate immune cell types, especially mast cells and
microglia, are likely to contribute importantly to non-resolving
inflammation in the context of aging (Labzin et al., 2018).
Although we may think of aging as a general slowing down of
the body’s cellular activities, the latter cell populations actually
appear to become more reactive. For example, as an animal
ages, mast cells express alterations in degranulation behavior
(e.g., greater sensitivity to prostaglandin E2; Nguyen et al.,
2005). Individual microglial cell reactivity/sensitivity appear
to persist throughout the entire lifespan, which may explain
how stimulation of microglia early in life can induce long-term
changes in brain function (Füger et al., 2017). Senescence of
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resident microglia (and astrocytes) might thus contribute to
the age-related increase in risk for neurodegenerative diseases
(Hoeijmakers et al., 2016; Labzin et al., 2018; Santoro et al.,
2018). In fact, dystrophic (senescent) rather than activated
microglia has been noted also in mouse brain with aging (Streit
et al., 2009; da Silva et al., 2014; Punzo et al., 2016). Experimental
models of aging demonstrate aberrant microglial cell behaviors,
in particular in terms of an increased inflammatory state of
microglia, in which cells are “primed” to be activated and
resistant to regulation (Eggen et al., 2013; Norden and Godbout,
2013; Rawji et al., 2016). Primed microglia are more sensitive to a
secondary inflammatory stimulus, thus leading to an exaggerated
inflammatory response (Perry and Holmes, 2014). This was
demonstrated by culturing microglia-free cerebellar astrocytes
together with the addition of increasing numbers of microglia
(Facci et al., 2014). The co-cultures displayed a heightened
priming response, whereby a classical inflammatory stimulus
(lipopolysaccharide, LPS) sensitized (“primes”) the cells to ATP-
induced release of IL-1β. Equivalent numbers of microglia alone,
however, were essentially devoid of a priming response and IL-1β
release. The generality of this phenomenon was shown by the
ability of cortical and spinal cord glia to respond to LPS priming
in an analogous manner (Facci et al., 2014). These findings serve
also to illustrate the concept of glial cell interactions.

Substances other than LPS are capable of effecting a priming
behavior. For example, the alarmin high mobility group box
1, released under chronic pathological conditions to initiate
inflammatory cascades, mediates neuroinflammatory priming in
the aged brain (Fonken et al., 2016). It has also been suggested
that microglial priming can be explained by the mechanisms that
underlie trained immunity (the latter involving the enhancement
of inflammatory responses by epigenetic mechanisms mobilized
after first exposure to an inflammatory stimulus) (Haley et al.,
2018). When primed, microglia may over-react to a second
challenge, resulting in an enhanced pain intensity and duration
(Hains et al., 2010). Challenge to the aged brain’s immune system
leads to amplification/prolongation of microglia activation that
may, over a long period of time, manifest itself in deleterious
behavioral and cognitive consequences. Xie et al. (2013) found
that the age-related decline of myelin proteins is correlated with
activation of astrocytes and microglia in rat. In turn, this could
disturb microglia clearance function during aging and lead to
lysosomal storage, possibly contributing to microglial senescence
and immune dysfunction (Safaiyan et al., 2016).

A mast cell—microglia dialogue may likely contribute to
exacerbate the effects of aging on their pro-inflammatory
behaviors. While not always appreciated as such, both obesity
(Theoharides et al., 2015b) and diabetes (Donath, 2014) are states
of chronic low-grade inflammation. One might thus predict a
general rise in the occurrence of the latter conditions with age,
in effect placing the elderly in “harms way” for a condition of
low-grade, non-resolving inflammation. Indeed, an endotoxin-
induced, persistent state of low-grade inflammation is associated
with innate immune “programming” or “memory” (Morris et al.,
2015). Given the close link between BBB integrity and cognitive
dysfunction in aging (Chan-Ling et al., 2007; Rapp et al.,
2008), acute and chronic inflammatory pain states, including

neuropathic pain (which is associated with low-grade chronic
inflammation), may well alter barrier permeability (Rosenberg,
2012).

LEVERAGING ENDOGENOUS
MOLECULES FOR THERAPEUTIC
BENEFIT IN NEUROINFLAMMATION

Targeting activation of glia (Gosselin et al., 2010; Möller and
Boddeke, 2016; Roser et al., 2017) andmast cells (Graziottin et al.,
2014; Hendriksen et al., 2017) is gaining increasing traction as a
potential therapeutic avenue for the treatment of nervous system
disorders. In addition to small molecule anti-inflammatory
agents derived by synthetic chemical routes (Roser et al., 2017),
tissue damage and/or stimulation of inflammatory responses
activate endogenous protective mechanisms that lead to the
elaboration of lipid mediators which function as a program
of resolution to switch off inflammation (Buckley et al., 2013;
Piomelli and Sasso, 2014). Harnessing such lipid mediators
might provide a novel approach to effect a program of resolution
(Tabas and Glass, 2013). The mechanism of physiological mast
cell regulation, first defined by the Nobel laureate Rita Levi-
Montalcini as ALIA (Autocoid Local Injury Antagonism), is the
mast cell ability to synthesize on demand the natural mediator
PEA. PEA is a member of the N-acylethanolamine (NAE) family,
in which a fatty acid is linked to an ethanolamine moiety. NAEs
include the endocannabinoid N-arachidonoylethanolamine
(anandamide) and its congeners N-stearoylethanolamine,
N-oleoylethanolamine and PEA (Pacher et al., 2006). The
NAEs (including PEA) are generated principally from by a
membrane-associated N-acylated phosphatidylethanolamine
(NAPE)-phospholipase D to yield the respective NAE and
phosphatidic acid (Figure 4; Leung et al., 2006), although other
pathways exist (Ueda et al., 2013). NAEs in the mammalian brain
are hydrolyzed to the corresponding fatty acid and ethanolamine
by fatty acid amide hydrolase (FAAH; Cravatt et al., 1996) and
NAE-hydrolyzing acid amidase (NAAA; Tsuboi et al., 2007;
Figure 4). In contrast to FAAH, NAA hydrolyzes NAEs having
less than 18 carbon atoms, i.e., PEA (Ueda et al., 2013). The most
striking catalytic property of NAAA is a pH optimum at 4.5–5,
which is consistent with its immunocytochemical localization in
lysosomes (Tsuboi et al., 2007), and with the acidic environment
of inflamed tissues.

PEA is produced/hydrolyzed by microglia and mast cells
(Bisogno et al., 1997; Muccioli and Stella, 2008), down-
modulates mast cell activation (Facci et al., 1995), and controls
microglial cell behaviors (Franklin et al., 2003; Luongo et al.,
2013). An expanding body of preclinical studies attest to the
anti-neuroinflammatory and neuroprotective actions of PEA
(Alhouayek and Muccioli, 2014; Esposito et al., 2014; Fidaleo
et al., 2014; Mattace Raso et al., 2014; Petrosino and Di Marzo,
2017), and will not be detailed here. It is worth mentioning,
however, that PEA decreased aggression in early adolescent
socially isolated mice (a putative rodent model of post-traumatic
stress disorder; Locci et al., 2017), and rescued learning and
memory impairments in a triple transgenic mouse model of
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FIGURE 4 | Palmitoylethanolamide synthesis and metabolism. N-palmitoyl-phosphatidyl-ethanolamine (N-APE) is converted into palmitoylethanolamide and

phosphatidic acid by a plasma membrane-associated N-acylated phosphatidylethanolamine-phospholipase D (PLD). Palmitoylethanolamide (PEA) is broken down to

palmitic acid and ethanolamine by fatty acid amide hydrolase (FAAH, which also catabolizes other fatty acid amides) as well as the more selective N-acyl

ethanolamine-hydrolyzing acid amidase (NAAA). Tissue levels of palmitoylethanolamide rise under conditions of stress, e.g., peripheral tissue inflammation,

neuroinflammation, and pain [Reproduced from Skaper et al. (2014) Mast cells, glia and neuroinflammation: partners in crime? (Figure 2). Copyright © 2013 John

Wiley & Sons Ltd. With permission].

AD (Scuderi et al., 2018). These studies were carried out with
micronized/ultramicronized PEA, formulations which favor its
oral bioavailability over non-micronized PEA (Impellizzeri et al.,
2014). Importantly, PEA has proven efficacious in man in a
number of clinical settings, which are summarized in Table 3,
including a lower frequency of death and tracheotomy in
PEA-treated ALS patients compared to untreated patients in
terms of the proportion of ALS patients who survived without
tracheotomy. None of the clinical trials with PEA to date have
reported treatment-related adverse events (Skaper et al., 2014;
Paladini et al., 2016).

Inhibiting the enzymatic degradation of PEA by targeting
NAAA, in principle, represents another route in treatment of
neuroinflammation. A number of selective NAAA inhibitors
have been described (Solorzano et al., 2009; Sasso et al., 2013;
Ribeiro et al., 2015; Yang et al., 2015) including systemically
active compounds which are able to modulate responses induced
by inflammatory stimuli in vivo and in vitro. The validity of
such an approach in man remains to be demonstrated. PEA is
not constitutive but is produced on demand, and its catabolic
enzymes are probably intended tomodulate substrate availability.
Given PEA pleiotropic effects, a modulatory (rather than fully
inhibitory) approach would maximize availability of the NAE,
while assuring that the NAE’s component molecules (palmitic

TABLE 3 | Clinical studies demonstrating efficacy of palmitoylethanolamidea.

Pathology References

Non-surgical lumbar radiculopathies Chirchiglia et al., 2018

Chronic pain (including neuropathic pain) of

differing etiologies

Skaper et al., 2014; Paladini

et al., 2016

Endometriosis Iuvone et al., 2016;

Indraccolo et al., 2017

Fibromyalgia Del Giorno et al., 2015

Parkinson disease (adjuvant therapy) Brotini et al., 2017

Relapsing-remitting multiple sclerosis

(add-on therapy for the treatment of

interferon-β1a-related adverse effects)

Orefice et al., 2016

Stroke (adjuvant therapy) Caltagirone et al., 2016

Amyotrophic lateral sclerosis Clemente, 2012; Palma

et al., 2016

Autism Antonucci et al., 2015;

Bertolino et al., 2017

amicronized/ultramicronized palmitoylethanolamide.

acid and ethanolamine in the case of PEA) are returned to
the biological system. In principle, this approach should avoid
interfering with further on-demand NAE synthesis.
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EPILOGUE

Inflammation was designed by nature to protect the body
in response to injury or infection and promote tissue repair
and healing. Uncontrolled, this physiological reaction is
transformed into a pathological process that can have profound
consequences for nervous system health. Aberrant activation
of the innate immune system, in particular involving mast
cells and microglia, may occur in either a context-specific
fashion or because of the body’s inability to resolve a state
of protracted inflammation. The former cells are capable of
reacting with rapid and longer-term delayed responses, while
the latter comprise key sensors for disrupted brain homeostasis
and accumulate locally as a consequence of neuronal cell
injury or entry of foreign material into the brain parenchyma.
We have come to appreciate that a complex interplay exists
between non-neuronal cells in the nervous system, including
microglia, astrocytes, mast cells and oligodendrocytes. Such
cellular behaviors can present a challenge when designing
strategies to deal with the resolution of inflammation-
associated neurological disorders. This scenario takes on added
significance with the knowledge that mast cell and microglia
reactivity/responsiveness change with aging. Obesity/metabolic
disease and diabetes, for example, with their age-dependent
rise in prevalence, can be expected to contribute to low-
grade non-resolving inflammation and neuroinflammation.
Additionally, acute and chronic inflammatory states may alter
BBB permeability and ultimately lead to aging-associated
cognitive dysfunction.

We still have much to learn concerning the mechanisms that
regulate neuroinflammation. This shortcoming is evident, for
example, in current treatments for neuropathic pain; these agents
are largely neuron-centric and address the symptoms rather than
the underlying pathophysiology. An alternative approach for
treating nervous system disorders nay be to focus on endogenous
regulators of inflammation. Within this context, the fatty acid
amide signaling molecule PEA shows promise by contributing
to the resolution of neuroinflammation through modulation
of mast cell and glia activity—in other words, a modulator of
immuno-neural homeostasis. Molecules capable of modulating
activation of both glia and mast cells, without provoking
immunosuppression, could be of utility in the resolution of
inflammation and restoration of tissue homeostasis.
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