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The fly photoreceptor has long been used as a model to study sensory neuron
morphogenesis and retinal degeneration. In particular, elucidating how these cells are
built continues to help further our understanding of the mechanisms of polarized cell
morphogenesis, intracellular trafficking and the causes of human retinal pathologies.
The conserved PAR complex, which in flies consists of Cdc42-PAR6-aPKC-Bazooka,
and the transmembrane protein Crumbs (Crb) are key players during photoreceptor
morphogenesis. While the PAR complex regulates polarity in many cell types, Crb
function in polarity is relatively specific to epithelial cells. Together Cdc42-PAR6-aPKC-
Bazooka and Crb orchestrate the differentiation of the photoreceptor apical membrane
(AM) and zonula adherens (ZA), thus allowing these cells to assemble into a neuro-
epithelial lattice. In addition to its function in epithelial polarity, Crb has also been shown
to protect fly photoreceptors from light-induced degeneration, a process linked to
Rhodopsin expression and trafficking. Remarkably, mutations in the human Crumbs1
(CRB1) gene lead to retinal degeneration, making the fly photoreceptor a powerful
disease model system.

Keywords: cell polarity, epithelial cells, sensory neurons, retina, Crumbs complex, PAR complex, Drosophila
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INTRODUCTION

The fly retina is a very popular model system that has been used to study a wide range of biological
processes. This popularity is due to its intermediate level of complexity with regards to cell
specification and morphogenesis and its excellent genetic tractability. Following many decades of
work on this organ, our knowledge of how photoreceptor neurons and their accessory cells are
specified is very comprehensive. Photoreceptors are specialized sensory neurons that are born in
the eye imaginal disc, which consists of epithelial cells that have been primed to differentiate into
retinal cells through an eye specific regulatory gene network that includes the master eye regulator
eyeless/pax6 (Casares, 2016). During their early phase of differentiation, photoreceptors assemble
into basic units called ommatidia and initiate neurogenesis (Ready et al., 1976; Cagan and Ready,
1989; Wolff and Ready, 1991). Neurogenesis in these cells includes the specification of the axon
that navigates through the optic stalk toward the developing optic lobe.

Photoreceptor morphogenesis unfolds during the pupal life of the animal as these cells
repolarize their apical (top)-basal (bottom) axis and evolve new membrane domains, including
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the rhabdomere, which is the light-gathering organelle of
the cell (Ready, 2002; Figures 1A,B,F). The rhabdomere
is an enormously amplified apical membrane (AM) that
contains approximately 60,000 microvilli (Arikawa et al., 1990;
Figure 1F) that bear the visual pigment, Rhodopsin (Figure 1I),
and the signalplex, which is a hub for phototransduction
(Wang and Montell, 2007). The rhabdomere is supported by
a specialized membrane, called the stalk membrane, which
lies immediately apical to the cell’s zonula adherens (ZA;
Ready, 2002; Figures 1B,E,F,H), and can be compared to
the inner segment (IS) that supports the outer segment (OS)
in vertebrate cone and rod photoreceptors (Figures 1B,C).
In epithelial cells, the ZA contains the adhesion molecule
E-Cadherin and is the main intercellular adhesion domain that
allows cells to assemble into sheets to form organs (Tepass,
2012). In the pupal photoreceptor, differentiation of the
AM and ZA takes place early during pupal development,
and both membrane domains are readily visible by 37%
after puparium formation (Figures 1A,D,G; where 0%
is the animal entering pupation and 100% corresponds
to the eclosion of the fly). Later on, at around 55%
after puparium formation, the stalk membrane is clearly
visible and distinct from the apical microvilli and ZA
(Figures 1B,D,G; Longley and Ready, 1995). Toward the
end of pupal life, at approximately 75% after puparium
formation, transcription of the rhodopsin genes is activated
and Rhodopsins populate the rhabdomere, contributing to its
final phase of morphogenesis and maintenance (Figures 1F,I;
Kumar and Ready, 1995; Chang and Ready, 2000; Pinal
and Pichaud, 2011). The genetic tractability of the pupal
photoreceptor, together with its large size and exquisite
accessibility for imaging makes it an ideal model system
to study sensory neuron morphogenesis. In particular, the
pupal photoreceptor has proven very valuable to study the
mechanisms of epithelial polarity and the regulatory networks
involved in specifying and building the epithelial ZA. In
addition, the fly photoreceptor has also been very powerful
in studying disease genes that in vertebrates cause retinal
degeneration.

REGULATORY NETWORKS DRIVING
POLARIZED MORPHOGENESIS

Work in the C. elegans zygote has led to the discovery of the
PARtitioning defective genes (PAR1–6), which when mutated
lead to defects in setting up the antero-posterior axis of the zygote
(Goldstein and Macara, 2007). Remarkably, this regulatory
network is largely conserved through evolution and is used to
regulate polarity in epithelial and neuroepithelial cells, as well as
in neurons.

Cdc42 Orchestrates Photoreceptor
Morphogenesis Through the PAR Complex
and Pak4
At the core of the epithelial polarity protein regulatory
network that governs pupal photoreceptor morphogenesis

is the small GTPase Cdc42. Cdc42 belongs to the large
family of Rho-GTPases and can be activated (Cdc42-GTP)
at specific sub-cellular locations through Guanine nucleotide
Exchange Factor (GEFs) or inactivated (Cdc42-GDP) by
GTPase-Activating Proteins (GAPs; Hall, 2012). Spatial
activation/inactivation of Cdc42 has been shown to act as a
conserved polarity mechanism from budding yeast to human
cells (Etienne-Manneville, 2004; Park and Bi, 2007). Work
in the C. elegans embryo supports the notion that spatial
distribution of GEFs or GAPs might dictate where the PAR
complex assembles (Anderson et al., 2008; Chan and Nance,
2013; Klompstra et al., 2015). In these cells, Cdc42 is inactivated
at the lateral cell contacts through the Cdc42 GAP PAC-1 and
is activated at the contact free membrane by two GEF, ECT-2
and CGEF-1, thus promoting PAR complex assembly. However,
spatial regulation of Cdc42 does not necessarily operate in
all epithelial tissues in C. elegans (Zilberman et al., 2017). In
pupal photoreceptors, and in epithelial cells in general, active
Cdc42 is essential for the assembly of the PAR complex at the
nascent AM (Joberty et al., 2000; Lin et al., 2000; Hutterer et al.,
2004; Walther and Pichaud, 2010; Jin et al., 2015; Figure 2A).
Therefore, it is tempting to speculate that spatially restricted
activation of Cdc42 could act as a polarization mechanism in
epithelial cells by allowing localized PAR complex assembly and
signaling.

In pupal photoreceptors, Cdc42 function during polarized
morphogenesis is mediated by two main effectors: (i) the
PAR complex; and (ii) the conserved p21-activated kinase 4
(Pak4/Mbt).

Cdc42 and the PAR Complex
As the Cdc42-PAR6-aPKC-Bazooka complex assembles,
Bazooka (Baz) is phosphorylated by aPKC on the conserved
Serine 980 (S827 in vertebrate PAR3), and this phosphorylation
allows for the separation of PS980-Baz from Cdc42-PAR6-
aPKC, enabling signaling through aPKC (Hirose et al., 2002;
Nagai-Tamai et al., 2002; Krahn et al., 2010; Morais-de-Sá
et al., 2010; Walther and Pichaud, 2010; Figure 2A). All
indications are that while Baz is required for the loading of the
PAR complex at the plasma membrane, its phosphorylation
by aPKC is constitutive. Breaking up the PAR complex into
two products (Cdc42-PAR6-aPKC and PS980-Baz) acts as
the main symmetry-breaking mechanism that drives the
separation of the ZA from the AM. This mechanism is
based on the selective retention of Cdc42-PAR6-aPKC and
concomitant exclusion of PS980-Baz from the developing
AM. However how this is achieved is not fully understood.
Following apical exclusion, PS980-Baz accumulates at the
border between the apical and lateral membrane (Figure 2A)
where it is thought to regulate ZA assembly via recruiting
adherens junction material (Wei et al., 2005; McGill et al., 2009;
Figure 2A). PAR complex signaling mediated by aPKC
is conserved through evolution and plays a role during
vertebrate epithelial and neuroepithelial cell polarization, as
well as axon specification in cortical neurons (Goldstein and
Macara, 2007; St Johnston and Ahringer, 2010; Kon et al.,
2017).
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FIGURE 1 | Photoreceptor morphogenesis. Early stage of pupal photoreceptor morphogenesis showing the zonula adherens (ZA, red) and the nascent apical
membrane (AM; green). (B) Late pupal photoreceptor presenting a mature Rhabdomere (R, purple), Stalk membrane (green) and ZA (red). From (A,B), the pupal
photoreceptor has extended along the proximal (top)-distal (bottom) axis. (C) Vertebrate photoreceptors (cone and rods). The outer segment (OS, purple) is
supported by the inner segment (IS, green). The ZA is shown in red. (D–F) Electron micrographs of representative stages of pupal photoreceptor development.
Stages of pupal photoreceptor development can be expressed as a function of the % of pupal development, where 0% marks the onset of pupal life and 100% mark
the adult animal from the pupal case. (D) Early pupal ommatidium (40%) where seven photoreceptors can be seen. Basal membrane (BM) is in blue, the ZA in red
and the AMs are circled (green). (E) 65% pupal ommatidium where the stalk membrane (SM, green) and Inter rhabdomeric space (IRS) are clearly visible. R stands
for rhabdomere. (F) Adult ommatidium showing mature rhabdomeres (R), stalk membranes (green), ZA (red) and lateral membranes (blue). (G) 40% ommatidium
stained for aPKC (green), which labels the AMs and the stained for ZA marker Armadillo (red). (H) 60% ommatidium stained for F-actin using phalloidin (purple),
which predominantly labels the developing rhabdomere (R), and Crumbs (green), labeling the stalk membranes. IRS stands for Inter-Rhabdomeric-Space. (I) Mature
ommatidium (90% after puparium formation) stained for F-actin (purple) and Rh1 (turquoise).
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FIGURE 2 | Mechanisms of epithelial polarity. (A) Upon PAR complex assembly (boxed), aPKC phosphorylates Bazooka (Baz), which leads to the apical exclusion of
PS980-Baz and concomitant apical retention of Cdc42-PAR6-aPKC, which is enabled through Crumbs (Crb) at the apical/stalk membrane (green background). At
the developing ZA (pink background), Bazooka is retained, presumably through direct binding to Armadillo. (B) Schematic representation of how the Baz-PTEN
association contributes in limiting apical/ZA levels of PiP3. Preventing the accumulation of PiP3 at the photoreceptor AM is important for the specification of the
rhabdomere. (C) Schematic representation of the trafficking route that supports delivery of Rhodopsin 1 (Rh1) to the rhabdomere (purple). Potential cis-interactions
between Crb molecules are represented by a line joining two Crb molecules at the stalk membrane (green). Double-sided arrows represent protein interactions. The
ZA is shown in red. ER, Endoplasmic Reticulum; TGN, Trans Golgi network.
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Cdc42 and p21-Activated Kinase 4
Another function for Cdc42 in developing the pupal
photoreceptor is to promote retention of PS980-Baz at the
developing ZA. For this retention mechanism, Cdc42 functions
through the oncogene p21-activated kinase Pak4/Mbt (Walther
et al., 2016). In human epithelial cells, Pak4 functions
downstream of Cdc42 to promote tight junction and adherens
junction maturation (Wallace et al., 2010; Jin et al., 2015).
In flies, Mbt phosphorylates the adherens junction protein
Armadillo/β-Catenin at two conserved Serine residues
(Menzel et al., 2008), a function also reported in Zebrafish
(Selamat et al., 2015). In pupal photoreceptors, Armadillo
phosphorylation by Mbt/Pak4 regulates the retention of
Baz at the developing ZA and promotes its morphogenesis
(Schneeberger and Raabe, 2003; Menzel et al., 2007, 2008).
In these cells, retention of Baz functions redundantly with
PAR1-dependent lateral displacement (Benton and St Johnston,
2003; McKinley and Harris, 2012; Walther et al., 2016), so
to prevent Baz from accumulating at the lateral membrane,
where it could recruit ectopic aPKC and adherens junction
material. ZA retention of Baz is therefore an essential
mechanism that contributes to enhancing polarization of
the cell along the apical-basal axis (Figure 2A). Whether a
similar junctional retention mechanism operates in vertebrate
cells to prevent lateral spreading of the PAR complex remains to
be investigated.

Polarized Accumulation of Phosphoinositol
Lipids Regulates Apical Membrane
Morphogenesis
Amongst the many examples for the utility of the fly
pupal photoreceptor in studying polarized cell morphogenesis
is the discovery that spatially restricted accumulation of
phosphoinositol lipids regulates AMmorphogenesis (Pinal et al.,
2006; Figure 2B). Pioneering work in the fly embryonic
ectoderm revealed that Bazooka can bind and recruit the
lipid phosphatase PTEN at the apical pole of epidermis cells
(von Stein et al., 2005). PTEN catalyzes the conversion of
PiP3 into PiP2 (Leslie and Downes, 2002), and its apico-lateral
recruitment correlates with local accumulation of PiP2 (von
Stein et al., 2005). Concomitant with this study, we reported
that in the pupal photoreceptor, PTEN recruitment by Bazooka
at the developing ZA puts a break on the apical levels of
PiP3 and promotes PiP2 enrichment at the AM and ZA (Pinal
et al., 2006). This regulation is important because when it
is abolished in PTEN mutants, stalk membrane is ectopically
inserted within the apical rhabdomere. Subsequent studies in
vertebrate MDCK cells showed the interaction between PAR3
and PTEN to be conserved and suggested that such defects
during polarized plasma membrane morphogenesis could be
explain by a role for polarized PiP2/PiP3 accumulation in
directing trafficking (Bryant and Mostov, 2008). In addition, a
link between Baz/Par3 and PTEN suggests that in epithelial cells,
loss of polarity or adhesion might directly impact on cell growth
through the Serine/Threonine kinase Akt, which is activated by
PiP3 (Kim et al., 2017).

Crumbs and Positive Feedback Loops
During Epithelial Cell Polarization
For polarity to arise, molecular asymmetries must be established
at the plasma membrane that are reinforced through feedback
loops (Altschuler et al., 2008; Goryachev and Pokhilko, 2008;
Lo et al., 2014). In the pupal photoreceptor, the transmembrane
protein Crumbs (Crb) is an important player during polarized
morphogenesis because it recruits Cdc42-PAR6-aPKC at the
nascent stalk membrane, thus re-enforcing the molecular
asymmetry created by the PAR complex. Crb contains a
large extra-cellular domain that can mediate homophilic
adhesion (Tepass et al., 1990; Wodarz et al., 1995; Roper,
2012; Zou et al., 2012; Letizia et al., 2013). This protein
also contains a short intracellular domain that is sufficient
to promote polarity in many epithelia by recruiting a set
of proteins, including the polarity regulators Stardust, and
also PAR6/aPKC (Wodarz et al., 1995; Klebes and Knust,
2000; Bachmann et al., 2001; Hong et al., 2001; Lemmers
et al., 2004). Early work using the pupal photoreceptor
showed that PAR6 can bind to the short PDZ-binding
domain of Crb via its conserved PDZ domain (Nam and
Choi, 2003). Subsequent work showed that Crb recruitment
of Cdc42-PAR6-aPKC is required for the separation of the
ZA from the stalk membrane (AM in other cell types;
Walther and Pichaud, 2010; Figure 2A). Accordingly, crb
mutant photoreceptors fail to build their ZA (Izaddoost et al.,
2002; Pellikka et al., 2002). In binding to PAR6/aPKC, Crb
likely stabilizes these proteins at the AM and contributes to
sustaining the production of Cdc42-PAR6-aPKC and PS980-
Baz, which in turn drives polarized morphogenesis of the
plasma membrane. It is interesting to note that the topology
of the pupal photoreceptor and other epithelial fly cells most
closely resembles that of vertebrate neuroepithelial cells (Aaku-
Saraste et al., 1996; Chenn et al., 1998), in that the apical
junction consists mostly of Cadherin, and the regulatory
network discussed in this review plays an important role in
regulating polarity in these cells (Afonso and Henrique, 2006).
It is therefore conceivable that during brain development in
vertebrates, deregulation of this network might lead to defects
in neuroepithelial cell polarity and adhesion that could cause
pathologies.

THE FLY PHOTORECEPTOR AS A
DISEASE MODEL

Over the past few decades the fly photoreceptor has been used
as a powerful model system to study human retinopathies,
including those linked to defects in Rhodopsin trafficking.
Examples of its relevance to study human diseases can be found
in very elegant studies on Crb function in preventing light-
induced retinal degeneration.

Crumbs and Retinal Degeneration
Next to its function during polarized morphogenesis, Crb
is required to protect photoreceptors from light induced
degeneration (Johnson et al., 2002). This is interesting because
mutations in one of the crb human orthologs, CBR1, lead to

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 March 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Pichaud Photoreceptor Morphogenesis and Retinal Degeneration

retinitis pigmentosa (RP12) and Leber Congenital Amaurosis
(LCA), which are inherited retinopathies characterized by
photoreceptor degeneration and blindness (Richard et al., 2006;
den Hollander et al., 2008).

Three crb genes are found in humans that encode isoforms
of the CRB1–3 proteins. CRB1 and CRB2 are most similar
to Drosophila crb, while CRB3 encodes for a shorter version
that lacks the large extracellular domain. CRB1 is expressed in
the mammalian retina and localizes at the inner photoreceptor
segment (Figure 1C) as well as apical to the adherens junction
of Muller cells, which are retinal glial cells that support
photoreceptor function. Up to 150 mutations have been
identified in CRB1 that cause retinopathies (Bujakowska et al.,
2012), a majority of which are located in the large extracellular
domain of the protein. The large extracellular domain of
Crb is not strictly required for polarity in some epithelia
(e.g., fly embryonic epidermis), but it is required alongside
the intracellular domain for proper pupal photoreceptor
morphogenesis (Richard et al., 2006; Pellikka and Tepass,
2017). In addition, the extracellular domain of Crb carries
functions that can be dissociated from Crb role in polarized
morphogenesis. This includes a function in regulating Notch
signaling in flies and zebrafish (Herranz et al., 2006; Richardson
and Pichaud, 2010; Ohata et al., 2011; Nemetschke and Knust,
2016), as well as a role in promoting cell sorting. This is the
case in the fish retina, where two Crb isoforms, CRB2a and
CRB2b are expressed and play a role in both photoreceptor ZA
morphogenesis and clustering of cone photoreceptors, possibly
though CRB-CRB trans-interaction mediated adhesion (Zou
et al., 2012).

Crb-Crb interaction mediated by the extracellular domain is
conserved from flies to vertebrates (Roper, 2012; Letizia et al.,
2013) and might play a role in protecting photoreceptors from
light-induced stress. In this context, the fly photoreceptor has
allowed for very significant advances in our understanding of
how Crb/CRB1 might promote photoreceptor survival when
challenged using light. Firstly, light induced degeneration in
crb mutant photoreceptors can be significantly suppressed
when the flies are fed a diet containing low levels of vitamin
A (carotenoid), which limits the production of Rhodopsin
(Johnson et al., 2002). Secondly, Crb has been shown to
regulate Rhodopsin trafficking. In flies, Crb interacts with
the motor protein MyosinV, which together with the small
GTPase Rab11 and its regulator dRip11 regulates trans-Golgi
to plasma membrane trafficking of Rhodopsins (Satoh et al.,
2005; Li et al., 2007; Figure 2C). In this trafficking pathway,
Rab11 regulates ER to Golgi transport (Satoh et al., 2005),
while recent work revealed that Rab6 specifically regulates
sorting of apical cargo, including Rhodopsin, from the trans-
Golgi (Iwanami et al., 2016). Thirdly, recent studies in
which crb was mutagenized at conserved residues located
in the extracellular domain that are associated with human
retinopathies, have revealed a complex pattern of trafficking
for Crb, and how it might in turn influence Rhodopsin
trafficking, including endocytosis (Lin et al., 2015; Pellikka and
Tepass, 2017). Finally, recent work indicates that alternative
splicing variants of the crb locus are expressed in flies, and

that in the retina a particular isoform (Crb-C) is especially
relevant for preventing light-induced degeneration (Spannl
et al., 2017). Defects in Rhodopsin trafficking in humans are
a major cause of retinal dystrophy, and work in flies strongly
suggests that it is, at least in part, defects in Rhodopsin
trafficking that cause light induced degeneration in crb mutant
photoreceptors.

In addition, Crb functions as part of a regulatory network that
promotes rhabdomere morphogenesis and inter rhabdomeric
space (IRS) formation (Gurudev et al., 2014). Included in this
network are the secreted proteins Prominin1 (Prom1) and
the conserved proteoglycan Eyes shut (Eys; Figure 2C), both
of which have orthologs that are linked to human retinal
dystrophies when mutated (Maw et al., 2000; Husain et al.,
2006; Zelhof et al., 2006; Collin et al., 2008; Gurudev et al.,
2013).

CONCLUDING REMARKS

The fly photoreceptor has continued to be a superb model system
in which to discover and study the mechanisms that regulate
neuronal differentiation, morphogenesis and physiology. Despite
the tremendous advances in gene editing in vertebrate models
and our ability to produce organoids in vitro, the Drosophila
retina remains a very attractive model system to study the
cell and molecular biology of tissue development and function
in vivo, because it comes equipped with a very versatile
genetic tool-box combined with live imaging and low gene
redundancy. It also comes with a wealth of knowledge that
is not found in many other systems, in turn allowing for
the generation of a much more integrated view of specific
cell and biological processes in vivo. The full mechanisms of
epithelial and neuronal polarity establishment remain elusive
and more work is required to truly understand how polarity
arises in these main cell types. Whether polarity can be
generated through spatial regulation of Cdc42 is an exciting
possibility, but what mechanisms are responsible for localizing
the relevant GEFs/GAPs? What are the biophysical properties
of the PAR complex that might explain the mechanisms that
promote its partitioning, which in fly epithelial cells promotes
separation of the ZA from the AM? How does membrane
delivery come together with the PAR complex to promote
polarized plasma membrane morphogenesis? Alongside other
well studied epithelial cell types, the pupal photoreceptor will
continue to yield insights into all of these questions, which
are fundamental to our understanding of epithelial and neuron
morphogenesis.
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